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ABSTRACT

In distributed stochastic optimization, where parallel and asynchronous methods are
employed, we establish optimal time complexities under virtually any computation
behavior of workers/devices/CPUs/GPUs, capturing potential disconnections due to
hardware and network delays, time-varying computation powers, and any possible
fluctuations and trends of computation speeds. These real-world scenarios are
formalized by our new universal computation model. Leveraging this model and
new proof techniques, we discover tight lower bounds that apply to virtually all
synchronous and asynchronous methods, including Minibatch SGD, Asynchronous
SGD (Recht et al., 2011), and Picky SGD (Cohen et al., 2021). We show that these
lower bounds, up to constant factors, are matched by the optimal Rennala SGD and
Malenia SGD methods (Tyurin & Richtárik, 2023).

1 INTRODUCTION

Optimization is one of the main workhorses in machine learning (ML), data science (DS), and
federated learning (FL) (Bottou et al., 2018; Kairouz et al., 2021). These fields rely on stochastic
optimization methods, with notable examples including the stochastic gradient descent method
(SGD) (Robbins & Monro, 1951) and ADAM (Kingma & Ba, 2015), which are considered to be the
de facto choices for solving large-scale optimization problems (Schmidt et al., 2021). Due to the
computational demands of modern functions, the size of datasets, and the need for data privacy,
parallelization and distribution are essential for building efficient systems (Kairouz et al., 2021;
Mayer & Jacobsen, 2020). However, it brings many challenges, including computation heterogeneity:
many workers/CPUs/GPUs/phones work in parallel but with varying computation speeds, fluctuating
performance over time, and potential disconnections due to hardware and network delays (Li et al.,
2020).

1.1 PROBLEM SETUP

Unconstrained smooth optimization problems that arise in ML, DS, and FL are described by

min
x∈Rd

f(x), (1)

where f : Rd → R with the following standard assumptions:
Assumption 1.1. f is differentiable & L–smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, ∀x, y ∈ Rd.

Assumption 1.2. There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.

In the nonconvex world, we want to find an ε–stationary point, a (random) vector x̄ ∈ Rd such that
E[∥∇f(x̄)∥2] ≤ ε, since, in general, it is intractable to find a global minimum in the nonconvex
setting (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). We analyze convex functions in
Section H.

We consider a problem where workers do not have access to the gradients of the function f. Instead,
they can only calculate stochastic gradients. Such a problem arises when the computation cost of an
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exact gradient is huge or even infeasible due to batch normalization (Ioffe & Szegedy, 2015), dropout,
random data augmentation, and many other handcrafted and naturally occurring noise sources that do
not allow to calculate a gradient (Goodfellow et al., 2016).

Assume that n workers work asynchronously in parallel and calculate stochastic gradients. We focus
on two setups:
Homogeneous setup. For all i ∈ [n], worker i has access to an unbiased stochastic gradients
∇f(x; ξ) with σ2-variance-bounded variances, where ξ is a random variable from some distribution
D on Sξ. In ML and FL, this would mean that all workers have access to the same data.

Assumption 1.3 (Homogeneous setup). For all i ∈ [n], worker i can only calculate ∇f(x; ξ) and
Eξ[∇f(x; ξ)] = ∇f(x) and Eξ[∥∇f(x; ξ)−∇f(x)∥2] ≤ σ2 for all x ∈ Rd, where σ2 ≥ 0.

Heterogeneous setup. Unlike the previous setup, we assume that f(x) = 1
n

∑n
i=1 fi(x) in this

setting, where fi : Rd → R for all i ∈ [n], and worker i can only access stochastic gradients
∇fi(x; ξi) of the local function fi, where ξi is a random variable from some distribution Di on Sξ.
In ML and FL, this would mean that all workers have access to different data.

Assumption 1.4 (Heterogeneous setup). For all i ∈ [n], worker i can only calculate∇fi(x; ξi), and
Eξi [∇fi(x; ξi)] = ∇fi(x) and Eξi [∥∇fi(x; ξi)−∇fi(x)∥2] ≤ σ2 for all x ∈ Rd, where σ2 ≥ 0.

1.2 RELATED WORK

Oracle complexity with one worker. The optimal (dimension-free) oracle complexity, # of stochastic
gradient calls, and an optimal method are well-known in the homogeneous and heterogeneous setups.
In particular, Arjevani et al. (2022); Carmon et al. (2020) showed that the optimal oracle complexity
is O

(
L∆/ε + σ2L∆/ε2

)
achieved by SGD, i.e., xk+1 = xk−γ∇f(xk; ξk), where ξk are i.i.d. random

samples, ∆ := f(x0)− f∗, x0 ∈ Rd is a starting point, γ = Θ(min{1/L, ε/Lσ2}) is a step size.

Oracle complexities with n workers. There were several approaches, e.g., (Scaman et al., 2017;
Arjevani et al., 2020; Lu & De Sa, 2021), to generalize the classical oracle complexity (Nemirovskij
& Yudin, 1983; Arjevani et al., 2022) to the parallel setup with n workers. In the homogeneous
convex setup, the most relevant to our setup work (Woodworth et al., 2018), using the graph-based
oracle model, obtained the tight oracle complexities for several parallel setups. The heterogeneous
setup with the local smoothness assumption was addressed in (Arjevani & Shamir, 2015; Hanzely
et al., 2020; Lu & De Sa, 2021).

The listed works address key questions in parallel optimization by establishing lower bounds and
developing methods to achieve them. However, the assumptions regarding the computation processes
are overly idealistic, as they assume stable, unchanging, and equal computation speeds for all workers.
They fail to capture practical scenarios such as partial participation, random outages, computation
heterogeneity (some workers being faster than others), communication heterogeneity (some workers
sending vectors faster than others), and changing computation performance over time. It is unclear if
the optimal methods for their lower bounds will maintain optimality in more realistic computation
scenarios.

Time complexities with bounded computation times. Instead of using oracle complexities, another
way to compare algorithms is to use time complexities. Using this paradigm, Mishchenko et al. (2022);
Koloskova et al. (2022) showed that the celebrated Asynchronous SGD method (Recht et al., 2011;
Dean et al., 2012) with the proposer step sizes can provably improve Minibatch SGD in the homoge-
neous setup. Assume for now that worker i requires at most τi seconds to calculate one stochastic
gradient for all i ∈ [n]. Minibatch SGD is the iterative process xk+1 = xk − γ/n

∑n
i=1∇f(xk; ξki ),

where γ is a stepsize, ξki are i.i.d. samples, and ∇f(xk; ξki ) are calculated in parallel. This method
converges after O

(
L∆/ε + σ2L∆/nε2

)
iterations (Cotter et al., 2011; Goyal et al., 2017; Gower et al.,

2019) and after

O

(
max
i∈[n]

τi ×
(

L∆
ε + σ2L∆

nε2

))
(2)
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Figure 1: Fixed Computation Model: The previous compu-
tation paradigm (Mishchenko et al., 2022) assumes that the
performances/powers of the workers remain constant over time.
Tyurin & Richtárik (2023) established the optimal time com-
plexities (13) and (20) for this paradigm.
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(a) Irregular Powers
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(b) Periodic Powers
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(c) Random Outages

Figure 2: Universal Computation Model: A new computation paradigm that captures virtually all
possible computation scenarios. The three subplots present illustrative and non-exhaustive examples
of irregular {vi} (Fig. 2(a)), periodic noisy powers {vi} (Fig. 2(b)), and random outages of the
workers, where vi equals 0 periodically (Fig. 2(c)). For all possible scenarios, we establish optimal
time complexities (see Theorems 5.1, 5.3, 6.2, and 6.4). It is possible to get interpretable and explicit
formulas for the optimal time complexities in some scenarios (see Examples 3.2, 5.4, 5.5, 6.5, and 6.6).
However, for Fig. 2(a), Fig. 2(b), and Fig. 2(c), it is arguably intractable to find t̄⌈L∆/ε⌉ analytically.
Instead, we can easily do it numerically in Fig. 2(a) and get the optimal time complexities 6.57
and 13.02 sec with L∆/ε = 10 and σ2/ε = 100 in the homogeneous and heterogeneous settings,
respectively (Fig. 2(b): 2.34 and 2.53 sec; Fig. 2(c): 77.04 and 84.62 sec).

seconds because this method waits for the slowest worker with the time maxi∈[n] τi. Using Asyn-
chronous SGD, the time complexity (2) can be improved to

O

((
1
n

n∑
i=1

1
τi

)−1 (
L∆
ε + σ2L∆

nε2

))
, (3)

where the dependence on the processing times is harmonic (Mishchenko et al., 2022). An alternative
method that also achieves this time complexity is Picky SGD (Cohen et al., 2021).

Subsequently, Tyurin & Richtárik (2023) formalized the notion of time complexity using the time
oracle protocol, and under the assumption that worker i requires at most τi seconds to calculate one
stochastic gradient for all i ∈ [n], proved that the time complexity lower bound is

Θ

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τπi

)−1 (
L∆
ε + σ2L∆

mε2

)])
(4)

seconds in the homogeneous setup, where π is a permutation that sorts τi : τπ1 ≤ · · · ≤ τπn .
Moreover, they developed a new method, Rennala SGD, that achieves the lower bound in the
homogeneous setup. Under the bounded computation and communication assumptions, Tyurin
et al. (2024b); Tyurin & Richtárik (2024) provided optimal time complexities in a setup where the
communication time between the workers cannot be ignored.

2 CONTRIBUTIONS

In this work, we aim to determine the optimal time complexities of distributed stochastic optimization
with parallel and asynchronous methods in scenarios where the computational performance of workers
can be arbitrarily heterogeneous and variable. We want to capture all possible cases, including random
outages, time-changing computation performances, and slow and straggler workers.
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♠ We consider a new computation paradigm, for which we coin the name universal computa-
tion model, that includes virtually all possible computation scenarios that can appear in practical
distributed, parallel, and asynchronous optimization environments.

♣ Using the universal computation model, we prove a tight lower bound for time complexities of
parallel and asynchronous optimization methods in the homogeneous setting, which is matched, up
to constants, by our Theorem 5.3, saying that Rennala SGD (Tyurin & Richtárik, 2023) is optimal.

♦ We also close the problem in the heterogeneous setup. We discover the optimal time complexity
and prove the optimality of Malenia SGD (Tyurin & Richtárik, 2023) (see Theorem 6.4). The proofs
of the lower bounds are based on new proof techniques and constructions (see Section A for an
overview).

♥ In Section H, we provide time complexities of (Accelerated) Rennala SGD and (Accelerated) Malenia
SGD in the convex setting.

3 UNIVERSAL COMPUTATION MODEL

To achieve the goal of finding the optimal time complexities for the stochastic optimization problem
under any heterogeneous asynchronous computation setup, we first have to formalize the computation
model of the workers. To formalize all possible cases, we propose using the following computation
model, called the universal computation model.

For all i ∈ [n], we consider a non-negative continuous almost everywhere function vi : R+ → R+
1

called a computation power of worker i.
Assumption 3.1. For all i ∈ [n], vi is non-negative continuous almost everywhere.

Without loss of generality, we assume that the time starts from zero. Using the same reasoning as in
physics, where the energy is the integral of power, in our domain, the number of stochastic gradients
that worker i can calculate from a time t0 to a time t1 is the Riemann integral2 of the computation
power vi followed by the floor operation (because we can not partially calculate a stochastic gradient):

“# of stoch. grad. by worker i in [t0, t1]” =

⌊∫ t1

t0

vi(τ)dτ

⌋
= ⌊Vi(t1)− Vi(t0)⌋ , (5)

where we additionally define a mapping Vi : R∞
+ → R∞

+ such that

Vi(t) :=

∫ t

0

vi(τ)dτ. (6)

For t1 ≥ t0, Vi(t1)− Vi(t0) is called a computation work of worker i from a time t0 to a time t1.

Example 3.2 (Fixed Computation Model). Let us consider the simplest example and take the
performances that do not change through time, i.e., vi(t) = vi ∈ R+ for all t ≥ 0. If we take t0 = 0,
then ⌊∫ t1

t0

vi(τ)dτ

⌋
= ⌊Vi(t1)− Vi(t0)⌋ = ⌊vit1⌋ . (7)

This formula formalizes simple logic that it takes 1/vi seconds to find one stochastic gradient
in worker i because ⌊vi × 1/vi⌋ = 1, 2/vi seconds to find two stochastic gradients in worker i
because ⌊vi × 2/vi⌋ = 2, and so forth. The higher the power vi, the less time it takes to find a new
stochastic gradient. (7) provides the number of stochastic gradients under the fixed computation
model when reparametrized with vi = 1/τi. However, the fixed computation model is limited; for a
visual comparison, see Figures 1 and 2. Section 5.1 has more examples.
Theorem 3.3 (e.g. (Bartle & Sherbert, 2000)). For all i ∈ [n], Vi is continuous and non-decreasing
on R+ if vi is non-negative continuous almost everywhere (Assumption 3.1).

1Notations: R+ := [0,∞), R∞
+ := [0,∞], N := {1, 2, 3, . . . }, N0 := {0, 1, 2, . . . }, [n] := {1, . . . , n}.

2It is possible to consider the Lebesgue integral and assume that the functions {vi} are measurable, but we
will stick with the Riemann integral for simplicity.
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Notice this theorem can hold even if vi is discontinuous. In general, the computation powers {vi}
can be even random. Indeed, we can assume that vi : R+ × Ω→ R+ is a stochastic computation
power, where Ω a sample space of a probability space. Then, all the following results hold when
conditioned over all randomness in {vi}, assuming that the sources of randomness are statistically
independent. Without loss of generality, we continue assuming that vi : R+ → R+ for all i ∈ [n].
For all i ∈ [n], let us define the generalized inverse function3 V −1

i : R∞
+ → R∞

+ such that

V −1
i (S) = min {t ≥ 0 : Vi(t) = S} (8)

for all S ∈ R∞
+ . If Vi is strongly increasing, then V −1

i is the standard inverse function of Vi.

4 PRELIMINARIES

Before presenting our main results, we formalize the concepts of time and time complexity. This
section is somewhat technical; readers not interested in the proof details may skip ahead to Sections 5
and 6.

Recall that in the classical approach of deriving lower bounds, we examine the following protocol
(Nemirovskij & Yudin, 1983; Nesterov, 2018; Carmon et al., 2020):

Protocol 1 Classical Oracle Protocol
1: Input: function f ∈ F , oracle O ∈ O(f), algorithm A ∈ A
2: for k = 0, . . . ,∞ do
3: xk = Ak(g1, . . . , gk) ▷ x0 = A0 for k = 0.

