
Under review as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

A.1 ACTION ABSTRACTION

Instruction for Extracting Structured Actions. To extract structured actions, we first ask LLM
to generate a tree-structured action planning for each of the 3141 predefined tasks provided by
MineDojo, and then converts each action step into a (verb, object, tool, material)
tuple. During decomposition, it is essential to ensure actions are neither too broad nor too specific.
We adjusted the depth of the action decomposition tree to achieve balance, and empirically set the
depth as 2 to meet our requirements.

Specifically, we use gpt-3.5-turbo from OpenAI API to generate the structured actions. We add
the following instruction to the content of “SYSTEM” role to generate the tree-structured plan. We
add the goal description, e.g., ”find material and craft a iron pickaxe”, to the content of “USER” role
and then asks LLM to response according to the requirements.

SYSTEM:
You serve as an assistant that helps me play Minecraft.

I will give you my goal in the game, please break it down as a tree-structure plan to achieve
this goal.

The requirements of the tree-structure plan are:

1. The plan tree should be exactly of depth 2.
2. Describe each step in one line.
3. You should index the two levels like ’1.’, ’1.1.’, ’1.2.’, ’2.’, ’2.1.’, etc.
4. The sub-goals at the bottom level should be basic actions so that I can easily execute them
in the game.

USER:
The goal is to {goal description}. Generate the plan according to the requirements.

After that, we extract the action tuple from each sentence of the leaf nodes. We use the following
instruction as the content of “SYSTEM” role to extract the tuple and add the sentence to the content
of “USER” role.

SYSTEM:
You serve as an assistant that helps me play Minecraft.

I will give you a sentence. Please convert this sentence into one or several actions according
to the following instructions.

Each action should be a tuple of four items, written in the form (’verb’, ’object’, ’tools’,
’materials’)

’verb’ is the verb of this action.
’object’ refers to the target object of the action.
’tools’ specifies the tools required for the action.
’material’ specifies the materials required for the action.
If some of the items are not required, set them to be ’None’.

USER:
The sentence is {sentence}. Generate the action tuple according to the requirements.

Then, we extract the structured actions by selecting frequent actions and merging actions with
similar functionalities. The set of structured actions is {equip, explore, approach,
mine/attack, dig down, go up, build, craft/smelt, apply}. Note that we
disregard more detailed action decomposition for attack and build to remove overly detailed
short-term actions and focus on long-term task completion.

12



Under review as a conference paper at ICLR 2024

A.2 LLM-BASED HIERARCHICAL AGENT

A.2.1 LLM DECOMPOSER

We use gpt-3.5-turbo from OpenAI API 2 for goal decomposition. The prompt is shown as
follows, which consists of two parts: instruction with the role of “SYSTEM” and query with the role
of “USER”. The {object quantity}, {object name} and {related knowledge} are
injectable slots that will be replaced with corresponding texts before fed into the LLM.

SYSTEM:
You are an assistant for the game Minecraft.

I will give you some target objects and some knowledge related to the object. Please write the
obtaining of the object as a goal in the standard form.

The standard form of the goal is as follows:
{

”object”: ”the name of the target object”,
”count”: ”the target quantity”,
”material”: ”the materials required for this goal, a dictionary in the form {material name:

material quantity}. If no material is required, set it to None”,
”tool”: ”the tool used for this goal. If multiple tools can be used for this goal, only write

the most basic one. If no tool is required, set it to None”,
”info”: ”the knowledge related to this goal”

}
The information I will give you:
Target object: the name and the quantity of the target object
Knowledge: some knowledge related to the object.

Requirements:
1. You must generate the goal based on the provided knowledge instead of purely depending
on your own knowledge.
2. The ”info” should be as compact as possible, at most 3 sentences. The knowledge I give you
may be raw texts from Wiki documents. Please extract and summarize important information
instead of directly copying all the texts.

