
Under review as a conference paper at ICLR 2021

1.7 × 105

1.8 × 105

1.9 × 105

2.0 × 105

2.1 × 105

2.2 × 105

2.3 × 105

2.4 × 105

parameters

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Te
st

 A
cc

ur
ac

y
L-conv-n_L6-d_h8-nf16

CNN-ker(2, 3)-nf32

CNN-ker(3, 3)-nf32

CNN-ker(4, 4)-nf32

L-conv-n_L8-d_h6-nf16

CNN-ker(5, 5)-nf32

CNN-ker(2, 2)-nf24

L-conv vs CNN matching parameters
Rot. Scrambled mnist

Figure 4: Matching number of parameters in CNN and L-conv, we observe that L-conv still performs
better on Rotated and Scrambled MNIST.

A L-CONV EXPERIMENTS

Matching number of parameters in CNN To verify that the difference in the number of parameters
between CNN and L-conv was not responsible for the improved performance, we ran experiment
where we allowed the kernel-size of L-conv and CNN to differ and tried to match the number of
parameters between the two. Fig. 4 shows that on rotated and scrambled MNIST L-conv still performs
better than CNN even after the latter has been allowed to have the same or more number of parameters
than L-conv.

Hardware and Implementation We implemented L-conv in Keras and Tensorflow 2.2 and ran our
tests on a system with a 6 core Intel Core i7 CPU, 32GB RAM, and NVIDIA Quadro P6000 (24GB
RAM) GPU. The L-conv layer did not require significantly more resources than CNN and ran only
slightly slower.

In Figure 6 we compare the performance of a single layer of L-conv on a classification task on
scrambled rotated MNIST, where pixels have been permuted randomly and images have been rotated
between −90 to +90 degrees. The models consisted of a final classification layer preceded by either
one L-conv (blue), or one CNN (orange), or multiple fully-connected (FC, green) layers with similar
number of neurons as the L-conv, but without weight sharing. We see that most L-conv configurations
had the highest performance without a too many trainable parameters. Note that, parameters in FC
layers are much higher than comparable L-conv, but yield worse results. The dots are labeled to
show the configurations, with L[32]h[6](k[6]) meaning k = 6 as number of Li, 32 output filters, and
h = 6 hidden dimensions for low-rank encoding of Li. The y-axis shows the test accuracy and the
x-axis the number of trainable parameters. The grey lines show the performance of L-conv with fixed
random Li, but trainable shared wights, showing that indeed the learned Li improve the performance
quite significantly.

17

Under review as a conference paper at ICLR 2021

Default Rotated Rot. & Scrambled
0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

MNIST, 1 Conv. or 2 F.C. Hidden Layers
L-conv
CNN

Rand L-conv
Fully Conn.

105

106

Pa

ra
m

et
er

s

MNIST

Default Rotated Rot. & Scrambled

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

CIFAR10, 1 Conv. or 2 F.C. Hidden Layers
L-conv
CNN

Rand L-conv
Fully Conn.

105

106

Pa

ra
m

et
er

s

CIFAR10

Default Rotated Rot. & Scrambled

0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

CIFAR100, 1 Conv. or 2 F.C. Hidden Layers
L-conv
CNN

Rand L-conv
Fully Conn.

106

107

Pa

ra
m

et
er

s

CIFAR100

Default Rotated Rot. & Scrambled
0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

FASHION_MNIST, 1 Conv. or 2 F.C. Hidden Layers
L-conv
CNN

Rand L-conv
Fully Conn.

105

106

Pa

ra
m

et
er

s

FASHION_MNIST

Figure 5: Test results on four datasets with three variant: “Default” (unmodified dataset), “Rotated”
and “Rotated and scrambled”. On the Default dataset, CNN performs best, but L-conv is always the
second best. For Rotated and Rot. & Scrambled, in all cases L-conv performed best. In MNIST, FC
and CNN layers come close, but using 5x more parameters.