4: gk+1 = O(xk)
5: end for

Where we want to find the worst-case oracle complexity formalized by

inf
A∈A

sup
f∈F

sup
O∈O(f)

inf
{
k ∈ N

∣∣∣E [∥∥∇f(xk)
∥∥2] ≤ ε

}
.

Protocol 1 is a reasonable way to establish lower bounds and compare algorithms, but it is not
convenient for analyzing parallel algorithms. In order to analyze parallel and asynchronous algorithms,
Tyurin & Richtárik (2023) proposed to use the time multiple oracles protocol:

Protocol 2 Time Multiple Oracles Protocol

1: Input: function f (or functions fi), oracles {Oi}ni=1 ∈ O(f), algorithm A = {Ak}∞k=0 ∈ A
2: s0i = 0 for all i ∈ [n]
3: for k = 0, . . . ,∞ do
4: (tk+1, ik+1, ck+1, xk) = Ak(g1, . . . , gk) ▷ tk+1 ≥ tk

5: (sk+1
ik+1 , g

k+1) = Oik+1(tk+1, xk, skik+1 , c
k+1) ▷∀j ̸= ik+1 : sk+1

j = skj
6: end for

Unlike the classical protocol where an algorithm returns a new point xk based on the current
information g1, . . . , gk, this protocol requires an algorithm to return a time tk+1, an index of an
oracle ik+1, a control variable ck+1, and a new point xk. In the parallel setting, algorithms have
access to many workers/oracles. In every iteration, an algorithm has the freedom to choose any oracle
using ik+1, and call the oracle at a point xk. The role of control variables {ck+1} will be clear later.

The main idea is that an algorithm controls time and decides when it is ready to go forward using a
time sequence {tk+1}. Let us introduce an oracle that emulates the behavior of a real worker, and
then we will provide clarifications. For all i ∈ [n], we consider the mapping

3We use the standard convention min{∅} = ∞.
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Oi : R+︸︷︷︸
time

× Rd︸︷︷︸
point

× (R+ × Rd × {0, 1})︸ ︷︷ ︸
input state

× {0, 1}︸ ︷︷ ︸
stop computation

→ (R+ × Rd × {0, 1})︸ ︷︷ ︸
output state

× Rd︸︷︷︸
output vector

such that

Oi(t, x, (st, sx, sq), c) =


((t, x, 1), 0), c = 0, sq = 0,

((st, sx, 1), 0), c = 0, sq = 1, Vi(t)− Vi(st) < 1,

((0, 0, 0), gi(sx; ξ, t)), c = 0, sq = 1, Vi(t)− Vi(st) ≥ 1,

((0, 0, 0), 0), c = 1,

(9)

whereDsx,t,i is some distribution that can depend on sx,t, ξ ∼ Dsx,t,i, and gi : Rd×Sξ×R+ → Rd

is a mapping. This oracle can return different outputs depending on an input it receives: i) if
c = 0, sq = 0, then the oracle is only starting the calculation of a stochastic gradient, and it
memorizes the time when it was called in the variable st; ii) if c = 0, sq = 1, Vi(t) − Vi(st) < 1,
then the oracle is still calculating; iii) if c = 0, sq = 1, Vi(t) − Vi(st) ≥ 1, then the oracle has
finished the calculation and returns gi(sx; ξ, t) at the point sx where the calculation was initialized.
The condition Vi(t)− Vi(st) ≥ 1 means that “at the current time t, the oracle is ready to return the
stochastic gradient that began to be calculated at time st.” The control variable c allows algorithms to
stop the calculations at any time they want if they pass c = 1.

The oracles (9) force algorithms to increase times; otherwise, they will not get stochastic gradients and
enough information to find an ε–stationary point. Using Protocol 2, we consider the time complexity
measure

inf
A∈A

sup
f∈F

sup
(O,D)∈O(f)

inf

{
t ≥ 0

∣∣∣∣E [ infk∈St

∥∥∇f(xk)
∥∥2] ≤ ε

}
, St :=

{
k ∈ N0

∣∣tk ≤ t
}

(10)

where the sequences tk and xk are generated by Protocol 2. This measure takes algorithm and function
classes and returns the worst-case time complexity. We refer to (Tyurin & Richtárik, 2023)[Sections
3–5] for more details.

In this work, we consider zero-respecting algorithms formalized by the definition below.

Definition 4.1 (Algorithm Class Azr). Let us consider Protocol 2. We say that an algorithm A =
{Ak}∞k=0 is a zero-respecting algorithm, if

1. Ak : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R≥0× [n]×{0, 1}×Rd ∀k ≥ 1, A0 ∈ R≥0× [n]×{0, 1}×Rd,

2. supp
(
xk
)
⊆
⋃k

j=1 supp
(
gj
)

for all k ∈ N0, where supp(x) := {i ∈ [d] |xi ̸= 0},

3. for all k ≥ 1 and g1, . . . , gk ∈ Rd, we have tk+1 ≥ tk, where tk+1 and tk are defined as
(tk+1, ·) = Ak(g1, . . . , gk) and (tk, ·) = Ak−1(g1, . . . , gk−1).

The first condition defines the domain and range, the second condition is the definition of a zero-
respecting algorithm (Carmon et al., 2020), the third condition ensures that the algorithm return a
non-decreasing sequence of times (Tyurin & Richtárik, 2023).

5 HOMOGENEOUS SETUP

We are ready to present our lower bound in the homogeneous setup. Let us also provide a simplified
and informal version of the theorem, followed by the formal one.

Theorem (Informal Formulation of Theorem 5.1). Let Assumptions 1.1, 1.2, 1.3, and 3.1 hold. It is
impossible to converge faster than 1/2× t⌈c1×L∆

ε ⌉ seconds, where the sequence {tk} is defined in
(11) and c1 is a universal constant.

Theorem 5.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist a function f, which satisfy Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆, and stochastic
gradient mappings {gi} in (9), which satisfy Assumption 1.3, i.e., Eξ [gi(sx; ξ, t)] = ∇f(sx) and
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Method 3 Rennala SGD

1: Input: point x0, stepsize γ, batch size S
2: for k = 0, 1, . . . ,K − 1 do
3: Ask all workers to calculate stochastic gra-

dients at xk

4: Init gk = 0 and s = 1
5: while s ≤ S do
6: Wait for the next worker
7: Receive a calculated stochastic gradient

∇f(xk; ξks )
8: gk = gk + 1

S∇f(x
k; ξks ); s = s+ 1

9: Ask this worker to calculate a stochastic
gradient at xk

10: end while
11: xk+1 = xk − γgk

12: Stop all the workers’ calculations
13: end for
(In practice, instead of xk+1 = xk−γgk (Line 11),
one can use any other update technique, including
ADAM (Kingma & Ba, 2015), AdaGrad (Duchi
et al., 2011), and SGD with momentum (Polyak,
1964; Nesterov, 1983))

Method 4 Malenia SGD

1: Input: point x0, stepsize γ, parameter S
2: for k = 0, 1, . . . ,K − 1 do
3: Ask all workers to calculate stochastic gra-

dients at xk

4: Init(a) gki = 0 and Bi = 0

5: while
(

1
n

∑n
i=1

1
Bi

)−1

< S
n do

6: Wait for the next worker j
7: Update Bj = Bj + 1
8: Receive a calculated stochastic gradient

∇fj(xk; ξkj,Bj
)

9: gkj = gkj +∇fj(xk; ξkj,Bj
)

10: Ask this worker to calculate a stochastic
gradient at xk

11: end while
12: gk = 1

n

∑n
i=1

1
Bi

gki
13: xk+1 = xk − γgk

14: Stop all the workers’ calculations
15: end for
(a): In practice, worker i can store gki

Eξ[∥gi(sx; ξ, t)−∇f(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n] such that E
[
inf
k∈St

∥∥∇f(xk)
∥∥2 ] > ε

holds, where St :=
{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 × t⌊c1×L∆

ε ⌋,

and4

tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ c2 ×max

{⌈
σ2

ε

⌉
, 1
}}

(t0 = 0) (11)

for all k ≥ 0. The quantities c′, c1, and c2 are universal constants. The sequences xk and tk are
defined in Protocol 2.

Unlike most previous works (e.g., (Nesterov, 2018; Arjevani et al., 2022; Tyurin & Richtárik, 2023)),
the obtained lower bound is implicit. This, we believe, is expected due to the generality of our
assumptions about the universal computation model. To find the lower bound, one must determine
the minimum of the set in (11) one by one (t1, t2, t3, . . . ) to get 1/2× t⌊c1×L∆/ε⌋. Computationally,
this problem is not difficult since the function

∑n
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
is non-decreasing; thus, for

instance, we can employ the bisection method.

5.1 OPTIMAL ALGORITHM

The natural question is whether the lower bound is tight. The answer is yes (as usual, up to constant
factors). The lower bound can be matched by Rennala SGD (Method 3) (Tyurin & Richtárik, 2023).
In every iteration, the method collects a batch of size S, and performs a gradient-like step once
the batch has been collected. The following result was proved in (Tyurin & Richtárik, 2023).
The proof technique is simple and follows the classical analysis of SGD (Ghadimi & Lan, 2013;
Khaled & Richtárik, 2022) since the logic of Rennala SGD is equivalent to the steps xk+1 =

xk − γ/S
∑S

i=1∇f(xk; ξi), where {ξi} are i.i.d. samples.
Theorem 5.2. [(Tyurin & Richtárik, 2023)] Let Assumptions 1.1, 1.2, and 1.3 hold. We take
γ = 1/2L and batch size S = max{

⌈
σ2
/ε
⌉
, 1} in Method 3. For all K ≥ 24L∆/ε, we get

1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

4We use the standard convention min{∅} = ∞.
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The following result is new and proves the time complexity of Rennala SGD.
Theorem 5.3. Consider the assumptions and the parameters from Theorem 5.2, plus Assumption 3.1.
Then Method 3 (Rennala SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t̄k−1)⌋ ≥ max
{⌈

σ2

ε

⌉
, 1
}}

(t̄0 ≡ 0) ∀k ≥ 1. (12)

Up to constant factors, Theorem 5.1 together with Theorem 5.3 provide the tight time complexity
for the problem (1) in the homogeneous setup. As we noted in Section 5, the obtained result
is implicit, we do not get a closed-form expression for t̄⌈24L∆/ε⌉ in Theorem 5.3. That said,
the sequence t̄k is mathematically rigorous, and we can provide explicit formulas in some cases.
Surprisingly, Rennala SGD gets the optimal complexity automatically, without prior knowledge about
the computation powers {vi}. Therefore, the absence of a closed-form expression is irrelevant for
practical implementations and is only of theoretical interest.
Example 5.4. [Fixed Computation Model] Consider Example 3.2 with vi(t) = vi ∈ R+ for all
t ≥ 0, i ∈ [n]. Then, for all i ∈ [n], Vi(t) = vit and

t̄⌈ 24L∆
ε ⌉ = Θ

(
min
m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (13)

π is a permutation such that vπ1
≥ · · · ≥ vπn

. The proofs of the examples are in Section I.

In Example 3.2, we discuss that τi = 1/vi is the time required to find one stochastic gradient in worker
i. If we reparametrize (13) with vi = 1/τi, then we get the time complexity (4). Thus, Example 5.4
restores the optimal time complexity obtained by Tyurin & Richtárik (2023) for the fixed computation
model, where the smaller the computation times τi (the higher the computation powers vi), the
smaller the complexities. Notice that if vj is small enough for some worker j, then it is possible that
the complexity (13) will not depend on vj , meaning that this worker potentially does not contribute
to an optimization process because it is too slow. We can immediately derive a more general result:
Example 5.5. [Nonlinear Trend] Assume that vi(t) = vi × g(t) with vi > 0 for all i ∈ [n] and a
continuous almost everywhere positive5 function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 · min

m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (14)

where π is a permutation such that vπ1 ≥ · · · ≥ vπn , G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can

depend on other parameters but is bounded).

Example 5.5 illustrates many practical cases. For example, the computation powers can vary
according to the function g(t) = 1.01 + sin(t), causing them periodically increase and decrease.
Then G(t) = 1.01t− cos t+ 1, which is invertible, and we can obtain a formula for the optimal time
complexity using (14).

Let us consider an example where all workers have the same performances, but any worker can
randomly shut down and, after a while, become available again. We could have chosen virtually any
(even random) example, but for the sake of simplicity, let us consider the following example to gain a
basic intuition.
Example 5.6. [“Random” Outages] Assume that

vi(t) =

v, t ∈
∞⋃
j=1

[ki(j − 1), (ki(j − 1) + 1)]

0, otherwise,
, (15)

v > 0, ki ∈ N, and hi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ ≈ Θ

(
min
m∈[n]

(
1
m

m∑
i=1

v
kπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (16)

where π is a permutation such that kπ1
≤ · · · ≤ kπn

.

5We can relax these assumptions to measurability and non-negativity, but the proof will be more technical.
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In this example, worker i is active in the time intervals [0, 1], [kj , kj +1], [2kj , 2kj +1], and so forth.
The parameter kj characterizes how often the worker’s outages occur.

The formula (16) says that the more worker i is inactive (the larger ki), the more time it takes to solve
the problem. Due to the min operation in (16), the formula indicates that some workers can be ignored
if their ki are too large. In general, we could have analyzed (15) with

⋃∞
j=1[startk,j , endk,j ], where

the pairs {startk,j , endk,j} are arbitrarily (random) values on R+, but would get less interpretable
formulas.

6 HETEROGENEOUS SETUP

We now consider the heterogeneous setup discussed in Section 1, and present our first lower bound:
Theorem 6.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist functions {fi}ni=1, where the function f = 1

n

∑n
i=1 fi satisfies Assumptions 1.1, 1.2 and

f(0)− f∗ ≤ ∆, and stochastic gradient mappings {gi}ni=1 in (9), which satisfy Assumption 1.4, i.e.,
Eξ [gi(sx; ξ, t)] = ∇fi(sx) and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and
t ≥ 0, such that E

[
inf
k∈St

∥∥∇f(xk)
∥∥2 ] > ε holds, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t

⌊
c1×L∆

ε

log L∆
ε

⌋
and

tk := min

t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

Vi(t)−Vi(tk−1)

log(L∆
ε )

⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
} (17)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

Unlike (12) where the dependencies on {Vi} are mean-like, the dependencies in (17) are harmonic-
like. Since the heterogeneous setting is more general and complicated, this leads to worse guarantees.
Looking ahead, up to logarithmic and constants factors, the obtained lower bound is tight and attained
by Malenia SGD (Tyurin & Richtárik, 2023) (see Section 6.1).