Goal Example:
{

”object”: ”iron ore”,
”count”: 1,
”material”: None,
”tool”: ”stone pickaxe”,
”info”: ”iron ore is obtained by mining iron ore. iron ore is most found in level 53. iron ore

can only be mined with a stone pickaxe or better; using a wooden or gold pickaxe will yield
nothing.”
}
{

”object”: ”wooden pickaxe”,
”count”: 1,
”material”: {”planks”: 3, ”stick”: 2},
”tool”: ”crafting table”,
”info”: ”wooden pickaxe can be crafted with 3 planks and 2 stick as the material and

crafting table as the tool.”
}

USER:

2https://platform.openai.com/docs/api-reference

13

https://platform.openai.com/docs/api-reference


Under review as a conference paper at ICLR 2024

Target object: {object quantity} {object name}
Knowledge: {related knowledge}

The recursive decomposition generates a sub-goal tree starting from the final goal object as the root
node: if a goal has some prerequisites (materials or tools), for each required material or tool, we add a
child node representing the goal of obtaining that material or tool, and then recursively decompose the
child node, until there is no more prerequisites. The related knowledge is from: 1) Crafting/smelting
recipes in MineDojo (Fan et al., 2022), written in the form “Crafting {quantity} {object}
requires {material} as the material and {tool} as the tool”; 2) Wiki on the Internet 3. We extract
the paragraphs with keywords “obtaining”, “mining”, “sources”, etc.

A.3 LLM PLANNER

Here we present the prompt for planning with LLM. We also use gpt-3.5-turbo from OpenAI
API as the LLM planner. The model accepts inputs in the form of a chat, i.e., the prompt is a
dialogue consisting of several messages, each of which contains a role and the content. We set the
Instruction with the role “SYSTEM” at the beginning, and use the User Query with the role
“USER” to query the LLM for response. The content of the Instruction and User Query are
as follows.

A.3.1 INSTRUCTION

SYSTEM:
You serve as an assistant that helps me play the game Minecraft.

I will give you a goal in the game. Please think of a plan to achieve the goal, and then write a
sequence of actions to realize the plan. The requirements and instructions are as follows:

1. You can only use the following functions. Don’t make plans purely based on your
experience, think about how to use these functions.

explore(object, strategy)
Move around to find the object with the strategy: used to find objects including block items
and entities. This action is finished once the object is visible (maybe at a distance).
Augments:
- object: a string, the object to explore.
- strategy: a string, the strategy for exploration.

approach(object)
Move close to a visible object: used to approach the object you want to attack or mine. It may
fail if the target object is not accessible.
Augments:
- object: a string, the object to approach.

craft(object, materials, tool)
Craft the object with the materials and tool: used for crafting new object that is not in the
inventory or is not enough. The required materials must be in the inventory and will be
consumed, and the newly crafted objects will be added to the inventory. The tools like the
crafting table and furnace should be in the inventory and this action will directly use them.
Don’t try to place or approach the crafting table or furnace, you will get failed since this
action does not support using tools placed on the ground. You don’t need to collect the items
after crafting. If the quantity you require is more than a unit, this action will craft the objects
one unit by one unit. If the materials run out halfway through, this action will stop, and you
will only get part of the objects you want that have been crafted.
Augments:
- object: a dict, whose key is the name of the object and value is the object quantity.

3https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki

14

https://minecraft-archive.fandom.com/wiki/Minecraft_Wiki


Under review as a conference paper at ICLR 2024

- materials: a dict, whose keys are the names of the materials and values are the quantities.
- tool: a string, the tool used for crafting. Set to null if no tool is required.

mine(object, tool)
Mine the object with the tool: can only mine the object within reach, cannot mine object from
a distance. If there are enough objects within reach, this action will mine as many as you
specify. The obtained objects will be added to the inventory.
Augments:
- object: a string, the object to mine.
- tool: a string, the tool used for mining. Set to null if no tool is required.

attack(object, tool)
Attack the object with the tool: used to attack the object within reach. This action will keep
track of and attack the object until it is killed.
Augments:
- object: a string, the object to attack.
- tool: a string, the tool used for mining. Set to null if no tool is required.

equip(object)
Equip the object from the inventory: used to equip equipment, including tools, weapons, and
armor. The object must be in the inventory and belong to the items for equipping.
Augments:
- object: a string, the object to equip.

digdown(object, tool)
Dig down to the y-level with the tool: the only action you can take if you want to go
underground for mining some ore.
Augments:
- object: an int, the y-level (absolute y coordinate) to dig to.
- tool: a string, the tool used for digging. Set to null if no tool is required.

go back to ground(tool)
Go back to the ground from underground: the only action you can take for going back to the
ground if you are underground.
Augments:
- tool: a string, the tool used for digging. Set to null if no tool is required.

apply(object, tool)
Apply the tool on the object: used for fetching water, milk, lava with the tool bucket, pooling
water or lava to the object with the tool water bucket or lava bucket, shearing sheep with the
tool shears, blocking attacks with the tool shield.
Augments:
- object: a string, the object to apply to.
- tool: a string, the tool used to apply.