104 105 106 107

Parameters

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

L[32]h[](k[12])L[32]h[](k[16])L[32]h[](k[6]) L[16]h[](k[16])L[16]h[](k[6])L[16]h[](k[12])

L[32]h[16](k[12])

L[32]h[6](k[6])

L[32]h[16](k[6])L[16]h[16](k[12])

L[32]h[6](k[12])

L[16]h[10](k[12])

L[16]h[16](k[6])
L[32]h[10](k[12])

L[32]h[10](k[6])L[16]h[10](k[6])

d[16, 14112]

d[10, 7056]

d[7056]

d[10, 14112]

d[16, 7056]

d[14112]

c[16](k12) c[16](k6)

c[32](k6)

c[16](k16)

c[32](k12)
c[32](k16)

L[32]h[16](k[12])_rand

L[16]h[16](k[6])_rand

L[16]h[16](k[12])_rand
L[32]h[10](k[12])_rand

L[32]h[16](k[6])_rand

L[16]h[10](k[12])_rand

L[16]h[10](k[6])_rand

L[32]h[10](k[6])_rand

L_conv
FC
CNN
L_conv_rand

Figure 6: Training low-rank L-conv layer during training.

18

Under review as a conference paper at ICLR 2021

Li for MNIST

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

i
LiLT

i on MNIST

30

20

10

0

10

20

30

Figure 7: Visualization of the Li found on MNIST and theit covariance LLT =
∑
i LiL

T
i .

LLT top eigs MNIST

Figure 8: Visualization of the top eigenvectors of
∑
i LiL

T
i . They show some resemblance to the

eigenvectors of the covariance matrix H = XXT .

B STRUCTURE OF LEARNED Li

C POOLING

Pooling operations, such maxpooling, generally yield a significant performance boost in CNN. Cohen
& Welling (2016a) showed a relation between pooling and coset of subgroups. They also state that
the strides in CNN pooling are like subsampling the group to a subgroup H ⊂ G, resulting in outputs
which are equivariant only under H and not the full G.

Lastly, unlike an actual Lie algebra basis, we did not include regularizers enforcing orthogonality
among Li.

C.1 MAX AND AVERAGE POOLING

In a 1D CNN, a maxpooling MP (·) with size k and stride s acts on the CNN output f(x)aµ as

MP (f(x))aµ = max
{
f(x)aν−i

∣∣i ∈ {1, · · · k}, ν = sµ
}

= max
i∈{1,···k}

σ
∑

j,c

W ac
j xcsµ−i−j + ba

 (16)

19

Under review as a conference paper at ICLR 2021

106 2 × 106 3 × 106

Parameters

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

Ac
cu

ra
cy

No pooling

Max pool

Avg pool

Stride only

MaxPool stride 1

AvgPool stride 1

1 CNN CIFAR100 Accuracy
 ker=(3,3), 32 filters, ReLU

Figure 9: Effect of different pooling schemes. Max pooling yields the best performance, followed
by average pooling, which is still significantly higher than no pooling. To check that the increase in
accuracy is not simply due to dimensional reduction, we also tested simple strides of (2,2), the same
as the strides in pooling, and saw only minor improvement, but the stride combined with pooling has
the largest effect.

Using equation 10 and equation 11 we have

MP (f(x))aµ = max
i∈{1,···k}

{
σ

(∑
j,c,ν

W ac
j L(j)ν

sµx
c
ν−i + ba

)}

= max
i∈{1,···k}

{
σ

(∑
j,c,ν,η

W ac
j L(j)ν

sµL
(i)η

νx
c
η + ba

)}
(17)

Now, we note that most commonly used activation functions, such as ReLU, sigmoid, tanh, etc are all
monotonically increasing. This mean that the max operation and the activation function commute,
meaning for a set of inputs S = {x1, · · ·xn}

σ (max [S]) = max[σ(S)] (18)

Using equation 18 in equation 17 we get

MP (f(x))aµ = σ

(
max

i∈{1,···k}

{ ∑
j,c,ν,η

W ac
j L(j)ν

sµL
(i)η

νx
c
η

}
+ ba

)
. (19)

Adding and subtracting W ac
j L(i)ν

sµL
(j)η

ν , we notice that∑
ν

W ac
j L(j)ν

sµL
(i)η

ν =

(
W ac
j

[
L(j), L(i)

]
+

1

2
W ac
j

{
L(j), L(i)

})η
sµ

(20)

where {A,B} = AB +BA is the anti-commutator.