We asked ourselves if getting a tight lower bound without the logarithmic terms is possible. The
answer is affirmative, but instead of taking one group of predefined worst-case deterministic func-
tions {fi}, the following construction samples random functions {fi}. The fact that the functions
{fi}ni=1 are random helps to prove a tight lower bound (the main difference between the theorems is
highlighted in bold). This lower bound is fundamental and can not be bypassed by any parallel and
asynchronous method (Zheng et al., 2017; Gu et al., 2021; Mishchenko et al., 2022; Islamov et al.,
2024). We provide informal and formal versions of the theorem:
Theorem (Informal Formulation of Theorem 6.2). Let Assumptions 1.1, 1.2, 1.4, and 3.1 hold. It is
impossible to converge faster than 1/2× t⌈c1×L∆

ε ⌉ seconds, where the sequence {tk} is defined in
(18) and c1 is a universal constant.

Theorem 6.2. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1
holds, and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm
A ∈ Azr, we sample {fi}ni=1 from some distribution of functions, where the function f = 1

n

∑n
i=1 fi

satisfies Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆ deterministically, and there exist stochastic
gradient mappings {gi}ni=1 in (9), which satisfy Assumption 1.4, i.e., Eξ [gi(sx; ξ, t)] = ∇fi(sx)
and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and t ≥ 0, such that
E
[
inf
k∈St

∥∥∇f(xk)
∥∥2 ] > ε holds6, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t⌊c1×L∆

ε ⌋
6We take the expectation over all randomness.
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and

tk := min

{
t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

(
Vi (t)− Vi(tk−1)

)⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
}}

(18)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

6.1 OPTIMAL METHOD

The obtained lower bound is tight since it is matched by Malenia SGD (Tyurin & Richtárik, 2023).
This method is closely related to Rennala SGD with a similar structure, and mathematically, it is
the vanilla SGD method with a proper batch collection strategy (see Method 3). However, essential
algorithmic changes must be applied to make it work with heterogeneous functions. The following
theorem was proved by Tyurin & Richtárik (2023).
Theorem 6.3. [(Tyurin & Richtárik, 2023)] Let Assumptions 1.1, 1.2, and 1.4 hold. We take take
S = max

{⌈
σ2
/ε
⌉
, n
}
, and γ = min

{
1
L ,

εS
2Lσ2

}
= Θ(1/L) in Method 4, then after K ≥ 24∆L/ε

iterations the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

This is a new theorem analyzing Malenia SGD with the universal computation model:
Theorem 6.4. Consider the assumptions and the parameters from Theorem 6.3, plus Assumption 3.1.
Then Method 4 (Malenia SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊Vi(t)− Vi(t̄k−1)⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

(t̄0 ≡ 0) (19)

for all k ≥ 1.

Up to constant factors, Theorem 6.2 and Theorem 6.4 provide the optimal time complexity in the
heterogeneous setting. The result is implicit, which is not a problem in practice since Malenia SGD
does not require {Vi} to reach the optimality. Let us consider examples where we can get an explicit
formula.
Example 6.5. [Fixed Computation Model in the Heterogeneous Setting] Assume that vi(t) = vi
with vi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ = Θ

(
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

)
. (20)

Example 6.6. [Nonlinear Trend in the Heterogeneous Setting] Assume that vi(t) = vi × g(t) with
vi > 0 for all i ∈ [n] and a continuous almost everywhere positive function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 ·

[
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

])
, (21)

where G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can depend on other parameters but is bounded).

Example 6.5 shows that our result recovers the optimal complexity derived in (Tyurin & Richtárik,
2023). However, our time complexity works with virtually any computation model.

7 CONCLUSION

To the best of our knowledge, this is the first work that provides optimal time complexities under
virtually arbitrary computation behavior of workers in the distributed setting. We believe that our
lower bounds, Theorems 5.1 and 6.2, and upper bounds, Theorems 5.3 and 6.4, close an important
problem in parallel optimization. Our approach and techniques have the potential to serve as a
foundation for solving other mathematical questions from parallel and asynchronous optimization in
the future. One interesting question is determining the optimal time complexities when the universal
computation model is correlated with the randomness from stochastic gradients.
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A PROOF TECHNIQUES

A.1 PROOF TECHNIQUES IN THE HOMOGENEOUS SETUP

The proof of the upper bound (Theorem 5.3) is relatively simple and uses only (5). The proof of
the lower bound (Theorem 5.1) is standard at the beginning: we assume that the workers store
the “worst-case” function from (Carmon et al., 2020) and have access to oracles that calculate
the exact gradient but zero out the last non-zero coordinate with some probability (Arjevani et al.,
2022). The next steps are new and can be briefly described in the following way. The workers
calculate in parallel; thus, they can calculate at most

∑n
i=1 ⌊Vi(t)⌋ stochastic gradients by a time t.

At the same time, the oracles zero out the last coordinate with a probability p using i.i.d. Bernoulli
random variables. Therefore, the workers cannot get a point with a non-zero first coordinate earlier
than t1 := min {t ≥ 0 :

∑n
i=1 ⌊Vi(t)⌋ ≥ η1} seconds, where {ηk}Tk=1 are i.i.d. geometric random

variables. Using the same reasoning, the workers cannot get a point with a non-zero kth coordinate
earlier than tk := min {t ≥ 0 :

∑n
i=1 ⌊Vi(t)− Vi(tk−1)⌋ ≥ ηk} seconds, and T ≈ L∆/ε. With high

probability, the large chunk (at least a quarter of T ≈ L∆/ε) of {ηk} is not significantly smaller than
1/p ≈ max

{⌈
σ2
/ε
⌉
, 1
}
. Finally, with high probability, at least a quarter of indices from the set [T ]

satisfy

tk ≥ min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(tk−1)⌋ ⪆ max
{⌈

σ2
/ε
⌉
, 1
}}

. (22)

Note that all lower bounds in stochastic optimization ultimately reduce to the concentration analysis
of the sum of random variables. Tyurin & Richtárik (2023) approach this by analyzing the sum∑T

i=1 minj∈[n] τjηij , where ηj are i.i.d. geometric random variables. In our case, we cannot directly
apply this reduction anymore because the computation powers vary over time. Therefore, we found a
non-trivial modification: we have to reduce the problem to the concentration analysis of the sum of
indicators:

∑T
j=1 I[ηj > 1

p ] and investigate this sum, which represents the number of indices that
satisfy (22).

A.2 PROOF TECHNIQUES IN THE HETEROGENEOUS SETUP

The proofs in the heterogeneous setup are more technical, so we suggest first understanding the idea
in the homogeneous setting. Unlike the homogeneous setting, where all workers have access to
stochastic gradients of the same function, the heterogeneous setting offers more freedom in designing
the worst-case construction. We can allocate the worst-case functions from (Carmon et al., 2020)
in almost any desired manner. We consider S functions {hj} such that hj(x) : RS×T → R and
hj depends only on the jth block xj ∈ RT of x = [x1, . . . , xS ] ∈ RS×T , where T ≈ L∆/ε, and
consider the optimization problem with f(x) = 1/n

∑S
j=1 hj(x). As usual, the designed oracles zero

out the last non-zero coordinate of calculated gradients, and an algorithm cannot find an ε-solution
before at least roughly half of the functions {hj} are “solved,” requiring non-zero values in the
last coordinates of the corresponding blocks. The main question is how to distribute the functions
{hj} among the workers. Intuitively, the slower a worker, the more functions we want to assign
to this worker. This intuition works, and in Theorem 6.1, we take the first K “parts” of all the
functions {hj}, and assign the “parts” of the first c1/V1 (t̄1) functions to the first worker, the “parts”
of the second c1/V2 (t̄1) functions to the second worker, and so forth, where t̄1 ≈ t1 from (18),
c1 is a constant such that

∑n
i=1 c1/Vi (t̄1) = S. The next K “parts” we assign proportionally to

c2/(Vi (t̄2)−Vi (t̄1)), and so forth. In total, the allocation of the functions {hj} is dynamic since one
function can be stored on many workers. For all j ∈ [S], the “parts” of hj can be distributed among
different workers according to {Vi}. By taking the appropriate values S,K, and other parameters, we
can ensure the lower bound in Theorem 6.1 holds.

However, Theorem 6.1 is only tight up to logarithmic factors because the allocation of {hj} is
predefined. In response, we propose a construction where the functions {hj} are allocated based
on the randomness we receive from the oracles that calculate stochastic gradients in the proof of
Theorem 6.2. The idea is to track the Bernoulli random variables, which zero out the last coordinates,
and use them in the construction. We ensure that the workers still receive unbiased and σ–variance
bounded stochastic gradients.
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B PROOF OF THEOREM 5.3

Theorem 5.3. Consider the assumptions and the parameters from Theorem 5.2, plus Assumption 3.1.
Then Method 3 (Rennala SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t̄k−1)⌋ ≥ max
{⌈

σ2

ε

⌉
, 1
}}

(t̄0 ≡ 0) ∀k ≥ 1. (12)

Proof. From Theorem 5.2, we know that Method 3 converges after⌈
24L∆

ε

⌉
iterations. The algorithm waits for S = max{

⌈
σ2
/ε
⌉
, 1} stochastic gradients from all the workers in

every iteration. The workers work in parallel and after t seconds they guarantee to calculate
n∑

i=1

⌊Vi(t)⌋

stochastic gradients (see the discussion of the universal computation model in Section 3). It means
they will calculate the first S = max{

⌈
σ2
/ε
⌉
, 1} stochastic gradients after at most

t̄1 := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥ max

{⌈
σ2

ε

⌉
, 1

}}
,

seconds, where the min operation is well-defined due to Lemma G.1. After at most t̄1 seconds, the
algorithm stops the calculations in the workers and asks them to start the calculation of a new batch
of S stochastic gradients that will take at most

t̄2 := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t̄1)⌋ ≥ max

{⌈
σ2

ε

⌉
, 1

}}
,

seconds because ⌊Vi(t)− Vi(t̄1)⌋ is the number of stochastic gradients that worker i can calculate
from time t̄1 to time t (see (5)). Using the same reasoning, it will take at most t̄⌈ 24L∆

ε ⌉ seconds to
finish all calculations.

C PROOF OF THEOREM 6.4

Theorem 6.4. Consider the assumptions and the parameters from Theorem 6.3, plus Assumption 3.1.
Then Method 4 (Malenia SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊Vi(t)− Vi(t̄k−1)⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

(t̄0 ≡ 0) (19)

for all k ≥ 1.

Proof. From Theorem 6.3, we know that Method 4 converges after⌈
24L∆

ε

⌉
iterations. In the first iteration, the algorithm waits for the moment when

1

n

n∑
i=1

1

Bi
≤ n

S
.

Since

S = max

{⌈
σ2

ε

⌉
, n

}
≤ max

{
2σ2

ε
, n

}
,
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we get
n

S
≥ min

{ nε

2σ2
, 1
}
.

According to the computation model, after t seconds, worker i can calculate

Bi = ⌊Vi(t)⌋

stochastic gradients meaning that

1

n

n∑
i=1

1

Bi
=

1

n

n∑
i=1

1

⌊Vi(t)⌋
.

Therefore, the algorithm exits the first iteration after at most

t̄1 := min

{
t ≥ 0 :

1

n

n∑
i=1

1

⌊Vi(t)⌋
≤ min

{ nε

2σ2
, 1
}}

= min

t ≥ 0 :

(
1

n

n∑
i=1

1

⌊Vi(t)⌋

)−1

≥ max

{
2σ2

nε
, 1

}
seconds, where we use Lemma G.1.

The second iteration will start at least after t̄1 seconds. Since, after t seconds, worker i can calculate
at least

⌊Vi(t)− Vi(t̄1)⌋

stochastic gradients in the second iteration. Using the same reasoning as in the first iteration, the
algorithm exits the second iteration after at most

t̄2 := min

t ≥ 0 :

(
1

n

n∑
i=1

1

⌊Vi(t)− Vi(t̄1)⌋

)−1

≥ max

{
2σ2

nε
, 1

}
seconds. We can continue and show that it will take at most t̄⌈ 24L∆

ε ⌉ seconds to finish all calculations.

D PROOF OF THEOREM 5.1

In our lower bound proofs, we employ the following well-known function. Let us define

prog(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1).

For any T ∈ N, Carmon et al. (2020); Arjevani et al. (2022) define a function FT : RT → R such
that

FT (x) = −Ψ(1)Φ(x1) +

T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (23)

where xi is the ith coordinate of a vector x ∈ Rd and

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x ≥ 1/2,

and Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt.

In the proofs, we will only use the results from the following lemma.
Lemma D.1 (Carmon et al. (2020); Arjevani et al. (2022)). The function FT satisfies:

1. FT (0)− infx∈RT FT (x) ≤ ∆0T, where ∆0 = 12.
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2. The function FT is l1–smooth, where l1 = 152.

3. For all x ∈ RT , ∥∇FT (x)∥∞ ≤ γ∞, where γ∞ = 23.

4. For all x ∈ RT , prog(∇FT (x)) ≤ prog(x) + 1.

5. For all x ∈ RT , if prog(x) < T, then ∥∇FT (x)∥ > 1.

We are ready to prove our first main result.
Theorem 5.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist a function f, which satisfy Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆, and stochastic
gradient mappings {gi} in (9), which satisfy Assumption 1.3, i.e., Eξ [gi(sx; ξ, t)] = ∇f(sx) and
Eξ[∥gi(sx; ξ, t)−∇f(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n] such that E

[
inf
k∈St

∥∥∇f(xk)
∥∥2 ] > ε

holds, where St :=
{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 × t⌊c1×L∆

ε ⌋,

and7

tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ c2 ×max

{⌈
σ2

ε

⌉
, 1
}}

(t0 = 0) (11)

for all k ≥ 0. The quantities c′, c1, and c2 are universal constants. The sequences xk and tk are
defined in Protocol 2.

Proof.
(Part 1). In the first part of the proof we use the same idea as in (Carmon et al., 2020; Arjevani
et al., 2022; Tyurin & Richtárik, 2023; Huang et al., 2022; Lu & De Sa, 2021). We will construct a
“worst-case” function. Let us take any λ > 0, T ∈ N and take the function

f(x) :=
Lλ2

l1
FT

(x
λ

)
.

We have to show that f satisfy Assumptions 1.1, 1.2 and f(0)− f∗ ≤ ∆. Indeed,

∥∇f(x)−∇f(y)∥ = Lλ

l1

∥∥∥∇FT

(x
λ

)
−∇FT

( y
λ

)∥∥∥ ≤ Lλ
∥∥∥x
λ
− y

λ

∥∥∥ = L ∥x− y∥ ∀x, y ∈ Rd,

where l1–smoothness of FT (Lemma D.1). Let us take

T =

⌊
∆l1

Lλ2∆0

⌋
,

then

f(0)− inf
x∈RT

f(x) =
Lλ2

l1
(FT (0)− inf

x∈RT
FT (x)) ≤

Lλ2∆0T

l1
≤ ∆.