2. You cannot define any new function. Note that the ”Generated structures” world creation
option is turned off.

3. There is an inventory that stores all the objects I have. It is not an entity, but objects can be
added to it or retrieved from it anytime at anywhere without specific actions. The mined or
crafted objects will be added to this inventory, and the materials and tools to use are also from
this inventory. Objects in the inventory can be directly used. Don’t write the code to obtain
them. If you plan to use some object not in the inventory, you should first plan to obtain it.
You can view the inventory as one of my states, and it is written in form of a dictionary whose
keys are the name of the objects I have and the values are their quantities.

4. You will get the following information about my current state:
- inventory: a dict representing the inventory mentioned above, whose keys are the name of
the objects and the values are their quantities
- environment: a string including my surrounding biome, the y-level of my current location,
and whether I am on the ground or underground

15



Under review as a conference paper at ICLR 2024

Pay attention to this information. Choose the easiest way to achieve the goal conditioned on
my current state. Do not provide options, always make the final decision.

5. You must describe your thoughts on the plan in natural language at the beginning. After
that, you should write all the actions together. The response should follow the format:
{

”explanation”: ”explain why the last action failed, set to null for the first planning”,
”thoughts”: ”Your thoughts on the plan in natural languag”,
”action list”: [
{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

expected results of this action”},
{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

expected results of this action”},
{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

expected results of this action”}
]

}
The action list can contain arbitrary number of actions. The args of each action should
correspond to the type mentioned in the Arguments part. Remember to add “‘dict“‘ at the
beginning and the end of the dict. Ensure that you response can be parsed by Python json.loads

6. I will execute your code step by step and give you feedback. If some action fails, I will
stop at that action and will not execute its following actions. The feedback will include error
messages about the failed action. At that time, you should replan and write the new code just
starting from that failed action.

A.3.2 USER QUERY

USER:
My current state:
- inventory: {inventory}
- environment: {environment}
The goal is to {goal}.

Here is one plan to achieve similar goal for reference: {reference plan}.

Begin your plan. Remember to follow the response format.
or Action {successful action} succeeded, and {feedback message}. Continue
your plan. Do not repeat successful action. Remember to follow the response format.
or Action {failed action} failed, because {feedback message}. Revise your plan
from the failed action. Remember to follow the response format.

A.3.3 LLM INTERFACE

Action Implementation. The observation of the action contains LiDAR rays with an interval of 5
degrees in the horizon and vertical direction for locating objects, and voxels with 10 unit radius only
for navigation, inventory, life status, and agent location status (X-ray cheating is carefully avoided).
RGB is not used in our implementation, although it provides more information than LiDAR rays. For
example, the biome, and category of the dropping item can not be identified by LiDAR rays. Some
objects may also be missed by LiDAR due to the sparseness of LiDAR rays. Different from Hafner
et al. (2023) who set the breaking speed to 100, we did not change the game settings. The detailed
implementation of each structured action is as follows:

• equip: The equip action calls the environment API to equip the required object. The action
succeeds when the API returns success. The action fails when the object is not in inventory or the
equip API returns failure.

• explore: The explore action traverses the world until the object is visible. This action regards
the world as a chessboard, and each node on the chessboard is the center point of a 20×20 units

16



Under review as a conference paper at ICLR 2024

area. Two strategies are implemented depending on whether the agent is on the ground or not.
When the agent is on the ground, the BFS explore will be adopted. When the agent is under the
ground, mainly for exploring ore, the DFS explore will be adopted. In the DFS exploration, the
agent will break the blocks to form a mine road with a width of 1 and a height of 2. The action
succeeds when the object is visible. The action fails when the explore exceeds a preset steps of
10,000 but the required object is not found.

• approach: The approach action finds the nearest visible required object and walks towards the
object. We adopt A∗ algorithm for finding a path. The A∗ algorithm can jump, translate, and fall
in four directions of north, south, east and west. We also allow the agent to jump while placing a
block under the agent for ascent. If the object is out of the voxel observation range, A∗ algorithm is
iteratively applied to find the location nearest to the object. The action succeeds when the ℓ∞ norm
distance between the object and agent is less than 2. The action fails when there is no required
object visible or no path can be found to walk close to the object.