D LINEAR REGRESSION

Consider a linear regression problem on inputs X ∈ Rd×n and labels Y ∈ Rc×n like above. We are
looking for the linear function Y = AX + b. For brevity, we will absorb b into A as its last row
and append a row of 0 to the the end of X . Assuming this problem is equivariant under a group G,
and using the same group element u in two representations u ∈ Td(G) and uc ∈ Tc(G) acting on X
and Y , respectively, equation 1 becomes

ucY =ucAX = AuX ⇒ A = ucAu
−1 (21)

Assuming that the number of samples is much greater than features, n� d, and unbiased data, XTX
will be full rank d × d and that its inverse exists. The solution to the linear regression Y = AX
is given by A = Y XT (XXT)−1. Defining the covariance matrix H , the condition equation 21
becomes

H ≡ 1

n
XXT , A =

1

n
ucY XTuT (uHuT)−1 (22)

20

Under review as a conference paper at ICLR 2021

Instead of the most general solutions to equation 21, let us consider a subset of them which are
naturally separated by equation 22 into a supervised and unsupervised part as

uHuT = H ucY XTuT = Y XT . (23)

The first condition states that u preserves the covariance H as a bilinear form, while the second
condition relates uc and u through overlap of input and labels Y XT .

D.1 DEFORMED ORTHOGONAL GROUP AS SYMMETRIES OF LINEAR REGRESSION

Since H is positive definite, the u satisfying uHuT = H define an orthogonal group, which we
denote by OH(d). The familiar orthogonal group O(d), where uuT = I corresponds to H = I .
Similar to O(d), we have

det(uHuT) = det(H) ⇒ det(u)2 = 1 (24)

OH(d) is simply a reparametrization of O(d) and their group manifolds are isomorphic, having two
identical component like ±SO(d), the special orthogonal group. The only difference is that the
manifold OH(d) is deformed. To see this, define u′ = H−1/2uH1/2. From equation 23, we have
u′u′

T
= I , meaning u′ ∈ O(d). We will first focus on the subgroup SOH(d) where det(u) = 1.

D.2 LIE ALGEBRA OF LINEAR REGRESSION SYMMETRIES

From equation 23, we have u′u′T = I , meaning u′ ∈ O(d). We will first focus on the subgroup
SOH(d) where det(u) = 1. Note that since H is positive-definite, SOH(d) is a compact group,
isomorphic to SO(d). Using generators of SOH(d), infinitesimal elements near the identity can be
written as u ≈ I + ε · L, which yields uHuT ≈ H + ε ·

(
LH + HLT

)
= H , and uXa = Xa

leads to ε · LXa = 0. As a result, the conditions in equation 23 require that the generators satisfy

LiH = −HLTi , LiXa = 0, Tr [Li] = 0 (25)

where the Tr [Li] = 0 condition follows from det(u) = 1, which can be seen by diagonalizing u. The
Li form the Lie algebra of SOH(d), denoted as soH(d), which is isomorphic to so(d). The generators
of so(d) are d(d− 1)/2 skew-symmetric matrices. Similar to the isomorphism SOH(d) ∼= SO(d),
the generators can be mapped by realizing L′i = H−1/2LiH

1/2 satisfies L′i = −L′i
T and

[L′i, L
′
i] = fij

kL′k = H−1/2[Li, Lj]H
1/2 (26)

showing that the structure constants fijk of so(d) also being identical to soH(d). We can therefore
choose the canonical basis used for SO(d) to build generators for SOH(d). Thus we have

Li = H1/2L′iH
−1/2 L′i ∈ so(d) (27)

In addition to this, only the subset of generators of SOH(d) which preserve the average input Xa for
each class a are acceptable as symmetries. Below, we show how these symmetries can be found by
optimization.

D.3 RESTRICTED SEARCH SPACE AND CLASSIFICATION

The second condition in equation 23 relating uc and u is more involved. In principle, for any choice
of representation of group action u on labels Y , there will a subset of SOH(d) which satisfies the
second condition in equation 23. To study a concrete case and constrain the search space, we will
derive the conditions for the case where the ucY = Y , meaning the group action on labels is trivial
and keeps the labels invariant. Another question of interest is whether symmetries found in the linear
learning problem can be employed in nonlinear settings. For instance, would incorporating linear
symmetries into a nonlinear neural network architecture help in a classification problem? Hence,
instead of a general linear regression problem, we consider a case where we use label-invariant
symmetries of linear regression on a dataset with discrete categorical labels.