Next, we construct a stochastic gradient mapping that satisfy Assumption 1.3. As in (Arjevani et al.,
2022), for all i ∈ [n], let us take

[gi(x; ξ, t)]j := [∇f(x)]j
(
1 + 1 [j > prog(x)]

(
ξj,m
p
− 1

))
∀x ∈ RT , (24)

and {ξj} are i.i.d. from Bernouilli(p) for all i ∈ [n], where p ∈ (0, 1]. We denote [v]j as the jth index
of a vector v ∈ RT . This mapping satisfy Assumption 1.3 since

E [[gi(x; ξ, t)]j ] = [∇f(x)]j
(
1 + 1 [i > prog(x)]

(
E [ξj ]

p
− 1

))
= [∇f(x)]j

7We use the standard convention min{∅} = ∞.
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for all j ∈ [T ], and

E
[
∥gi(x; ξ, t)−∇f(x)∥2

]
≤ max

j∈[T ]
|[∇f(x)]j |2 E

[(
ξj
p
− 1

)2
]

because the difference is non-zero only in one coordinate. Therefore

E
[
∥gi(x; ξ, t)−∇f(x)∥2

]
≤
∥∇f(x)∥2∞ (1− p)

p
=

L2λ2
∥∥∇FT

(
x
λ

)∥∥2
∞ (1− p)

l21p

≤ L2λ2γ2
∞(1− p)

l21p
≤ σ2,

where we take into account Lemma D.1 and choose

p = min

{
L2λ2γ2

∞
σ2l21

, 1

}
.

We also choose

λ =

√
2εl1
L

to ensure that

∥∇f(x)∥2 =
L2λ2

l21

∥∥∥∇FT

(x
λ

)∥∥∥2 = 2ε
∥∥∥∇FT

(x
λ

)∥∥∥2
for all x ∈ RT . Using Lemma D.1, if prog(x) < T, then ∥∇FT (x)∥ > 1. Thus

∥∇f(x)∥2 > 2ε1 [prog(x) < T ] (25)

Using the choice of λ, one can easily show that

T =

⌊
∆L

2εl1∆0

⌋
(26)

and

p = min

{
2εγ2

∞
σ2

, 1

}
. (27)

The inequality (25) implies

inf
k∈St

∥∥∇f(xk)
∥∥2 > 2ε inf

k∈St

1
[
prog(xk) < T

]
, (28)

where {xk}∞k=0 are defined in Protocol 2.
(Part 2). The last inequality in (28) says that if an algorithm wants to find an ε–stationary point of
the function f, then it is necessary to return a point xk such that the last coordinate of xk is not zero.
All algorithms start with the point x0 = 0, and the only way to discover a new non-zero coordinate
is through the oracles (9) since the family of algorithms Azr is zero-respecting. The function f is
a zero-chain (Arjevani et al., 2022) meaning that prog(∇FT (x)) ≤ prog(x) + 1 for all x ∈ RT

(Lemma D.1). Therefore, the oracles can reveal the next non-zero coordinate with the probability p
due the construction (24).

For all i ∈ [n], oracle Oi emulates the behavior of a real computation process that can calculate at
most

⌊Vi(t1)− Vi(t0)⌋
stochastic gradients in the time interval [t0, t1]. Effectively, the condition Vi(t)− Vi(st) ≥ 1 ensures
that sufficient time passes before worker i receives a new stochastic gradient.

All workers work in parallel and ask the oracles to return new stochastic gradients. Thus, for all
t ≥ 0, in the interval [0, t], all workers can can calculate at most

n∑
i=1

⌊Vi(t)⌋
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stochastic gradients. At the same time, the stochastic mapping (24) is constructed so that the
last potentially non-zero coordinate is zeroed out using i.i.d. Bernoulli random variables with the
parameter p. All workers have to wait for the moment when one of the oracles samples a Bernoulli
random variables equals to 1. Therefore, the workers have to calculate at least η1 stochastic gradients,
where η1 is a geometric random variable with the parameter p. Finally, we can conclude that the
workers can progress to the first non-zero coordinate after at least

t1 := inf

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥ η1

}
= min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥ η1

}
seconds, where we use Lemma G.1. In order to get a second non-zero coordinate, the workers should
continue calculating stochastic gradients at points with the progress equals to one. Using the same
reasoning, the workers can progress to the second non-zero coordinate after at least

t2 := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t1)⌋ ≥ η2

}
seconds, where η2 is a geometric random variable with the parameter p. Because worker i first gets a
point with the progress equals to one, which takes at least t1 seconds, and then can calculate at most

⌊Vi(t)− Vi(t1)⌋

stochastic gradients by a time t ≥ 0. We continue: let us define

ti := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(ti−1)⌋ ≥ ηi

}
(t0 ≡ 0),

and take i.i.d. {ηi}Ti=1 geometric random variables with the probability p. We can conclude that all
algorithms from Azr require at least tT seconds to get a point where the T th coordinate is non-zero.
(Part 3).
It is left to find a concentration bound for tT . Using Lemma G.2 with pi,η1,...,ηi−1

= p for all i ∈ [T ],
we have

P

(
T∑

i=1

1

[
ηi >

1

4p

]
≤ T

2
+ log δ

)
≤ δ

for all δ ∈ (0, 1] (Note: Clearly, Lemma G.2 is too redundant for the current case when {ηi}Ti=1 are
i.i.d., but we will use the lemma in other proof where the generality is justified).

Since

T

2
+ log

1

2
≥
⌊
T − 1

2

⌋
.

With a probability at least 1/2, there exist
⌊
T−1
2

⌋
indices such that ηi > 1

4p , i.e.,∣∣∣∣{i ∈ [T ]

∣∣∣∣ ηi > 1

4p

}∣∣∣∣ ≥ ⌊T − 1

2

⌋
.

With a probability at least 1/2, there exist 1 ≤ j1 < j2 < · · · < j⌊T−1
2 ⌋ ≤ T such that ηjk > 1

4p for

all k ∈
[⌊

T−1
2

⌋]
. Using a proof by induction, let us show that

tjk ≥ tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ 1

4p

}
(t0 = 0) (29)

for all k ∈
[⌊

T−1
2

⌋]
.

Recall the definition of tj1 . Using it, we have

tj1 = min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(tj1−1)⌋ ≥ ηj1

}
.
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Using Vi(tj1−1) ≥ 0 and ηj1 ≥ 1
4p , we get

n∑
i=1

⌊Vi(t)⌋ ≥
n∑

i=1

⌊Vi(t)− Vi(tj1−1)⌋ ≥ ηj1 ≥
1

4p

and

tj1 ≥ t1 = min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥
1

4p

}
.

Thus, we have proved the base case. Assume that (29) holds for k − 1. Note that

tjk = min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(tjk−1)⌋ ≥ ηjk

}
.

Using ηjk ≥ 1
4p , tjk−1 ≥ tj(k−1)

, the induction assumption tj(k−1)
≥ tk−1, and the fact that the

functions {Vi} are non-decreasing, we get

Vi(tjk−1) ≥ Vi(tj(k−1)
) ≥ Vi(tk−1)

and
n∑

i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥

n∑
i=1

⌊Vi(t)− Vi(tjk−1)⌋ ≥ ηjk ≥
1

4p
.

Therefore

tjk ≥ tk = min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ 1

4p

}
.

In total, with a probability at least 1/2, due to (26) and (27), we have

tT ≥ tj⌊T−1
2 ⌋
≥ t⌊T−1

2 ⌋ ≥ t⌊c1×L∆
ε ⌋,

where

tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ c2 ×max

{⌈
σ2

ε

⌉
, 1

}}
(t0 = 0) (30)

and c1, c2 are universal constants. Recall that tT is a necessary number of seconds to get a point
where the T th coordinate is non-zero. Due to (28),

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > 2εP (tT > t) ≥ 2εP

(
tT ≥ t⌊c1×L∆

ε ⌋
)
≥ ε

for

t =
1

2
× t⌊c1×L∆

ε ⌋.

The first inequality follows from the fact that if tT > t, then the set St :=
{
k ∈ N0 | tk ≤ t

}
contains

the indices of iterations from Protocol 2 where all returned by the algorithm points have prog(·) less
than T.

E PROOF OF THEOREM 6.1

Theorem 6.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist functions {fi}ni=1, where the function f = 1

n

∑n
i=1 fi satisfies Assumptions 1.1, 1.2 and

f(0)− f∗ ≤ ∆, and stochastic gradient mappings {gi}ni=1 in (9), which satisfy Assumption 1.4, i.e.,
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Eξ [gi(sx; ξ, t)] = ∇fi(sx) and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and
t ≥ 0, such that E

[
inf
k∈St

∥∥∇f(xk)
∥∥2 ] > ε holds, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t

⌊
c1×L∆

ε

log L∆
ε

⌋
and

tk := min

t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

Vi(t)−Vi(tk−1)

log(L∆
ε )

⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
} (17)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

Proof. As in Theorem 5.1, we base our proof on the function FT (x) from Section D. Let us fix
any algorithm A ∈ Azr. First, we define S ∈ N functions such that, for all j ∈ [S], we have
hj(x) : RS×T → R and

hj(x) =
nLλ2

l1
FT

(xj

λ

)
, (31)

where T, S, and λ are defined later. We assume that x = [x1, . . . , xS ] ∈ RS×T . We define xj ∈ RT

as the jth block of a vector x = [x1, . . . , xS ] ∈ RS×T . The function hj depends only on a subset of
variables xj from x. We construct a function f : RS×T → R such that

f(x) =
1

n

S∑
i=1

hi(x). (32)

While the final structure of the local stochastic functions fi is not yet defined, during the proof, we
will ensure that (32) holds.

(Step 1: f ∈ F∆,L)
First, we show that f satisfies Assumptions 1.1, 1.2 and f(0)−f∗ ≤ ∆. Let us show that the function
f is L-smooth. Indeed, we have

∥∇f(x)−∇f(y)∥2 =
1

n2

∥∥∥∥∥
S∑

i=1

(∇hi(x)−∇hi(y))

∥∥∥∥∥
2

=
1

n2

S∑
i=1

∥∇hi(x)−∇hi(y)∥2

=
1

n2

S∑
i=1

∥∥∥∥nLλl1 ∇FT

(xi

λ

)
− nLλ

l1
∇FT

(yi
λ

)∥∥∥∥2
i

,

where ∥·∥j is the Euclidean norm w.r.t. jth block. Then,

∥∇f(x)−∇f(y)∥2 =
L2λ2

l21

S∑
i=1

∥∥∥∇FT

(xi

λ

)
−∇FT

(yi
λ

)∥∥∥2
i
≤ L2

S∑
i=1

∥xi − yi∥2i = L2 ∥x− y∥2 ,

where the last inequality due to Lemma D.1. Let us take

T =

⌊
∆l1

Lλ2S∆0

⌋
(33)

then

f(0)− inf
x∈RS×T

f(x) =
1

n

S∑
i=1

nLλ2

l1
(FT (0)− inf

x∈RT
FT (x)) ≤

Lλ2S∆0T

l1
≤ ∆,

where the first inequality due to Lemma D.1.
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(Step 2: Construction of local functions fi)
Each function hi(x) depends only on T coordinates of the ith block. We split these T coordinates
into T̄ + 1 groups with T̄ := ⌊T/K⌋ , where we choose K later. For all w ∈ [T̄ + 1], let us take any

sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1. (34)

It is convenient to define the length of each segment: aw,i := sw,i − sw,(i−1) for all w ∈ [T̄ + 1] and
i ∈ [n]. Also, we take any times

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T̄ ≤ t̄T̄+1 ≡ ∞ (35)

associated with the coordinates’ groups. We construct functions in the following way. For all i ∈ [n],
we define

f̂i(x) :=

s1,i−1∑
j=s1,(i−1)

(−Ψ(1)Φ(xj,1) + · · ·+Ψ(−xj,K−1)Φ(−xj,K)−Ψ(xj,K−1)Φ(xj,K))

+

s2,i−1∑
j=s2,(i−1)

(Ψ(−xj,K)Φ(−xj,K+1)−Ψ(xj,K)Φ(xj,K+1) + . . .

+ Ψ(−xj,2K−1)Φ(−xj,2K)−Ψ(xj,2K−1)Φ(xj,2K))

+ . . .

+

sT̄ ,i−1∑
j=sT̄ ,(i−1)

(
Ψ(−xj,(T̄−1)K)Φ(−xj,(T̄−1)K+1)−Ψ(xj,(T̄−1)K)Φ(xj,(T̄−1)K+1) + . . .

+ Ψ(−xj,T̄K−1)Φ(−xj,T̄K)−Ψ(xj,T̄K−1)Φ(xj,T̄K)
)

+

sT̄+1,i−1∑
j=sT̄+1,(i−1)

(
Ψ(−xj,T̄K)Φ(−xj,T̄K+1)−Ψ(xj,T̄K)Φ(xj,T̄K+1) + . . .

+ Ψ(−xj,T−1)Φ(−xj,T )−Ψ(xj,T−1)Φ(xj,T ))

and

fi(x) :=
nLλ2

l1
f̂i

(x
λ

)
,

where xj,i is the ith coordinate of xj ∈ RT .

Let us explain the idea. For all j ∈ [S], we take the function hj from (31), which consists of T
parts with the structure Ψ(−xj,·)Φ(−xj,·)−Ψ(xj,·)Φ(xj,·), and distribute these parts between the
workers according to the predefined segments {sw,i}. The first K parts of the function hj will be
stored in worker i1 such that s1,(i1−1) ≤ j < s1,i1 , the second K parts will be stored in worker i2
such that s2,(i2−1) ≤ j < s2,i2 , and so on. One can easily show that

∑S
j=1 hj =

∑n
i=1 fi.

(Step 3: Time-dependent stochastic oracles)
We now construct a stochastic oracle. Let us take

pw,i := min

{
aw,in

2L2λ2γ2
∞

σ2l21
, 1

}
(36)

for all w ∈ [T̄ + 1], i ∈ [n]. The stochastic mapping takes a point x, a random variable ξ, a time t,
and returns

[gi(x; ξ, t)]j,m := [∇fi(x)]j,m×

×
(
1 + 1

[
m > prog(xj) ∧

⌊
m− 1

K

⌋
+ 1 = w(t)

](
ξj,m
pw(t),i

− 1

))
∀x ∈ RS×T ,

(37)

where [x]j,m is the mth coordinate of the jth block of x ∈ RS×T , {ξj,m}j,m are i.i.d. from
Bernoulli(pw(t),i), and w(t) ∈ [T̄ ] is the index such that t̄(w(t)−1) ≤ t < t̄w(t).