• mine/attack: The mine/attack action uses the keyboard attack API with the tools to attack the
object. Only visible objects could be mined or attacked. The object of mine should be blocks, and
the agent will continue mining the block until it is broken. The object of attack should be entities,
and the agent will iteratively approach and attack the entity until it is killed. After the block is
broken or the entity is killed, if there are items dropped by them, the agent will approach the items
to collect them. The action succeeds when the block is broken or the entity is killed. The action
fails when there is no visible object, no required tools is in inventory, or the visible object is out of
attack range.

• dig down: The dig down action iteratively breaks the block underfoot with the tool until the
required ylevel is reached. If the agent is on the ground, before digging down, the current location
is stored for going up action. After the action succeeds, the state of the agent is set to underground.
The action succeeds when the required ylevel is reached. The action fails when it exceeds the reset
max steps 10,000 or no required tool is in inventory.

• go up: The agent will first go back to the location stored by dig down. Then, the go up action
puts dirt blocks underfoot to raise the agent. After the action is finished, the state of agent is set to
on the ground. The action succeeds when the pre-stored location is reached. The action fails when
the walk fails, exceeds the reset max steps 10,000 or there is no required tool in inventory.

• build: The build action places the required blocks according to a given blueprint from bottom
to up. The action succeeds when all blocks have been placed. The action fails when there are no
enough materials in inventory or it is invalid to place some blocks.

• craft/smelt: The action calls the environment API to craft/smelt the required object. The
action succeeds when the required object is obtained. The actions fail when there are no enough
materials in inventory or the agent is unable to place the crafting table/furnace or the API fails.

• apply: The apply action calls the keyboard use API, and applies the specific tool to the object,
e.g., applying the bucket on water to obtain water bucket. The action succeeds when the API
returns success. The action fails when there is no visible object, no tool in inventory or the API
fails.

Feedback Message. After the execution of each action, we will get feedback from the structured
actions. The feedback will refresh the agent’s state in Sec. A.3.2, including current inventory, biome,
ylevel, and on/under the ground status. The feedback will also contain the success/fail message from
these actions, as well as the inventory change during the action.

A.4 MEMORY

A.4.1 LEARNING PROCESS

We maintain the text-based memory with a dictionary, whose keys are sub-goals and values are lists
of successful action sequences for the corresponding sub-goals. The construction and update of the
memory are through the following learning process:

• When encountering a new sub-goal that is not in the memory, the LLM planner creates plans
without reference. Once the sub-goal is achieved, the entirely executed action sequence will be
stored in the memory.

17



Under review as a conference paper at ICLR 2024

• When encountering a sub-goal with memory, the first action sequence in the recording list for this
goal is retrieved as the reference plan, with which the LLM planner tries to achieve the goal. If it
succeeds, the newly executed action sequence will be added to the last of the recording list.

• For each sub-goal, once the number of action sequences recorded in its list reaches N , we pop
all the N sequences and use LLM to summarize them into a common plan solution suitable for
various scenarios, which is then put first in the list. N is set to 5 in all our experiments.

To learn the memory for obtaining all items, starting from scratch each time would take a long time.
In addition, it is necessary to avoid spending most of the time on learning simple tasks and not
investing enough in learning difficult tasks. To improve learning efficiency, we suggest studying the
sub-goals individually one by one. We first use our LLM Decomposer to generate sub-goal trees for
all items, acquiring the set of all sub-goals involved. Then for each sub-goal, the LLM planner plays
multiple times given its prerequisites including the required materials and tools. The learning process
of the sub-goal is finished once we obtain N = 5 successful action sequences and summarize them
into one common plan solution for reference.

A.4.2 IMPLEMENTATION OF MEMORY SUMMARIZATION

We also use gpt-3.5-turbo from OpenAI API for memory summarization but in a different
dialogue. We use the following prompt to instruct the summarization with the role “SYSTEM”.
The slot {action description} is replaced with the same descriptions of interfaces of the
structured actions as Sec. A.3.1. We list all the action sequences to be summarized in the query with
the role “USER”, which is fed into the LLM for response.

SYSTEM:
You serve as an assistant that helps me play the game Minecraft.