21

Under review as a conference paper at ICLR 2021

D.4 EQUIVARIANCE AND INVARIANCE WHEN LABELS ARE CATEGORICAL

We will first show that if G is continuous and connected, then in problems with categorical labels
such as classification, the only valid equivariances either keep the labels invariant, or only include a
discrete subgroup of G.

Lemma 1. The only representation of a connected Lie group G on Zn are constant.

Proof: A representation is a smooth homomorphism, meaning that it is continuous and infinitely
differentiable. Since G is a connected Lie and hence topological group, it has a connected continuous
manifold. A function T : G→ Zn is continuous functions if its pre-image in G is open. This implies
that if T (u) = z, there exist an open ball u ∈ Bu on which T is constant (T (u′) = z,∀u′ ∈ Bu.
Consider two u, v ∈ G for which T (u) 6= T (v), belonging to open balls u ∈ Bu and v ∈ Bv over
which T is constant. Since T (u) 6= T (v) we must have Bu ∩ Bv = ∅. Therefore, any element in
the boundary of Bu cannot be in any other Bv, meaning the domain of T is not all elements in G
and hence it cannot be a smooth homomorphism. Thus, the only smooth T : G→ Zn are constant
functions. �

Corollary 2. In supervised learning with continuous inputs x ∈ Rd and categorical outputs y ∈ Zm2 ,
if the dataset is equivariant under a connected Lie group G the only possible equivariance is label
invariance, or equivariance under discrete subgroups of G.

Proof: From Lemma 1, if G is continuous and connected the only representations T : G→ Z2 must
be constant, meaning the labels are kept invariant. For discrete subgroups of G this restriction does
not exist. �

D.5 LABEL-INVARIANT SYMMETRIES IN LINEAR REGRESSION

When n� c and the dataset is fairly unbiased, using the Moore-Penrose pseudo-inverse Y Ỹ −1T =
Ic×c = u the identity matrix. Assume yi ∈ Zc2 are one-hot vectors as in a classification problem.
With discrete labels, A will be projecting a subset of features as captured by X̃−1 to each label class.
Denoting the samples belonging to label class a as yi = {a} and ya a one-hot vector nonzero at entry
a, we find the mean of all inputs Xa for a given class a appears in

Xa ≡
1

n

∑
yi={a}

X, Y XT = n

c∑
a=1

yaX
T

a Aa = X
T

aH
−1. (28)

A is a c× d matrix and is the row Aa,: corresponding to class a. With uc = I , equation 21 states
that a symmetry should preserve each row as Aa,: = Aa,:u. The second condition in equation 23
becomes

uXa = Xa (29)

equation 29 is much more restrictive than in equation 23 and requires u to also completely preserve
mean class input Xa. Note that, unlike ucY = Y , which resulted in uc = I for balanced classes,
uXa = Xa does not make u trivial because Xc generally spans only a subspace of features and is
not full-rank.

Finding u which satisfy uHuT is a well-defined problem and we will show below how to find some
u using properly regularized optimization. While the symmetry group SOH(d) is a continuous Lie
group, in most cases it will be finitely generated. Next, we review the conditions on the generators of
the group.

E EXTRACTING SYMMETRIES IN LINEAR REGRESSION

Using the LaXc = 0 condition in equation 25, the symmetries shared among all classes can be found
by minimizing the loss function

Lsym(ε) =
∑
a

‖ε · LXa‖2 + λ2
(
‖ε‖2 − 1

)2
(30)

22

Under review as a conference paper at ICLR 2021

where the second term is the L2 regularization to enforce ‖ε‖ = 1 and avoid vanishing ε. Every
nL = d(d − 1)/2 dimensional vector ε for which Lsym(ε) = 0 is a symmetry generator for all
label classes. The maximum number of possible symmetry generator ε · L is nL, but in practice, we
expect to find much fewer linearly independent symmetries. To make sure different generators are
independent, we use the Cartan-Killing (CK) form, which defines a metric on the Lie algebra. For
so(d), the CK form is simply B(L,K) = (D− 2)Tr [LK]. Using equation 27, and the orthoganality
Tr
[
L′iL

′
j

]
= δij we have

L(i) ≡
∑
j

εjiLj

B(L(i), L(j)) =
∑
k,l

εki ε
l
jTr

[
H1/2L′kL

′
lH
−1/2

]
= εTi εj (31)

We will look for n ≤ nL generators by finding n vectors εi which minimize the total loss

L (ε1, · · · , εn) =

n∑
i=1

Lsym(εi) + λCK

n∑
i,j=1

‖εTi εj‖2. (32)

Here n ≤ nL is a hyperparameter because only a subset of the symmetries may preserve all label
classes.