The idea is almost the same as in (Arjevani et al., 2022): we also zero out the last potentially non-zero
coordinate with the probability pw(t),i. However, we only zero out a coordinate if it belongs to the
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parts from the set {(K − 1)w(t) + 1, . . . ,Kw(t)}, where w(t) is associated with the current time
interval [t̄(w(t)−1), t̄w(t)) where the current time t belongs to.

Then, gi(x; ξ, t) is unbiased because Eξ

[(
ξj,m

pw(t),i
− 1
)]

= 0 and

Eξ

[
∥gi(x; ξ, t)−∇fi(x)∥2

]
≤

sw(t),i−1∑
j=sw(t),(i−1)

n2L2λ2
∥∥∇FT

(xj

λ

)∥∥2
∞ (1− pw(t),i)

l21pw(t),i

because, due the condition
⌊
m−1
K

⌋
+ 1 = w(t), we only consider the blocks from the sum∑sw(t),i−1

j=sw(t),(i−1)
. Using Lemma D.1, we have ∥∇FT (x)∥2∞ ≤ γ2

∞ for all x ∈ RT and

Eξ

[
∥gi(x; ξ, t)−∇fi(x)∥2

]
≤

aw(t),in
2L2λ2γ2

∞(1− pw(t),i)

l21pw(t),i
≤ σ2,

where the last inequality follows from the choice of pw,i in (36).

(Step 4: Analysis of Protocol)

Using the definition of f, we get

∥∇f(x)∥2 =
1

n2

S∑
i=1

∥∇hi(x)∥2 =

S∑
i=1

L2λ2

l21

∥∥∥∇FT

(xi

λ

)∥∥∥2
>

L2λ2

l21

S∑
i=1

1[prog(xi) < T ] (38)

for all x = [x1, . . . , xn] ∈ RT . In the last inequality, we use Lemma D.1. Let us take

λ =

√
4εl21
L2S

. (39)

to ensure that

inf
k∈St

∥∥∇f(xk)
∥∥2 > inf

k∈St

4ε

S

S∑
i=1

1[prog(xk
i ) < T ] ≥ 4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ], (40)

where xk are points defined in Protocol 2. Using Markov’s inequality, we get

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ] ≤ 2ε

)

= P

(
1

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ] ≤ 1

2

)

= P

(
1

S

S∑
i=1

sup
k∈St

1[prog(xk
i ) ≥ T ] ≥ 1

2

)

≤ 2E

[
1

S

S∑
i=1

sup
k∈St

1[prog(xk
i ) ≥ T ]

]
=

2

S

S∑
i=1

E
[
sup
k∈St

1[prog(xk
i ) ≥ T ]

]
.

(41)

(Step 5: Bound on the expectations)

In this step of the proof, we fix j ∈ [S], and consider the function hj from (31).

Recall that worker i can calculate ⌊Vi(t)⌋ stochastic gradients by a time t. Therefore, it takes at least

min {t ≥ 0 : ⌊Vi(t)⌋ ≥ η} ≥ V −1
i (η)

seconds to calculate η ∈ N stochastic gradients, where we use the definition (8).
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By the construction of the functions {fi}, the first K parts of hj belong to worker i1,j such that
s1,i1,j−1 ≤ j < s1,i1,j . While the algorithm A is returning times tk such that t̄0 ≡ 0 ≤ tk < t̄1, by
the construction of the stochastic mapping (37), whenever the algorithm calls oracle Oi1,j , the oracle
zeros out the last potentially non-zero coordinate with the probability p1,i1,j . However, due to the
condition

⌊
m−1
K

⌋
+ 1 = w(t), the stochastic mapping will zero out the first K coordinates only if

tk < t̄1. Thus, the time required to progress to the K th coordinate in the block xj is at least

t̂1,j := min

{
t̄1, V

−1
i1,j

(
K∑

v=1

η1,i1,j ,v

)}
seconds, where {η1,i1,j ,v} are i.i.d. geometric random variables with the probability p1,i1,j . Because
either the algorithm returns tk ≥ t̄1, or it keeps returning tk < t̄1, but then A should calculate at
least

∑K
v=1 η1,i1,j ,v stochastic gradients since the stochastic mapping zeros out the last potentially

non-zero coordinate, and A should wait K times for the “lucky” (ξ = 1) draws of Bernoulli random
variables.

Using the same reasoning, for all w ∈ [T̄ ], it will take at least

t̂w,j := min

{
t̄w, V

−1
iw,j

(
K∑

v=1

ηw,iw,j ,v + Viw,j (t̂w−1,j)

)}
(t̂0,j ≡ 0) (42)

seconds to progress to the w × K th coordinate in the block xj , where {ηw,iw,j ,v} are i.i.d. geo-
metric random variables with the probability pw,iw,j , and iw,j is the index of the worker such that
sw,iw,j−1 ≤ j < sw,iw,j

. Because either the algorithm returns tk ≥ t̄w, or it keeps returning tk < t̄w,

but then A should first progress to the (w− 1)×K th coordinate, which takes at least t̂w−1,j seconds,
and then should calculate at least

∑K
v=1 ηw,iw,j ,v stochastic gradients. This will take at least

min

{
t ≥ 0 :

⌊
Viw,j (t)− Viw,j (t̂w−1,j)

⌋
≥

K∑
v=1

ηw,iw,j ,v

}
(cont. of Viw,j

)
= min

{
t ≥ 0 : Viw,j

(t)− Viw,j
(t̂w−1,j) =

K∑
v=1

ηw,iw,j ,v

}
(8)
= V −1

iw,j

(
K∑

v=1

ηw,iw,j ,v + Viw,j (t̂w−1,j)

)
seconds.

Using Lemma G.3, with a probability at least 1− T̄ e−K/2, we have
K∑

v=1

ηw,iw,j ,v ≥
K

8pw,iw,j

for all w ∈ [T̄ ]. Using these inequalities and (42), we get

t̂w,j ≥ min

{
t̄w, V

−1
iw,j

(
K

8pw,iw,j

+ Viw,j (t̂w−1,j)

)}
, (43)

for all w ∈ [T̄ ].

Note that {t̄w}T̄w=1,{sw,i}w∈[T̄+1],i∈[n], and S are free parameters with the conditions (34) and (35).
Due to (36) and (39), we have

pw,i = min

{
4εγ2

∞aw,in
2

σ2S
, 1

}
.

Therefore, we can use Lemma G.4: we can find {t̄w}T̄w=1,{sw,i}w∈[T̄+1],i∈[n], and S such that

V −1
i

(
K

8p1,i

)
≥ t̄1 for all i ∈ [n]. With a probability at least 1− T̄ e−K/2, with the chosen parameters,

we have

t̂1,j ≥ min

{
t̄1, V

−1
i1,j

(
K

8p1,i1,j

)}
≥ min {t̄1, t̄1} = t̄1.
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Using a proof by induction, with a probability at least 1− T̄ e−K/2, let us prove that t̂w,j ≥ t̄w for
all w ∈ [T̄ ] with the parameters from Lemma G.4. The base case has been proved. Assume that

t̂w−1,j ≥ t̄w−1,

then, using (43), we get

t̂w,j ≥ min

{
t̄w, V

−1
iw,j

(
K

8pw,iw,j

+ Viw,j
(t̂w−1,j)

)}
≥ min

{
t̄w, V

−1
iw,j

(
K

8pw,iw,j

+ Viw,j
(t̄w−1)

)}
.

In Lemma G.4, we show that V −1
i

(
K

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w for all i ∈ [n]. Thus

t̂w,j ≥ min {t̄w, t̄w} = t̄w.

(Step 6: Choose a parameter K)
In the previous step, we prove that, with a probability at least 1− T̄ e−K/2, the algorithm requires at
least t̄T̄ seconds to progress to the K × T̄ th coordinate (K × T̄ ≤ T ), where t̄T̄ is defined in in the
proof of Lemma G.4.

Let us take

K = ⌊2 log 4T ⌋ ,

then, with a probability at least 3/4, the algorithm will require at least t̄T̄ seconds to get a non-zero
last coordinate in the block xj . Thus

E
[
sup
k∈St

1[prog(xk
j ) ≥ T ]

]
≤ 1

4

for all j ∈ [n] and for all t ≤ 1
2 t̄T̄ . We substitute these inequalities to (41) and (40), and get

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ] ≤ 2ε

)
≤ 1

2

and

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > E

[
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ]

]
> 2εP

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ] > 2ε

)
≥ ε

for all

t ≤ 1

2
t̃T̄

(60)

≤ 1

2
t̄T̄ ,

where

T̄ =

⌊
T

⌊2 log 4T ⌋

⌋
(33),(39)

≥

⌊
c1 × L∆

ε

log L∆
ε

⌋
for some universal constant c1, where we use the assumption ε < c′L∆ of the theorem. Finally, since
t̃w ≥ tw for all w ∈ [T̄ ] with the chosen K, where the later sequence is defined in (17), we can take

t =
1

2
t⌊ c1×L∆

ε

log L∆
ε

⌋.

F PROOF OF THEOREM 6.2

Theorem 6.2. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1
holds, and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm
A ∈ Azr, we sample {fi}ni=1 from some distribution of functions, where the function f = 1

n

∑n
i=1 fi
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satisfies Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆ deterministically, and there exist stochastic
gradient mappings {gi}ni=1 in (9), which satisfy Assumption 1.4, i.e., Eξ [gi(sx; ξ, t)] = ∇fi(sx)
and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and t ≥ 0, such that
E
[
inf
k∈St

∥∥∇f(xk)
∥∥2 ] > ε holds8, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t⌊c1×L∆

ε ⌋

and

tk := min

{
t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

(
Vi (t)− Vi(tk−1)

)⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
}}

(18)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

Proof. We base our proof on the function FT (x) from Section D. Let us fix any algorithm A ∈ Azr.
First, we define S ∈ N functions such that, for all j ∈ [S], we have hj(x) : RS×T → R and

hj(x) =
nLλ2

l1
FT

(xj

λ

)
, (44)

where T, S, and λ are defined later. We assume that x = [x1, . . . , xS ] ∈ RS×T . We define xj ∈ RT

as the jth block of a vector x = [x1, . . . , xS ] ∈ RS×T . The function hj depends only on a subset of
variables xj from x. We construct a function f : RS×T → R such that

f(x) =
1

n

S∑
i=1

hi(x). (45)

While the final structure of the local stochastic functions fi is not yet defined, during the proof, we
will ensure that (45) holds.

(Step 1: f ∈ F∆,L)
We have to show that f satisfies Assumptions 1.1, 1.2 and f(0)− f∗ ≤ ∆. This step is exactly the
same as in the proof of Theorem 6.1. It is sufficient to take

T =

⌊
∆l1

Lλ2S∆0

⌋
. (46)

(Step 2: Construction of local functions fi and stochastic mappings)
Unlike the proof of Theorem 6.1 where the functions are predetermined, in this construction the
functions {fi} depend on sequences of random variables and are constructed algorithmically in the
following way.

For all w ∈ [T + 1], let us take any

sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1, (47)

and define aw,i := sw,i − sw,(i−1). We also take any pw,i > 0 for all w ∈ [T ], i ∈ [n], and any times

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T ≤ t̄T+1 ≡ ∞ (48)

associated with {sw,·}w∈[T+1] and {pw,·}w∈[T ]. We construct the functions {fi} using the algorithm
below.

8We take the expectation over all randomness.
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Algorithm 5 “Resisting allocation” of the functions {hj}
1: fi(x)← 0 for all i ∈ [n]
2: for j = 1, . . . , S do
3: Current time window w = 1
4: for m = 1, . . . , T do
5: Find iw,j such that sw,iw,j−1 ≤ j < sw,iw,j

6: Set bj,m ← (w, iw,j)

7: Update fiw,j
(x)← fiw,j

(x) + nLλ2

l1

(
Ψ
(
−xj,m−1

λ

)
Φ
(
−xj,m

λ

)
−Ψ

(xj,m−1

λ

)
Φ
(xj,m

λ

))
(xj,0 ≡ 0 for all j ∈ [S])

8: Draw an infinite i.i.d. sequence {ξj,m,s}∞s=1 from Bernoulli(pw,iw,j
)

9: Find the first moment when ξj,m,s = 1, i.e., ηj,m = inf{s ≥ 1 : ξj,m,s = 1}
10: if V −1

iw,j

(
ηj,m + Viw,j (t̄w−1)

)
≥ t̄w then

11: w ← w + 1
12: end if
13: end for
14: end for

As in the proof of Theorem 6.1, the stochastic mapping takes a point x, a random variable ξ, a time t,
and returns

[gi(x; ξ̄, t)]j,m :=

{
[∇fi(x)]j,m × ξ̄j

pw(t),i
, m = prog(xj) + 1 ∧ bj,m = (w(t), i),

[∇fi(x)]j,m, otherwise,
(49)

where [x]j,m is the mth coordinate of the jth block of x ∈ RS×T , ξ̄ ≡ (ξ̄1, . . . , ξ̄S), ξ̄j is the “next”
random variable from {ξj,(prog(xj)+1),s}∞s=1 (see Alg. 5), and w(t) ∈ [T ] is the index such that
t̄(w(t)−1) ≤ t < t̄w(t).

Let us clarify what we mean by the “next” random variable. In Line 8 of Alg. 5, we draw an infinite
i.i.d. sequence {ξj,m,s}∞s=1 from Bernoulli(pw,iw,j

). For the first time when the mapping gi has to
take the “next” random variable from {ξj,(prog(xj)+1),s}∞s=1, it takes ξj,(prog(xj)+1),1. For the second
time, it takes ξj,(prog(xj)+1),2, and so forth.

For all i ∈ [n], the mapping gi in the oracle Oi zeroes out the coordinate m of the gradient ∇fi(x)
corresponding to m = prog(xj) + 1 (idea is the same as in (Arjevani et al., 2022)). However, we
only zero out this coordinate if the corresponding part of the function hj is stored on worker i at the
time t (condition bj,m = (w(t), i)).

We now explain the idea. For all i ∈ [n], deterministically, we have

fi(x) =
nLλ2

l1

s1,i∑
j=s1,i−1+1

−Ψ(1)Φ
(xj,1

λ

)
+ . . . .

where xj,i is the ith coordinate of xj ∈ RT . Thus, the first part −Ψ(1)Φ(x1) of the functions (44)
(see (23)) are allocated according to the values {s1,i}.
As always, we rely on the fact that the algorithm is zero-respecting, meaning that at the beginning, it
starts with the point x0 = 0. While xk = 0, it does not matter where we allocate the other parts of the
functions hj . The main idea is to decide the allocation based on the random variables {ξj,m,s}∞s=1
from Alg. 5. By the construction of the functions {fi}, the first part of hj belongs to worker i1,j
such that s1,i1,j−1 ≤ j < s1,i1,j . The oracle Oi1,j zeroes out the first coordinate of the jth block of
gradients with the probability p1,i1,j (see (49)).