I am using a set of actions to achieve goals in the game Minecraft. I have recorded several
action sequences successfully achieving a goal in a certain state. I will give you the goal, the
state, and the sequences later. Please summarize the multiple action sequences into a single
action sequence as a universal reference to achieve the goal given that certain state. Here are
the instructions:

1. Each action sequence is a sequence of the following actions:

{action description}
2. The action sequences before and after summarization are always conditioned on the given
state, i.e., the actions are taken in that certain state to achieve the goal. I will describe the state
in the following form: State: - inventory: a dict whose keys are the name of the objects and
the values are their quantities. This inventory stores all the objects I have. - environment: a
dict including my surrounding biome and whether I am on the ground or underground.

3. The action sequence you summarize should be able to achieve the goal in general cases
without specific modification. Every necessary action should be included, even though it does
not appear in some sequences because I manually skipped it in some lucky cases. The actions
redundant or irrelevant to the goal should be filtered out. The corner cases, such as success by
luck and dealing with contingencies, should not be summarized into the final sequence.

4. You should describe your thoughts on summarization in natural language at the beginning.
After that, give me the summarized action sequence as a list in JSON format. Your response
should follow this form:

Thoughts: ”Your thoughts and descriptions of your summarization”
Summarized action sequence:
[

{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the
expected results of this action”},

{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the
expected results of this action”},

{”name”: ”action name”, ”args”: {”arg name”: value}, ”expectation”: ”describe the

18



Under review as a conference paper at ICLR 2024

expected results of this action”}
]

B OBSERVATION AND ACTION SPACES

We list the observation and action spaces of different methods in Tab. 5. Prior RL-based agents
take raw images as input and use low-level controls, while our agent accepts oracle inputs and uses
structured actions. We only use voxel information of the blocks on the surface without X-ray cheating.

Table 5: Observation and output spaces of different methods.

Method Perception Observation Status Observation Output Space

VPT camera view RGB keyboard/mouse
(20 keys, mouse movements)

DreamerV3 camera view RGB inventory
life status

keyboard/mouse & GUI-free
crafting
(25 actions based on MineRL
ObtainDiamond)

DEPS camera view RGB
block voxel (3 x 3 x 3)

yaw/pitch angle
GPS location

keyboard/mouse & GUI-free
crafting
(42 actions discretized from
MineDojo)

GITM (ours) LiDAR rays (interval = 5”)
block voxel (radius = 10,
without X-ray cheating)

inventory
life status
biome
agent position

action APIs
(9 APIs manually implemented
on MineDojo)

C RESULTS OF ALL ITEMS

We provide the success rate of all items in the entire Minecraft Overworld Technology Tree in Tab. 6.

Experiment Setting. Considering the large number of items, including those difficult to be obtained,
we implemented an incremental testing strategy. This strategy is designed to keep the testing costs
within a reasonable range, while also accounting for the rarity of certain items. We avoided a uniform
increase in the number of tests across all items to accommodate the hardest-to-obtain ones, which
would have resulted in prohibitive testing costs. Instead, we employed a incremental testing process.

For each item, we begin with 20 games. If the success count is less than or equal to 1, we increase
to 50 games. If the success count remains less than or equal to 1, we further increase to 100, and
eventually 200 games. This testing continues until the success count finally exceeds 1, or we complete
200 games. By following this efficient strategy, we ensure a cost-effective and reliable evaluation of
each item, regardless of its availability. Moreover, because some items need long-term planning and
crafting chain, we do not set restrictions on the time limit or query limit.

Exploring Biome. Biomes can be a key factor that strongly influences the success rate. Some items,
like cactus, pumpkin, or melon, can only be found in specific biomes. The distribution of biomes
highly limits the success rate of some items.

19



Under review as a conference paper at ICLR 2024

Table 6: Success rate for all 262 items in the entire Minecraft Overworld Technology Tree.