Implementation In practice, Li can be encoded using skew-symmetric matrices. Similar to GL(d)
equation 8, the generators of SO(d) can be labeled with two anti-symmetric indices (A[ij]k ≡
Aijk −Ajik)

[L′i]
ν
µ = E[αβ]

ν
µ

= δαµδ
ν
β − δβµδνα (33)

We can also express ε using two anti-symmetric indices εi = ε̂αβ , where ε̂ is a skew-symmetric
matrix, and get

[ε · L]µν =
∑
αβλρ

ε̂αβH
1/2
µλ E[αβ]

ρ
λ
H−1/2ρν =

∑
αβ

ε̂αβH
1/2
µ[αH

−1/2
β]ν =

[
H1/2ε̂H−1/2

]
µν
. (34)

Hence, the generators Li have a structure similar to Li except that the canonical SO(d) generators
L′a are replaced with a general skew-symmetric matrix ε̂.

E.1 REGULARIZERS

The direction in the parameter space which are related to each other via symmetries will have the same
value of loss and are continuously connected to each other. This means that gradient vanishes along
the direction of all generators of the symmetry group, making the optimization process find different
u with each initialization. To make this problem slightly more convex, we introduce additional
constraints on the form u using regularization terms. The full regularization has three terms. The
first term is regularization on L(i)Xc = 0. The second term is regularization on the orthogonality of
different ε̂i. The third term is regularization on the sparsity of ε̂i, namely that each row and column
has two non-zero elements with absolute value equal to 1, and other elements equal to 0.

F FINDING SYMMETRIES USING OPTIMIZATION

We use optimization based on equation 32 and equation 34 to find generators L of the symmetries of
a dataset directly. As in so(D) the simplest generators only rotate a 2D subspace, i.e. may only mix
two pixels in the image. To ensure that we find generators which act more globally on all pixels, we
add a third regularization term to equation 32, as below.

Global Sparsity Regularizer This term ensures both having a global effect as well as the sparsity
of ε̂, in the form of having only two non-zero element in each row and column with one equal to 1

23

Under review as a conference paper at ICLR 2021

and the other equal to −1 (since ε̂ is skew-symmetric). The regularizer is given by

Lsparse(ε̂) =

√√√√√ n∑
i=0

 n∑
j=0

|ε̂ij |

− 2

2

+

√√√√ n∑
j=0

[(
n∑
i=0

|ε̂ij |

)
− 2

]2

+

√√√√ n∑
i=0

[
max
j

(|ε̂ij |)− 1

]2
+

√√√√ n∑
j=0

[
max
i

(|ε̂ij |)− 1
]2

(35)

In addition to the Rescaled and Rotated MNIST datasets shown in the paper, we tested this methodol-
ogy on other synthetic datasets, described in sec. G.

Finding Common Generators In order to find the larest set of orthogonal ε̂, we use the Bron-
Kerbosch algorithm, an algorithm designed to find all cliques (fully connected components) in a
network. We first build a network of all ε̂ the optimization finds, to which an edge between ε̂i and ε̂j
is added if Tr [ε̂iε̂j] is less than the threshold 0.01. We then use the Bron-Kerbosch algorithm to find
all cliques in this network, and choose the one with the largest size. The ε̂ in this largest clique are
the orthogonal ε̂.