In Alg. 5, we consider two cases:
If V −1

i1,j
(ηj,1) < t̄1, then in the next iteration of Alg. 5, we allocate the second part of the function hj

to the same worker i1,j , i.e.,

fi1,j (x)← fi1,j (x) +
nLλ2

l1

(
Ψ
(
−xj,1

λ

)
Φ
(
−xj,2

λ

)
−Ψ

(xj,1

λ

)
Φ
(xj,2

λ

))
.
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Otherwise, if V −1
i1,j

(ηj,1) ≥ t̄1, then we increment the parameter w in Alg. 5 and allocate the second
part to worker i2,j :

fi2,j (x)← fi2,j (x) +
nLλ2

l1

(
Ψ
(
−xj,1

λ

)
Φ
(
−xj,2

λ

)
−Ψ

(xj,1

λ

)
Φ
(xj,2

λ

))
,

where i2,j such that s2,i,j−1 ≤ j < s2,i2,j .

The mapping gi is unbiased and σ2–variance bounded. If m > prog(xj) + 1, then [∇fi(x)]j,m = 0
deterministically due to Lemma D.1. If m = prog(xj) + 1 and bj,m = (w(t), i), then we have to
show that

Eξ̄

[
[∇fi(x)]j,m ×

ξ̄j
pw(t),i

]
= [∇fi(x)]j,m

for all j ∈ [S],m ∈ [T ]. Notice that due the construction in Alg. 5, the gradient ∇fi(x) can depend
on {ξj,m,s}∞s=1 since the random variables affect the allocation of parts starting from

Ψ
(
−xj,m

λ

)
Φ
(
−xj,m+1

λ

)
−Ψ

(xj,m

λ

)
Φ
(xj,m+1

λ

)
,

Ψ
(
−xj,m+1

λ

)
Φ
(
−xj,m+2

λ

)
−Ψ

(xj,m+1

λ

)
Φ
(xj,m+2

λ

)
,

. . .

Ψ
(
−xj,T−1

λ

)
Φ
(
−xj,T

λ

)
−Ψ

(xj,T−1

λ

)
Φ
(xj,T

λ

)
.

(50)

However, i) the jth block does no depend on ξj′,m′,s′ with j′ ̸= j,m′ ∈ [T ], s′ ≥ 1 ii) all the previous
parts in the jth block depend only on {ξj,m′,s}m′<m,s≥1, and iii) all the parts from (50) are zero
because m = prog(xj) + 1. Therefore

Eξ̄

[
[∇fi(x)]j,m ×

ξ̄j
pw(t),i

]
i)
= Eξ̄j

[
[∇fi(x)]j,m ×

ξ̄j
pw(t),i

]
ii), iii)
= [∇fi(x)]j,mEξ̄j

[
ξ̄j

pw(t),i

]
= [∇fi(x)]j,m.

For m = prog(xj) + 1 and bj,m ̸= (w(t), i), we have

Eξ̄

[
[gi(x; ξ̄, t)]j,m

]
= Eξ̄ [[∇fi(x)]j,m]

i)
= Eξ̄j [[∇fi(x)]j,m]

ii), iii)
= [∇fi(x)]j,m.

For m < prog(xj) + 1, we have

Eξ̄

[
[gi(x; ξ̄, t)]j,m

]
= Eξ̄ [[∇fi(x)]j,m]

i)
= Eξ̄j [[∇fi(x)]j,m]

ii)
= [∇fi(x)]j,m.

Using the same reasoning, we have

Eξ̄

[∥∥gi(x; ξ̄, t)−∇fi(x)∥∥2]

= Eξ̄

 ∑
j,m : bj,m=(w(t),i),

m=prog(xj)+1

([∇fi(x)]j,m)
2

(
ξ̄j

pw(t),i
− 1

)2


=

∑
j,m : bj,m=(w(t),i),

m=prog(xj)+1

([∇fi(x)]j,m)
2 Eξ̄

[(
ξ̄j

pw(t),i
− 1

)2
]

=
∑

j,m : bj,m=(w(t),i),
m=prog(xj)+1

([∇fi(x)]j,m)
2

(
1− pw(t),i

)
pw(t),i

=
∑

j,m : bj,m=(w(t),i),
m=prog(xj)+1

([
∇FT

(xj

λ

)]
m

)2 n2L2λ2
(
1− pw(t),i

)
l21pw(t),i

.
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Due to Lemma D.1, we get ∥∇FT (x)∥2∞ ≤ γ2
∞ for all x ∈ RT and

Eξ̄

[∥∥gi(x; ξ̄, t)−∇fi(x)∥∥2] ≤ ∑
j,m : bj,m=(w(t),i),

m=prog(xj)+1

n2L2λ2γ2
∞
(
1− pw(t),i

)
l21pw(t),i

=
aw(t),in

2L2λ2γ2
∞
(
1− pw(t),i

)
l21pw(t),i

because, due the condition bj,m = (w(t), i), we only consider the blocks from the set
{sw(t),(i−1), . . . , sw(t),i − 1} (see Alg. 5), take one coordinate from each block, and recall that
aw(t),i := sw(t),i − sw(t),(i−1). Using the choice

pw,i := min

{
aw,in

2L2λ2γ2
∞

σ2l21
, 1

}
(51)

for all w ∈ [T ], i ∈ [n], we get

Eξ̄

[∥∥gi(x; ξ̄, t)−∇fi(x)∥∥2] ≤ σ2.

(Step 3: Analysis of Protocol)

Mirroring the proof of Theorem 6.1, using

λ =

√
4εl21
L2S

, (52)

one can show

inf
k∈St

∥∥∇f(xk)
∥∥2 >

4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ], (53)

where xk are points defined in Protocol 2, and

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ] ≤ 2ε

)
≤ 2

S

S∑
i=1

E
[
sup
k∈St

1[prog(xk
i ) ≥ T ]

]
. (54)

(Step 4: Bound on the expectations)

The time required to progress (get a non-zero value) to the 1th coordinate in the block xj is at least

min
{
t̄1, V

−1
i1,j

(ηj,1)
}

seconds, where V −1
i is defined in (8) and ηj,1 is a geometric random variable with the probability

p1,i1,j . Because, due the condition bj,1 ≡ (1, i1,j) = (w(t), i), the mapping (49) zeroes out the first
coordinate only if the algorithm returns tk < t̄1 and i1,j = i. Therefore, either the algorithm returns
tk ≥ t̄1 and (49) does not zero out the coordinate of gradients, or it keeps returning tk < t̄1, but then
A should calculate at least ηj,1 stochastic gradients in worker i1,j since the stochastic mapping zeros
out the potentially non-zero coordinate in (49).

Recall that the “resisting” allocator (Alg. 5) tracks the random variable ηj,1.

Opt. 1: If V −1
i1,j

(ηj,1) < t̄1, then Alg. 5 allocates the second part of the function hj to the same
worker i1,j , meaning that the time required to progress (get a non-zero value) to the 2th coordinate in
the block xj is at least

min
{
t̄1, V

−1
i1,j

(ηj,1 + ηj,2)
}
≥ min

{
t̄1, V

−1
i1,j

(ηj,2)
}

seconds, where ηj,2 is a geometric random variable with the probability p1,i1,j .

Opt. 2: If V −1
i1,j

(ηj,1) ≥ t̄1, then we allocate the second part to worker i2,j , where i2,j such that
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s1,i2,j−1 ≤ j < s1,i2,j , meaning that the time required to progress (get a non-zero value) to the 2th

coordinate in the block xj is at least

min
{
t̄2, V

−1
i2,j

(
ηj,2 + Vi2,j (t̄1)

)}
seconds, where ηj,2 is a geometric random variable with the probability p2,i2,j , because either the
algorithm returns tk ≥ t̄2, or it keeps returning tk < t̄2, but then A should first progress to the 1th

coordinate, which takes at least t̄1 seconds, and then should calculate at least ηj,2 stochastic gradients.
This will take at least

min
{
t ≥ 0 :

⌊
Vi2,j (t)− Vi2,j (t̄1)

⌋
≥ ηj,2

}
(cont. of Vi2,j

)
= min

{
t ≥ 0 : Vi2,j (t)− Vi2,j (t̄1) = ηj,2

}
(8)
= V −1

i2,j

(
ηj,2 + Vi2,j (t̄1)

)
seconds. Notice that the parameter of the geometric random variable ηj,2 depends on the previous
randomness.

In the case Opt. 1, we can only conclude that the algorithm A will require at least t̄0 ≡ 0 seconds to
get a non-zero value in the T th coordinate. In the case Opt. 2, we have better guarantees and can
infer that the algorithm A will require at least t̄1 ≥ t̄1 seconds to get a non-zero value in the T th

coordinate because the inequality V −1
i1,j

(ηj,1) ≥ t̄1 holds. Hence, the condition in Line 10 of Alg. 5
determines a necessary time to get the T th with a non-zero value.

For all j ∈ [m], we have the following Markov process that generalizes our previous discussion.

Algorithm 6 Markov process in the jth block

1: Current time window wm = 1
2: for m = 1, . . . , T do
3: Find iwm,j such that swm,iwm,j−1 ≤ j < swm,iwm,j

4: Draw an infinite i.i.d. sequence {ξj,m,s}∞s=1 from Bernoulli(pwm,iwm,j )
5: Find the first moment when ξj,m,s = 1, i.e., ηj,m = inf{s ≥ 1 : ξj,m,s = 1}
6: if V −1

iwm,j

(
ηj,m + Viwm,j

(t̄wm−1)
)
≥ t̄wm

then
7: wm+1 ← wm + 1
8: else
9: wm+1 ← wm

10: end if
11: end for
12: Return: t̄(wT−1) is a necessary time to get the T th non-zero coordinate in the jth block

The provided random Markov process determines the time t̄(wT−1) required to get the T th non-zero
coordinate in the jth block.

For all j ∈ [m],m ∈ [T ], ηj,m has the geometric distribution with the parameter pwm,iwm,j
, which

depends only on the previous random variables ηj,1, . . . , ηj,m−1. Therefore, we can use Lemma G.2
and get

P

(
T∑

m=1

1

[
ηj,m >

1

4pwm,iwm,j

]
≤ T

2
+ log δ

)
≤ δ

for all δ ∈ (0, 1]. The last inequality means that with a probability at least 3/4, there exist 1 ≤ m1 <
m2 < · · · < m⌊T−2

2 ⌋ ≤ T such that

ηj,mk
>

1

4pwmk
,iwmk

,j

≥ 1

8pwmk
,iwmk

,j

(55)

for all k ∈
[⌊

T−2
2

⌋]
.
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Due to (51) and (52), we have

pw,i := min

{
4εγ2

∞aw,in
2

σ2S
, 1

}
.

Recall that {t̄w}w∈[T̄ ],{sw,i}w∈[T̄+1],i∈[n], and S ∈ N are free parameters with the only conditions
(47) and (48). Therefore, we can use Lemma G.4 with K = 1 and ensure that there exist parameters
such that

V −1
i

(
1

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w.

for all w ∈ [T ], i ∈ [n]. Putting the last inequality, (55), and Line 6 of Alg. 6 together, we can
conclude that, with a probability at least 3/4, the value of wT − 1 is greater or equal to

⌊
T−2
2

⌋
since

the condition in Line 6 of Alg. 6 will hold at least
⌊
T−2
2

⌋
times.

(Step 5: Endgame)
In the previous step, we prove that, with a probability at least 3/4, the algorithm requires at least
t̄⌊T−2

2 ⌋ seconds to progress to the T th coordinate of the jth block, where t̄T̄ is defined in the proof of
Lemma G.4.

Thus

E
[
sup
k∈St

1[prog(xk
j ) ≥ T ]

]
≤ 1

4

for all j ∈ [n] and for all t ≤ 1
2 t̄⌊T−2

2 ⌋. We substitute these inequalities to (54) and (53), and get

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ] ≤ 2ε

)
≤ 1

2

and

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > E

[
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ]

]
> 2εP

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i ) < T ] > 2ε

)
≥ ε

for all

t ≤ 1

2
t̃⌊T−2

2 ⌋
(60)

≤ 1

2
t̄⌊T−2

2 ⌋.

Using the assumption ε < c′L∆ of the theorem, (46), and (52), we get⌊
T − 2

2

⌋
≥
⌊
c1 ×

L∆

ε

⌋
for some universal constant c1.

Finally, since t̃w ≥ tw for all w ∈ [T ], where the later sequence is defined in (18), we can take

t =
1

2
t⌊c1×L∆

ε ⌋.

G AUXILIARY LEMMAS

Lemma G.1. Let Vi : R∞
+ → R∞

+ is a continuous and non-decreasing function for all i ∈ [n]. For
all η, b1, . . . , bn ∈ R∞

+ , the minimums of the sets{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− bi⌋ ≥ η

}
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and t ≥ 0 :

(
1

n

n∑
i=1

1

⌊Vi(t)− bi⌋

)−1

≥ η


exist, considering the convention min{∅} =∞.

Proof. We now focus on the first set. If the set is empty, then the minimum is∞ by the convention.
Otherwise, let us define

t := inf

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− bi⌋ ≥ η

}
<∞.

If the minimum does not exist, then
n∑

i=1

⌊Vi(t)− bi⌋ < η.

For all i ∈ [n], the functions Vi is continuous and non-decreasing meaning that there exists δi > 0
such that

⌊Vi(t)− bi⌋ = ⌊Vi(t+ δ)− bi⌋ .

for all 0 ≤ δ ≤ δi. Let us take δ = min
i∈[n]

δi > 0, then

n∑
i=1

⌊Vi(t+ δ)− bi⌋ =
n∑

i=1

⌊Vi(t)− bi⌋ < η.

This contradicts the fact that t is the infimum. The reasoning for the second set is the same.

Lemma G.2. Let T ≥ 1 and {ηi}Ti=1 are geometric random variables such that given η1, . . . , ηi−1,
ηi ∼ Geometric(pi,η1,...,ηi−1

) and the probability pi,η1,...,ηi−1
∈ (0, 1] depends only on η1, . . . , ηi−1

for all i ∈ [T ]. Then

P

(
T∑

i=1

1

[
ηi >

1

4pi,η1,...,ηi−1

]
≤ T

2
+ log δ

)
≤ δ

for all δ ∈ (0, 1].