Item Name Success
Rate Item Name Success

Rate Item Name Success
Rate Item Name Success

Rate

acacia boat 100 stonebrick 100 milk bucket 65 cactus 20
acacia door 100 trapdoor 100 coal block 65 activator rail 15
acacia fence 100 wooden axe 100 gravel 65 detector rail 15
acacia fence gate 100 wooden button 100 water bucket 60 diamond helmet 15
acacia stairs 100 wooden door 100 iron bars 60 slime ball 15
beef 100 wooden hoe 100 iron door 60 gold ingot 15
birch boat 100 wooden pickaxe 100 rail 60 gold nugget 15
birch door 100 wooden pressure plate 100 flower pot 60 gold ore 15
birch fence 100 wooden shovel 100 cauldron 60 golden shovel 15
birch fence gate 100 wooden slab 100 iron leggings 60 deadbush 15
birch stairs 100 wooden sword 100 flint 55 red mushroom block 15
boat 100 armor stand 100 arrow 55 golden hoe 15
bowl 100 rotten flesh 100 iron chestplate 55 golden sword 15
chest 100 stone slab 100 iron block 55 light weighted pressure plate 15
chicken 100 stone slab2 100 brick block 55 diamond leggings 15
cobblestone 100 red sandstone stairs 100 clay 55 pumpkin 15
cobblestone wall 100 sandstone stairs 100 hardened clay 55 pumpkin seeds 15
cooked beef 100 feather 100 red flower 50 brown mushroom block 15
cooked chicken 100 rabbit foot 100 yellow flower 50 mushroom stew 10
cooked mutton 100 item frame 95 egg 50 emerald 10
cooked porkchop 100 leather 95 hay block 45 lit pumpkin 10
crafting table 100 leather boots 95 flint and steel 45 golden axe 10
dark oak boat 100 leather helmet 85 hopper minecart 45 golden pickaxe 10
dark oak door 100 sapling 80 apple 45 golden boots 10
dark oak fence 100 tallgrass 80 beetroot 40 repeater 9
dark oak fence gate 100 wheat 80 beetroot seeds 40 carrot on a stick 9
dark oak stairs 100 wheat seeds 80 string 40 melon 8
dirt 100 iron ingot 80 diamond 40 melon seeds 8
double plant 100 iron nugget 80 diamond shovel 40 obsidian 7
fence 100 iron ore 80 jukebox 40 golden helmet 7
fence gate 100 iron shovel 80 bone 40 diamond chestplate 7
furnace 100 shield 80 bone meal 40 anvil 7
glass bottle 100 trapped chest 80 red mushroom 35 map 7
glass pane 100 tripwire hook 80 diamond hoe 35 writable book 6
jungle boat 100 grass 80 diamond sword 35 redstone block 6
jungle door 100 heavy weighted pressure plate 80 lava bucket 35 gunpowder 6
jungle fence 100 iron hoe 80 paper 35 bow 6
jungle fence gate 100 iron sword 80 reeds 35 golden carrot 5
jungle stairs 100 leaves 80 sugar 35 cake 4
ladder 100 painting 80 waterlily 35 sticky piston 4
lever 100 shears 80 baked potato 35 bone block 4
log 100 wool 80 potato 35 golden leggings 3
mutton 100 leather leggings 80 carrot 35 diamond block 3
oak stairs 100 coal 75 brown mushroom 35 clock 3
planks 100 torch 75 book 35 melon block 3
porkchop 100 snow 75 dropper 30 fermented spider eye 2
rabbit hide 100 snow layer 75 noteblock 30 pumpkin pie 2
red sandstone 100 snowball 75 redstone 30 golden rail 2
sandstone 100 bucket 75 redstone torch 30 fireworks 2
sign 100 iron axe 75 beetroot soup 30 lapis block 2
spruce boat 100 iron pickaxe 75 diamond axe 30 slime 2
spruce door 100 iron boots 75 diamond pickaxe 30 dispenser 1
spruce fence 100 iron trapdoor 75 bookshelf 25 golden chestplate 1
spruce fence gate 100 carpet 70 banner 25 gold block 1
spruce stairs 100 bed 70 diamond boots 25 speckled melon 1
stick 100 mossy cobblestone 70 fishing rod 25 lead 1
stone 100 vine 70 piston 25 poisonous potato 1
stone axe 100 brick 65 compass 20 rabbit stew 1
stone brick stairs 100 clay ball 65 brick stairs 20 emerald block 1
stone button 100 leather chestplate 65 spider eye 20 enchanting table 1
stone hoe 100 bread 65 lapis lazuli 20 golden apple 1
stone pickaxe 100 chest minecart 65 glass 20 enchanted book 0.5
stone pressure plate 100 furnace minecart 65 sand 20 tnt 0
stone shovel 100 hopper 65 ink sac 20 tnt minecart 0
stone stairs 100 iron helmet 65 cooked rabbit 20
stone sword 100 minecart 65 rabbit 20

20


	Implementation Details
	Action Abstraction
	LLM-based Hierarchical Agent
	LLM Decomposer

	LLM Planner
	Instruction
	User Query
	LLM Interface

	Memory
	Learning Process
	Implementation of Memory Summarization


	Observation and Action Spaces
	Results of All Items