F.1 ALTERNATIVE OPTIMIZATION

To find symmetries in linear regression, we can look for Q satisfying equation 23 by minimizing
‖uHuT − H‖2. However, this is not a convex optimization, as a continuum of minima exist,
corresponding to different group elements u. Unlike SOH(d) which is an infinite group, the number
of linearly independent generators in soH(d) are finite, d(d− 1)/2 to be precise. Therefore, we will
be looking for La satisfying equation 25 by minimizing the following loss

L0(La) = ‖LaH +HLTa ‖2 + λtrTr [La]
2
. (36)

where ‖A‖2 = Tr
[
AAT

]
is the Frobenius norm and λtr is the Lagrange multiplier for the Tr [La] =

0 regularizer. We have nL = d(d − 1)/2 generators, and we want the procedure to find all of
them. Yet simply minimizng L({L}) =

∑
a L(La) won’t be enough as it can lead to many similar

generators. To resolve this, we use a metric defined on the Lie algebra called the Cartan-Killing form.

F.2 ORTHOGONALITY AND CARTAN-KILLING FORM

The generators La of SOH(d) form a Lie algebra [La, Lb] = fab
cLc. The Cartan-Killing (CK) form

B : soH(d)× soH(d)→ R defines a metric on the Lie algebra via

B(La, Lb) =
∑
µ

[La, [Lb, eµ]]T eµ (37)

where eµ are a set of basis matrices for soH(d). We want to find independent generators by enforcing
the orthogonality condition B(La, Lb) = kδab. For compact Lie groups, such as the orthogonal
groups, B is negative definite meaning k < 0. But the exact value of k depends on the group.
For so(d), B(X,Y) = (d − 2)Tr [XY], but this may change slightly for soH(d). To enforce
orthogonality we add the following term to our loss function when

LCK(La, Lb) = λCK
∑
R

(
tanh

(
r
∥∥[[La, [Lb, R]]RT

∥∥2)− δab)2 (38)

where R are random matrices with Tr
[
RTR

]
= 1 and r � 1. The intuition for the

tanh(r‖B(La, Lb)‖2) is that, since we don’t know the normalization constant for the CK form,
we only want to make sure that B(La, Lb) ∝ δab, while allowing the magnitude of B(La, Lb) to be
arbitrary. Minimizing LCK over sufficiently many R it should enforce the orthogonality condition.
The full loss function to optimize is then

L({L}) =
∑
a

L0(La) +
∑
R

∑
a,b

LCK(La, Lb;R) (39)

where the sum over a and b runs to nL = d(d− 1)/2.

24

Under review as a conference paper at ICLR 2021

Figure 10: We choose a simple 3x3 pattern and put it in a 6x6 empty image, and then shift the pattern randomly with periodic boundary
conditions. Then we attempt to find symmetry in 1000 samples generated in this fashion by finding the symmetry of the correlation coefficient
matrix H of these images. We found that our method of symmetry extraction is very effective for this dataset, and we are able to find many
operators Q such that QHQT = H . Upon observing these Q operators, we found that some of them have straightforward interpretations,
for example, the first Q in the first row represents shifting an 6x6 image in the horizontal axis by one pixel, and the second Q in the first row
represents shifting an 6x6 image in the horizontal axis by two pixels. Some of the Q operators we found have less obvious interpretations,
because they are a combination of multiple “simple" operations such as shifting by horizontal or vertical axis.

G ADDITIONAL SYNTHETIC DATASETS

We have tested this optimization algorithm on several different datasets. The first one is 1, 000 6× 6
images of one simple 3×3 pattern (Fig. 11a) shifted randomly with periodic boundary conditions. We
chose the pattern deliberately to avoid rotational or reflectional symmetry in the pattern itself. Fig. 11b
shows the correlation matrix of the 1, 000 images, H . Fig. 11c shows the number of orthogonal ε̂
found, as a function of the input parameter numL that governs the total number of ε̂ the optimization
is trying to find. In practice the orthogonality of ε̂ is determined by Tr [ε̂iε̂j] < 0.01. We can see that
the number of orthogonal ε̂ increases to 3 quickly and then stay the same even as numL increases to
10. Therefore, we believe that for this dataset, there are 3 independent symmetries, with 3 orthogonal
generators. The 3 independent ε̂, L = H

1
2 ε̂H−

1
2 , and u = exp[L] are shown in Fig. 11d. The left

image in Fig. 11e) shows one of the 1000 images in this dataset. We applied the three independent
us onto this image and the resulting images are shown in the rest of Fig. 11e). Fig. 11f) shows the
effect of us on a gradient image. In each of Fig. 11e) and Fig. 11f), the images are transformed into
other images that are similar to the original, but not exactly the same. It is not very clear what the
transformations do.