Proof. Let us consider the simplified notation pi ≡ pi,η1,...,ηi−1
and take any T̄ , s > 0. Using

Chernoff’s method, we get

P

(
T∑

i=1

1

[
ηi >

1

4pi

]
≤ T̄

)
= P

(
−s

T∑
i=1

1

[
ηi >

1

4pi

]
≥ −sT̄

)

≤ esT̄E
[
e
−s

∑T
i=1 1

[
ηi>

1
4pi

]]
= esT̄E

[
T∏

i=1

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]]
,

(56)

where we use the definition of conditional expectation.

For all i ∈ [T ], we now consider the ith expectation separately:

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
= P

(
ηi ≤

1

4pi

∣∣∣∣η1, . . . , ηi−1

)
+ e−sP

(
ηi >

1

4pi

∣∣∣∣η1, . . . , ηi−1

)
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= (1− e−s)P
(
ηi ≤

1

4pi

∣∣∣∣η1, . . . , ηi−1

)
+ e−s.

Due the assumption of our theorem, given η1, . . . , ηi−1, ηi is a geometric random variable with the
parameter pi ≡ pi,η1,...,ηi−1 . Therefore

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
= (1− e−s)

(
1− (1− pi)

⌊
1

4pi

⌋)
+ e−s,

where 1−(1−pi)

⌊
1

4pi

⌋
= 0 if pi = 1 and

⌊
1

4pi

⌋
= 0. Since 1−(1−p)⌊S⌋ ≤ p ⌊S⌋ for all p ∈ (0, 1]

and S ≥ 0, we get

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
≤ (1− e−s)pi

⌊
1

4pi

⌋
+ e−s

≤ (1− e−s)pi ×
1

4pi
+ e−s = (1− e−s)

1

4
+ e−s.

Let us take s = 1, then

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
≤ (1− e−1)

1

4
+ e−1 ≤ e−1/2.

We substitute the last inequality and the chosen value of s to (56) and get

P

(
T∑

i=1

1

[
ηi >

1

4pi

]
≤ T̄

)
≤ eT̄−T

2 .

For all δ ∈ (0, 1], we can take

T̄ =
T

2
+ log δ

to ensure that

P

(
T∑

i=1

1

[
ηi >

1

4pi

]
≤ T

2
+ log δ

)
≤ δ.

Lemma G.3. Let η1,1, . . . , η1,K ∼ Geometric(p1), η2,1, . . . , η2,K ∼ Geometric(p2), . . . ,
ηT̄ ,1, . . . , ηT̄ ,K ∼ Geometric(pT̄ ) are mutually independent geometric random variables. Then

P

 ⋃
k∈[T̄ ]


K∑
j=1

ηk,j ≤
K

8pk


 ≤ T̄ e−K/2.

Proof. Let us fix any ak ≥ 0 for all k ∈ [T̄ ]. Using the union bound, we get

P

 ⋃
k∈[T̄ ]


K∑
j=1

ηk,j ≤ ak


 ≤ T̄∑

k=1

P

 K∑
j=1

ηk,j ≤ ak

 . (57)

For all k ∈ [T̄ ] and s > 0, we obtain the following series of inequalities:

P

 K∑
j=1

ηk,j ≤ ak

 = P

−s K∑
j=1

ηk,j ≥ −sak

 = P
(
e−s

∑K
j=1 ηk,j ≥ e−sak

)
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≤ esakE
[
e−s

∑K
j=1 ηk,j

]
,

where we use Markov’s inequality. Since the random variables are mutually independent, we have

P

 K∑
j=1

ηk,j ≤ ak

 ≤ esak
(
E
[
e−sηk,1

])K
= esak

(
pk

es − (1− pk)

)K

,

where we use the moment-generating function of the geometric random variables. Since pk ≥ 0 and
es ≥ 1 + s for all s ∈ R, we get

P

 K∑
j=1

ηk,j ≤ ak

 ≤ esak

(pk
s

)K
.

Let us take s = 4pk to ensure that

P

 K∑
j=1

ηk,j ≤ ak

 ≤ e4pkak−K .

We can take ak = K
8pk

to get

P

 K∑
j=1

ηk,j ≤
K

8pk

 ≤ e−K/2.

It is left to substitute the last inequality to (57).

Lemma G.4. For all T̄ ,K ∈ N, there exist non-negative parameters {t̄w}w∈[T̄ ],{sw,i}w∈[T̄+1],i∈[n],
and S ∈ N such that

1.
sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1 ∀w ∈ [T̄ + 1],

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T̄ ≤ t̄T̄+1 ≡ ∞.
(58)

2.

V −1
i

(
K

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w. (59)

for all w ∈ [T̄ ], i ∈ [n],

3.

t̄w ≥ t̃w := min

t ≥ 0 :

 1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max

{
σ2

32γ2
∞εn

, 1

} (t̃0 ≡ 0)

(60)

for all w ∈ [T̄ ],

where

pw,i := min

{
4εγ2

∞aw,in
2

σ2S
, 1

}
, (61)

aw,i := sw,i − sw,(i−1), and ε, γ2
∞, σ2 are arbitrarily non-negative constants.

Proof. We have the free parameters {t̄w}w∈[T̄ ],{sw,i}w∈[T̄+1],i∈[n], and S ∈ N with the only condi-
tion

sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1 ∀w ∈ [T̄ + 1],

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T̄ ≤ t̄T̄+1 ≡ ∞.
(62)
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We now choose values of these parameters to ensure that (59) holds. Instead of {sw,i}, we will work
with {aw,i}, then one can restore {sw,i} using the definition aw,i := sw,i − sw,(i−1). We have to
ensure that

n∑
i=1

aw,i = S (63)

holds for all w ∈ [T̄ + 1] to get (62). It is sufficient to validate that

pw,i <
K

8(Vi(t̄w)− Vi(t̄w−1))
(t̄0 ≡ 0)

for all w ∈ [T̄ ] to guarantee that

V −1
i

(
K

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w

for all w ∈ [T̄ ]. Due to (61), it is sufficient to find {aw,i}, {t̄w}, and S such that (63) holds and

min

{
aw,in

24εγ2
∞

Sσ2
, 1

}
(63)
= min

{
aw,in

24εγ2
∞∑n

i=1 aw,iσ2
, 1

}
<

K

8(Vi(t̄w)− Vi(t̄w−1))
(64)

for all i ∈ [n] and for all w ∈ [T̄ ].
Assume that t̄w−1 is defined (t̄0 ≡ 0), and let us now consider w ∈ [T̄ ].
Let us define

t̄1w := max
j∈[n]

V −1
j

(
K

16
+ Vj(t̄w−1)

)
(65)

and

t̄2w := min

{
t ≥ 0 :

n∑
i=1

Kσ2

n24εγ2
∞ (Vi (t)− Vi(t̄w−1))

= 64

}
. (66)

Opt. 1: If t̄1w > t̄2w, then we take t̄w = t̄1w, āw,i := 0 for all i ̸= j∗, and āw,j∗ := 1, where

j∗ = argmax
j∈[n]

V −1
j

(
K

16
+ Vj(t̄w−1)

)
. (67)

Opt. 2: If t̄1w ≤ t̄2w, then we take t̄w = t̄2w, and 9

āw,i :=

max
i∈[n]
{Vi (t̄w)− Vi(t̄w−1)}

Vi (t̄w)− Vi(t̄w−1)

 (68)

for all i ∈ [n].

For w = T̄ + 1, we take āw,i := 0 for all i ̸= 1, and āw,1 := 1.

We choose the following S :

S = max
w∈[T̄+1]

(
n∑

i=1

āw,i

)
,

and for all w ∈ Argmaxw∈[T̄+1] (
∑n

i=1 āw,i) , we take aw,i := āw,i. Let us take any w such that∑n
i=1 āw,i < S, then, for all w ∈ [T̄ + 1], there exists the smallest kw ≥ 2 that yields

n∑
i=1

kw × āw,i ≥ S.

9Vi (t̄w) > Vi(t̄w−1) for all i ∈ [n] since t̄w ≥ t̄1w and Vi(t̄w) ≥ K
16

+ Vi(t̄w−1) for all i ∈ [n], due to (65)
and the definition (8).

36



Published as a conference paper at ICLR 2025

Opt. 1: If t̄1w > t̄2w, then we take aw,j∗ := kw × āw,j∗ = kw and aw,i := kw × āw,i = 0 for all
i ̸= j∗ (j∗ from (67)) to ensure that

∑n
i=1 aw,i = S.

Opt. 2: If t̄1w ≤ t̄2w, there exist rw,i ∈ {0, . . . , āw,i} that if we take

aw,i := (kw − 1)× āw,i + rw,i,

then we guarantee the equality
∑n

i=1 aw,i = S.

It is left to ensure that (64) holds.

Opt. 1: If t̄1w > t̄2w, then (64) holds since

min

{
aw,in

24εγ2
∞∑n

i=1 aw,iσ2
, 1

}
= 0 ∀i ̸= j∗

and

min

{
aw,in

24εγ2
∞∑n

i=1 aw,iσ2
, 1

}
≤ 1 <

K

8(Vi(t̄w)− Vi(t̄w−1))
for i = j∗,

where the last inequality due to the definition (8) and the choice of t̄1w:

Vj∗(t̄
1
w) =

K

16
+ Vj∗(t̄w−1) <

K

8
+ Vj∗(t̄w−1).

Opt. 2: If t̄1w ≤ t̄2w, then (64) holds since

aw,i∑n
i=1 aw,i

≤ kwāw,i

(kw − 1)
∑n

i=1 āw,i
≤ 2

āw,i∑n
i=1 āw,i

because kw ≥ 2. Using (68) and x ≥ ⌊x⌋ ≥ x
2 for all x ≥ 1, we get

aw,i∑n
i=1 aw,i

≤ 4

1
Vi(t̄w)−Vi(t̄w−1)∑n
i=1

1
Vi(t̄w)−Vi(t̄w−1)

(66)

≤ Kσ2

64n2εγ2
∞ (Vi (t̄w)− Vi(t̄w−1))

.

The last inequality ensures that (64) holds. In total, we have t̄w = max{t̄1w, t̄2w}.
It is left to prove (60). Let us define

t̃w := min

t ≥ 0 :

 1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max

{
σ2

32γ2
∞εn

, 1

} (t̃0 ≡ 0).

(69)

We know that t̃0 ≡ 0 ≤ t̄0 ≡ 0. Using a proof by induction and assuming t̃w−1 ≤ t̄w−1, we have

t̃w = min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̃w−1)

)
:

 1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max

{
σ2

32γ2
∞εn

, 1

}
= min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̃w−1)

)
:
1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋ ≤ min

{
32γ2

∞εn

σ2
, 1

}
because if

 1
n

∑n
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max
{

σ2

32γ2
∞εn , 1

}
, then, necessarily, 16(Vi (t)−

Vi(t̃w−1)) ≥ K for all i ∈ [n]. Then

t̃w = min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̃w−1)

)
:
1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋ ≤ 32γ2
∞εn

σ2


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because 1
n

∑n
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋ ≤ 1 for all t ≥ max
j∈[n]

V −1
j

(
K
16 + Vj(t̃w−1)

)
. Further

t̃w ≤ min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̄w−1)

)
:
1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̄w−1))

K

⌋ ≤ 32γ2
∞εn

σ2


≤ min

{
t ≥ max

j∈[n]
V −1
j

(
K

16
+ Vj(t̄w−1)

)
:

n∑
i=1

σ2

n24εγ2
∞

(Vi(t)−Vi(t̄w−1))
K

≤ 64

}

because t̃w−1 ≤ t̄w−1, {Vi} are non-decreasing, and ⌊x⌋ ≥ x
2 for all x ≥ 1. Then

t̃w ≤ min

{
t ≥ max

j∈[n]
V −1
j

(
K

16
+ Vj(t̄w−1)

)
:

n∑
i=1

Kσ2

n24εγ2
∞(Vi (t)− Vi(t̄w−1))

≤ 64

}
≤ max{t̄1w, t̄2w} = t̄w

due to the definitions (65), (66) of t̄1w,t̄
2
w, and t̄w.

Lemma G.5. (Tyurin et al., 2024a)[Section K] Consider a sequence∞ > v1 ≥ . . . ≥ vn and fix
some S > 0. For all j ∈ [n], define

g(j) :=

(
j∑

i=1

vi

)−1

(S + j) .

1. Let j∗max be the largest index such that min
j∈[n]

g(j) = g(j∗max). For j∗max < n, we have

min
j∈[n]

g(j) <
1

v(j∗max+1)
.

2. Let j∗ be any index such that min
j∈[n]

g(j) = g(j∗). For j∗ < n, we have

min
j∈[n]

g(j) ≤ 1

v(j∗+1)
.

3. Let j∗min be the smallest index such that min
j∈[n]

g(j) = g(j∗min). Then

1

vj∗min

< min
j∈[n]

g(j).

4. Let j∗ be any index such that min
j∈[n]

g(j) = g(j∗). Then

1

vj∗
≤ min

j∈[n]
g(j).

H CONVEX SETTING

In the convex setting, the time complexities do not change significantly in a conceptual sense
compared to the nonconvex case. Therefore, we will provide a somewhat less detailed description in
this section. The obtained time complexities also hinge on the sequences (12) and (19). The only
difference is the number of iterations that the methods do in each particular setup.

Using the same reasoning as in other sections and (Tyurin & Richtárik, 2023)[Section B], we
conjecture that the following results are optimal up to constant factors. It is sufficient to use an
appropriate “difficult” function (Guzmán & Nemirovski, 2015; Nesterov, 2018; Woodworth et al.,
2018) designed for the convex domain instead of (23).

We use the following assumptions:
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Assumption H.1. The function f is convex and attains a minimum at some point x∗ ∈ Rd.

Assumption H.2. The function f is M–Lipschitz, i.e.,

|f(x)− f(y)| ≤M ∥x− y∥ , ∀x, y ∈ Rd

for some M ∈ (0,∞].

Assumption H.3 (Homogeneous setup). For all i ∈ [n], worker i can only calculate ∇f(x; ξ).
For all x ∈ Rd, stochastic (sub)gradients∇f(x; ξ) are unbiased and are σ2-variance-bounded, i.e.,
Eξ [∇f(x; ξ)] ∈ ∂f(x) and Eξ

[
∥∇f(x; ξ)− Eξ [∇f(x; ξ)]∥2

]
≤ σ2, where σ2 ≥ 0.

Assumption H.4 (Heterogeneous setup). For all i ∈ [n], worker i can only calculate ∇fi(x; ξi). For
all x ∈ Rd, i ∈ [n] stochastic (sub)gradients ∇fi(x; ξi) are unbiased and are σ2-variance-bounded,
i.e., Eξi [∇fi(x; ξi)] ∈ ∂fi(x) and Eξi

[
∥∇fi(x; ξi)− Eξi [∇fi(x; ξi)]∥

2
]
≤ σ2, where σ2 ≥ 0.

We consider four cases.

H.1 HOMOGENEOUS SETUP AND NONSMOOTH CASE

Theorem H.5. [(Tyurin & Richtárik, 2023)] Let Assumptions H.1, H.2 and H.3 hold. Choose any
ε > 0. Let us take the batch size S = max

{⌈
σ2
/M2

⌉
, 1
}
, stepsize γ = ε

M2+σ2/S ∈
[

ε
2M2 ,

ε
M2

]
in Method 3. Then after K ≥ 2M2R2

/ε2 iterations the method guarantees E
[
f(x̂K)

]
− f(x∗) ≤ ε,

where x̂K = 1
K

∑K−1
k=0 xk and R =

∥∥x∗ − x0
∥∥ .

Theorem H.6. Consider the assumptions and the parameters from Theorem H.5, plus Assumption 3.1.
Then Method 3 (Rennala SGD) converges after at most t̄⌈ 2M2R2

ε2

⌉ seconds, where the sequence t̄k is

defined in (12).

Proof. The proof is identical to the proof of Theorem 5.3.

H.2 HOMOGENEOUS SETUP AND SMOOTH CASE

In the homogeneous and smooth case, we can use an accelerated technique (Nesterov, 1983; Lan,
2020). Instead of Line 11 of Method 3, we use the following steps suggested by Lan (2020):

γk+1 = γ · (k + 1), αk+1 = 2/(k + 2)

yk+1 = (1− αk+1)x
k + αk+1u

k, (u0 = x0)

uk+1 = uk − γk+1

sk
gk,

xk+1 = (1− αk+1)x
k + αk+1u

k+1.

(70)

A new method with these steps is called the Accelerated Rennala SGD method (Tyurin & Richtárik,
2023).

Theorem H.7. [(Tyurin & Richtárik, 2023)] Let Assumptions H.1, 1.1 and 1.3 hold. Choose
any ε > 0. Let us take the batch size S = max

{⌈
(σ2R)/(ε3/2

√
L)
⌉
, 1
}
, and γ =

min

{
1
4L ,
[

3R2S
4σ2(K+1)(K+2)2

]1/2}
in Accelerated Method 3 (Accelerated Rennala SGD), then after

K ≥ 8
√
LR√
ε

iterations the method guarantees that E
[
f(xK)

]
− f(x∗) ≤ ε, where R =

∥∥x∗ − x0
∥∥ .

Theorem H.8. Consider the assumptions and the parameters from Theorem H.7, plus Assumption 3.1.
Then Accelerated Method 3 (Accelerated Rennala SGD) converges after at most t̄⌈ 8

√
LR√
ε

⌉ seconds,

where the sequence t̄k is defined in (12).

Proof. The proof is identical to the proof of Theorem 5.3.
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H.3 HETEROGENEOUS SETUP AND NONSMOOTH CASE

Consider the heterogeneous setup discussed in Section 1.
Theorem H.9. Let Assumptions H.1, H.2, and H.4 hold. Choose any ε > 0. Let us take S =
max

{⌈
σ2
/M2

⌉
, n
}
, and γ = ε

M2+σ2/S ∈
[

ε
2M2 ,

ε
M2

]
in Method 4, then after K ≥ 2M2R2

/ε2

iterations the method guarantees that E
[
f(x̂K)

]
− f(x∗) ≤ ε, where x̂K = 1

K

∑K−1
k=0 xk and

R =
∥∥x∗ − x0

∥∥ .
Proof. Notice that Malenia SGD is equivalent to the classical SGD method with the step

xk+1 = xk − γ
1

n

n∑
j=1

1

Bj

Bj∑
i=1

∇fj(xk; ξkj,i),

where the variance of the unbiased gradient estimator can be bounded in the following way:

Eξk


∥∥∥∥∥∥ 1n

n∑
j=1

1

Bj

Bj∑
i=1

∇fj(xk; ξkj,i)−∇f(xk)

∥∥∥∥∥∥
2
 ≤ σ2

n2

 n∑
j=1

1

Bj

 .

In Method 4, we ensure that
(∑n

j=1
1
Bj

)
≤ n2

S . Therefore

Eξk


∥∥∥∥∥∥ 1n

n∑
j=1

1

Bj

Bj∑
i=1

∇fj(xk; ξkj,i)−∇f(xk)

∥∥∥∥∥∥
2
 ≤ σ2

S
.

Thus, we can use the classical result from the literature (e.g. (Lan, 2020)). We get

E
[
f(x̂K)

]
− f(x∗) ≤ ε

if

K ≥
2M2

∥∥x∗ − x0
∥∥2

ε2
≥

(M2 + σ2

S )
∥∥x∗ − x0

∥∥2
ε2

for the stepsize
γ =

ε

M2 + σ2

S

∈
[ ε

2M2
,

ε

M2

]
,

where we use the fact that S ≥ σ2
/M2.

Theorem H.10. Consider the assumptions and the parameters from Theorem H.9, plus Assump-
tion 3.1. Then Method 4 (Malenia SGD) converges after at most t̄⌈ 2M2R2

ε2

⌉ seconds, where the sequence

t̄k is defined in (19).

Proof. The proof is identical to the proof of Theorem 6.4.

H.4 HETEROGENEOUS SETUP AND SMOOTH CASE

Using the same idea as in Section H.2, we will modify Malenia SGD and, instead of Line 13 from
Algorithm 4, we use the lines (70). Such a method is called Accelerated Malenia SGD.
Theorem H.11. Let Assumptions H.1 and 1.1, and 1.4 hold. Choose any ε > 0. Let us take

S = max
{⌈

(σ2R)/(ε3/2
√
L)
⌉
, n
}
, and γ = min

{
1
4L ,
[

3R2S
4σ2(K+1)(K+2)2

]1/2}
in Accelerated

Method 4 (Accelerated Malenia SGD), then after K ≥ 8
√
LR√
ε

iterations the method guarantees that

E
[
f(xK)

]
− f(x∗) ≤ ε, where R =

∥∥x∗ − x0
∥∥ .

Proof. Accelerated Malenia SGD is equivalent to the classical accelerated stochastic gradient method
with a mini-batch from (Lan, 2020). The proof repeats the proofs of Theorem H.7 and Theorem H.9.
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Theorem H.12. Consider the assumptions and the parameters from Theorem H.11, plus Assump-
tion 3.1. Then Accelerated Method 4 (Accelerated Malenia SGD) converges after at most t̄⌈ 8

√
LR√
ε

⌉
seconds, where the sequence t̄k is defined in (19).

Proof. The proof is identical to the proof of Theorem 6.4.

I PROOF OF EXAMPLES

I.1 HOMOGENEOUS SETUP

Example 5.4. [Fixed Computation Model] Consider Example 3.2 with vi(t) = vi ∈ R+ for all
t ≥ 0, i ∈ [n]. Then, for all i ∈ [n], Vi(t) = vit and

t̄⌈ 24L∆
ε ⌉ = Θ

(
min
m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (13)

π is a permutation such that vπ1
≥ · · · ≥ vπn

. The proofs of the examples are in Section I.

Proof. Clearly, Vi(t) =
∫ t

0
vidτ = vit. Substituting this to (12), we get t̄k =

min
{
t ≥ 0 :

∑n
i=1 ⌊vi(t− t̄k−1)⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

(t̄0 ≡ 0). Equivalently, we have to find
δ̄ such that

δ̄ = min

{
δ ≥ 0 :

n∑
i=1

⌊viδ⌋ ≥ max
{⌈

σ2
/ε
⌉
, 1
}}

(71)

and obtain t̄k = δ̄ + t̄k−1 = kδ̄. Let us show that

δ̄1/4 ≤ δ̄ ≤ δ̄4 (72)

where π is a permutation such that vπ1
≥ · · · ≥ vπn

, and the δ̄· is defined as

δ̄c := c× min
j∈[n]

(∑j
i=1 vπi

)−1 (
σ2

ε + j
)
= c×

(∑j∗

i=1 vπi

)−1 (
σ2

ε + j∗
)
, (73)

where j∗ is the largest index that minimizes the formula, and c > 0 is a constant. Using Lemma G.5,
we obtain 1/(4vπ∗

j
) ≤ δ̄1/4 < 1/(4vπ(j∗+1)

), where we define 1/vn+1 ≡ ∞ for convenience. Thus

n∑
i=1

⌊
viδ̄1/4

⌋ δ̄1/4<
1/vj∗+1
=

j∗∑
i=1

⌊
vπi δ̄1/4

⌋
≤

j∗∑
i=1

(
2vπi δ̄1/2 − 1

2

) (73)
= σ2

2ε < max
{⌈

σ2

ε

⌉
, 1
}
,

where the first inequality due to ⌊x⌋ ≤ 2x− 1
2 for all x ≥ 1/4. Therefore δ̄ ≥ δ̄1/4. On the other hand

n∑
i=1

⌊
viδ̄4

⌋
≥

j∗∑
i=1

⌊
vπi

δ̄4
⌋ L.G.5,δ̄4≥1/vj∗

≥ 1
2

j∗∑
i=1

vπi
δ̄4

(73)
= 2

(
σ2

ε + j∗
)
≥ max

{⌈
σ2

ε

⌉
, 1
}
.

We can conclude that δ̄ ≤ δ̄4, and using the inequality δ̄ ≥ δ̄1/4, we have proved (72). It is left to use
the equality t̄k = kδ̄.

Example 5.5. [Nonlinear Trend] Assume that vi(t) = vi × g(t) with vi > 0 for all i ∈ [n] and a
continuous almost everywhere positive10 function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 · min

m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (14)

where π is a permutation such that vπ1
≥ · · · ≥ vπn

, G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can

depend on other parameters but is bounded).
10We can relax these assumptions to measurability and non-negativity, but the proof will be more technical.
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Proof. We have Vi(t) =
∫ t

0
vig(τ)dτ = viG(t). We substitute this equality to (12) and get t̄k =

min
{
t ≥ 0 :

∑n
i=1 ⌊vi(G(t)−G(t̄k−1))⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

. Since G(t) is continuous and in-
creasing, one can show that G(t̄k) = min

{
t ≥ 0 :

∑n
i=1 ⌊vi(t−G(t̄k−1))⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

.

Therefore G(t̄k) = δ̄ +G(t̄k−1) = kδ̄ and t̄k = G−1(kδ̄), where δ̄ is defined in (71). Using (72),
we get (14).

Example 5.6. [“Random” Outages] Assume that

vi(t) =

v, t ∈
∞⋃
j=1

[ki(j − 1), (ki(j − 1) + 1)]

0, otherwise,
, (15)

v > 0, ki ∈ N, and hi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ ≈ Θ

(
min
m∈[n]

(
1
m

m∑
i=1

v
kπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (16)

where π is a permutation such that kπ1
≤ · · · ≤ kπn

.

Proof Sketch. We have Vi(t) =
∫ t

0
vi(τ)d = v × 1 [measure of intervals before the time t] ≈ vt/ki.

We substitute it to (12) and get t̄k := min
{
t ≥ 0 :

∑n
i=1 ⌊vt/ki − vt̄k−1/ki⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

.
Using the same reasoning as in Example 5.4, one can easily get (16).

I.2 HETEROGENEOUS SETUP

Example 6.5. [Fixed Computation Model in the Heterogeneous Setting] Assume that vi(t) = vi
with vi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ = Θ

(
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

)
. (20)

Proof. Clearly, Vi(t) =
∫ t

0
vidτ = vit. Substituting this to (19), we get t̄k :=

min
{
t ≥ 0 : (1/n

∑n
i=1 ⌊vi(t− t̄k−1)⌋−1

)−1 ≥ max
{
2σ2

/nε, 1
}}

. Equivalently, we have to find

δ̄ such that

δ̄ = min

{
δ ≥ 0 : 1/n

n∑
i=1

⌊viδ⌋−1 ≤ min {nε/2σ2, 1}

}
(74)

and calculate t̄k = δ + t̄k−1 = kδ̄. Let us show that

δ̄1/4 ≤ δ̄ ≤ δ̄4 (75)

where the δ̄· is defined as

δ̄c := c×
(
maxi∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

)
(76)

and c > 0 is a constant. Since δ̄4 ≥ maxi∈[n]
1
vi
, we have ⌊viδ4⌋ ≥ viδ4

2 for all i ∈ [n] and

1

n

n∑
i=1

⌊viδ4⌋−1 ≤ 1

n

n∑
i=1

2

viδ4

(76)

≤ 1

n

n∑
i=1

1

1 + 2vi

(
1
n

∑n
i=1

1
vi

)
σ2

nε

≤ min

 1

n

n∑
i=1

1

2vi

(
1
n

∑n
i=1

1
vi

)
σ2

nε

, 1

 = min
{ nε

2σ2
, 1
}
.

Thus δ̄ ≤ δ̄4. On the other hand, let us show that 1
n

∑n
i=1

⌊
viδ1/4

⌋−1
> min {nε/2σ2, 1} .

If maxi∈[n]
1/vi >

(
1
n

∑n
i=1

1/vi

)
σ2
/nε, then δ1/4 < 1/2maxi∈[n]

1/vi,
⌊
vjδ1/4

⌋
= 0 for j =
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argmaxi∈[n]
1/vi, and 1

n

∑n
i=1

⌊
viδ1/4

⌋−1
= ∞ ≥ nε/2σ2. If maxi∈[n]

1/vi ≤
(
1
n

∑n
i=1

1/vi
)
σ2
/nε,

then since ⌊x⌋ ≤ x for all x ≥ 0, we get

1

n

n∑
i=1

⌊
viδ1/4

⌋−1 ≥ 1

n

n∑
i=1

(viδ1/4)
−1

(76)

≥ 1

n

n∑
i=1

2

vi

(
1
n

∑n
i=1

1
vi

)
σ2

nε

>
nε

2σ2
.

Therefore 1
n

∑n
i=1

⌊
viδ1/4

⌋−1
> min {nε/2σ2, 1} , meaning δ̄ ≥ δ1/4.

Example 6.6. [Nonlinear Trend in the Heterogeneous Setting] Assume that vi(t) = vi × g(t) with
vi > 0 for all i ∈ [n] and a continuous almost everywhere positive function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 ·

[
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

])
, (21)

where G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can depend on other parameters but is bounded).

Proof. We have Vi(t) =
∫ t

0
vig(τ)dτ = viG(t). We substitute this equality to (19)

and get t̄k = min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊vi (G(t)−G(t̄k−1))⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

.

Since G(t) is continuous and increasing, one can show that G(t̄k) =

min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊vi (t−G(t̄k−1))⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

. Therefore G(t̄k) =

δ̄ +G(t̄k−1) = kδ̄ and t̄k = G−1(kδ̄), where δ̄ is defined in (74). Using (75), we get (21).
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