The second dataset we considered is 2, 000 6× 6 images of two simple 3× 3 patterns, 1000 images
for each (Fig. 12a), shifted randomly with periodic boundary conditions. Similar to the one pattern
dataset, we show our results in Fig 12. We can see that the ε̂ all have stripe structure alone the
diagonal direction. From Fig 12g we can see that when the three independent symmetry operators u
act on a gradient matrix, the resulting matrices have wave-like structure, suggesting that the u we
found are meaningful.

H INTERSECTION WITH SO(d)

Some symmetries may be in the intersection û ∈ SOH(d) ∩ SO(d), meaning ûT = û−1. We can
exploit these to find generators for soH(d). It follows

L̂ ≡ û− ûT L̂T = −L̂ Tr
[
L̂
]

= 0 L̂H = HL̂ = −HL̂T . (40)

Therefore, if û ∈ SOH(d) ∩ SO(d), then L̂ ∈ soH(d) ∩ so(d). Following 40, we first find û first
through optimization, with loss function ensuring that û commutes with H , û has determinant 1, and
a sparsity condition which is that û has one non-zero element in each row and column, and it is equal
to one, and finally all û are orthogonal with each other, namely Tr [û1û2] = 0. Examples of û can be
found in Fig. 10. Then we construct the generators L̂ from û.

H.1 EXPERIMENT DATASETS

We use three datasets to test our architecture. The first dataset is rescaled MNIST, where we take the
original images in the MNIST dataset (which are 28× 28 images) and rescale it to 6× 6. The second

25

Under review as a conference paper at ICLR 2021

Independent

Image X:

Image X:

a b d

c

e

f

Figure 11: Single class of pattern. a. The pattern that is being shifted in different images in the dataset. b. The correlation matrixH for
the 1000 images with shifted pattern in a. c. The number of independent generators L as a function of the total number of L, one of the input
parameters. d. The independent ε̂, the L, and Q = eL. e. One image X from the dataset, and the resulting images after symmetry operators
Q act on it. f. One imageX of a gradient, and the resulting images after symmetry operatorsQ act on it.

26

Under review as a conference paper at ICLR 2021

a b

c
Independent

d

Image X:

Image X:

e

f
Image X:

g

h

Figure 12: Two classes of patterns. a. The two pattern that are being shifted in different images in the dataset. b. The correlation matrix
H for the 2, 000 images with shifted patterns in a, 1, 000 images for each pattern. c. The number of independent generators L as a function
of the total number of L, one of the input parameters. d. The independent ε̂, the L, and Q = eL. e. One image X from the dataset with
the first pattern in a, and the resulting images after symmetry operators Q act on it. f. One image X from the dataset with the second pattern
in a, and the resulting images after symmetry operators Q act on it. g. One image X of a gradient, and the resulting images after symmetry
operatorsQ act on it. h. Q3 with the third generator L3 with different ε values acting on imageX in f.

27

Under review as a conference paper at ICLR 2021

Independent

a b

c

d

Image X:
e

f
Image X:

g

Figure 13: Two classes of patterns. a. One example of a zero in the MNIST dataset. b. The correlation matrixH for the 1, 000 images
with shifted zeros in MNIST dataset. c. The number of independent generators L as a function of the total number of L, one of the input
parameters. d. The independent ε̂, the L, and Q = eL. e. One image X from the dataset, and the resulting images after symmetry operators
Q act on it. f. One image X of a gradient, and the resulting images after symmetry operators Q act on it. g. Q1 with the third generator L1

with different ε values acting on imageX in e.

28

Under review as a conference paper at ICLR 2021

dataset is rotated MNIST, where we take the original MNIST images, select the images in class zero,
one, two, three, four, six, seven, eight. We excluded classes five and nine because five looks like two
rotated by 180 degrees and nine looks like six rotated by 180 degrees. We don’t want the symmetry
between those digits to interfere with the symmetry of rotated images themselves. Then we take the
images in these classes and rotate them with angle θ ∈ [−π/2, π/2]. We take a randomly sampled θ
in that range for each image. The third is scrambled MNIST, where we first rescale images to 14×14,
and then rearrange the pixels to a fixed random order for every image.

29

