
A Algorithm 1 explanation

We follow the standard Knapsack problem dynamic programming solution to break down the original
problem into sub-problems. Specifically, for each neuron j (or neuron group) in layer l, we can
choose to either include or not include it under the latency constraint c. When it is kept, the total
importance score increases Ij

l while the latency constraint for the other neurons becomes c� c
j
l ; If

the neuron is removed, the latency constraint for the other neurons remains c. We choose to keep or
remove the current neuron to maximize total importance. At the same time, we check whether the
more important neurons in the same layer are included to ensure the correctness of the latency. The
neuron selection from the remaining neurons is a sub-problem to solve.

Precisely, we use a vector maxV 2 R(C+1) to store the maximum importance that we can achieve
under the latency constraint c, 0  c  C and keep 2 RL⇥(C+1), a 2D vector where keep[l, c] denotes
the number of neuron groups we need to maintain in layer l to obtain the maximum importance
maxV[c]. We process the neurons according to their importance score in decreasing order. In this
way, all preceding neurons to the current one (i.e., neurons with a higher importance score in the same
layer) will be always considered first. To decide if we keep or remove the current neuron, we check
the total importance score and the inclusion status of its preceding neurons, so we can maximize the
total importance and ensure the latency cost correctness.

B Experimental settings

For image classification, in the main paper we focus on pruning networks on the large-scale ImageNet
ILSVRC2012 dataset [53] (1.3M images, 1000 classes). Each pruning process consumes a single
node with eight NVIDIA Tesla V100 GPUs. We use PyTorch [49] V1.4.0 model zoo for pretrained
weights for our pruning for a fair comparison with literature.

In our experiments we perform iterative pruning. Specifically, we prune every 320 minibatches after
loading the pretrained model with k = 30 pruning steps in total to satisfy the constraint. Unless
otherwise specified, we finetune the network for 90 epochs in total with an individual batch size
at 128 for each GPU. For finetuning, we follow NVIDIA’s recipe [48] with mixed precision and
Distributed Data Parallel training. The learning rate is warmed up linearly in the first 8 epochs and
reaches the highest learning rate, then follows a cosine decay over the remaining epochs [38]. For the
result in Fig.1 that is trained with knowledge distillation, we use RegNetY-16GF (top1 82.9%) as the
teacher model when finetuning the pruned model. We use hard distillation on the logits and the final
training loss is calculated as L = (1 � ↵)Lbase + ↵Ldistil where ↵ = 0.5 to balance between the
original loss Lbase and the distillation loss Ldistil.

For latency lookup table construction, we target a NVIDIA TITAN V GPU with batch size 256 for
latency measurement to allow for highest throughput for inference, and target a Jetson TX2 with
inference batch size 32. We pre-generate a layer latency look-up table on the platform by iteratively
reducing of the number of neurons in a layer to characterize the latency with NVIDIA cuDNN [7]
V7.6.5. We profile each latency measurement 100 times and take the average to avoid randomness.

We also provide pruning results on the small-scale CIFAR10 [29] dataset in appendix Sec. C. For
CIFAR10 experiments with ResNet-50/-56, we train the model on a single GPU for 200 epochs in
total where we perform pruning step very one epoch in the first 30 epochs and finetune the pruned
model during the remaining 170 epochs. The initial learning rate is set to 0.1 with batch size 128.
For DenseNet, we extend the finetuning epochs to 300 epochs

C More pruning results on CIFAR10 and ImageNet

We provide the pruning results of our method on CIFAR10 dataset in this section. We chose 3 network
architectures for the experiment: ResNet50, ResNet56 and DenseNet40-12 [26]. As most of the
prior methods perform pruning under the FLOPs constraint, in our CIFAR10 experiment we also use
FLOPs constraint instead of the latency constraint. We also add some additional ImageNet-ResNet50
results comparison in the table. For a fair comparison, in the ImageNet50 experiment, we also provide
the model accuracy under the same finetuning recipe and epochs as the methods to be compared to
alleviate the potential impact of the different finetuning settings. Specifically, when compared to
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Table 5: Additional pruning results and comparison on CIFAR10 and ImageNet dataset. FLOPS (%)
are relative to those of the unpruned network

Dataset Model Method FLOPs (%) # Top1 (%) "

CIFAR10

ResNet50 ChipNet [60] 17.7 92.8
HALP(Ours) 13.7 93.2

ResNet56

CHIP [57] 27.7 92.05
HALP (Ours) 26.8 93.22

GDP [19] 34.36 93.55
HALP (Ours) 33.72 93.68

DenseNet40-12† QCQP [28] 29.2 93.80†

HALP (Ours) 29.2 93.15†

ImageNet ResNet50

GBN-60 [71] 59.46 76.19
QCQP [28] 59.0 76.00

HALP (Ours) 58.12
76.93

(76.49⇤ / 76.53⇤⇤)

GBN-50 [71] 44.94 75.18
HALP (Ours) 42.05 76.09 (75.27⇤⇤)

Dataset Model Method Inf speedup (%) " Top1 drop (%) #

ImageNet ResNet50 QCQP [28] 1.52⇥ 0.32
HALP (Ours) 1.60⇥ �0.22 (0.16⇤⇤)

† The baseline model used in QCQP has 95.01% top1 accuracy, while our pretrained model has 94.40% top1 accuracy.
The accuracy drop is 1.21% vs. 1.25%, which is comparable.

⇤ use the same finetune recipe and epochs as GBN [71]
⇤⇤ use the same finetune recipe and epochs as QCQP [28]

Table 6: Pruning MobileNet-V1 and MobileNet-V2 on the ImageNet dataset with different targets.
Method FLOPs Top1 Top5 FPS Speedup(M) (%) (%) (im/s)

MobileNet-V1
No pruning 569 72.64 90.88 3415 1⇥
HALP-40% 154 67.20 87.32 8293 2.43⇥
HALP-42% 171 68.30 88.08 7940 2.32⇥
HALP-50% 237 69.79 89.08 6887 2.02⇥
HALP-60% 297 71.31 90.05 5754 1.68⇥
HALP-70% 360 71.78 90.39 4870 1.43⇥
HALP-80% 416 72.52 90.78 4167 1.22⇥
HALP-90% 507 72.95 91.02 3765 1.10⇥

Method FLOPs Top1 Top5 FPS Speedup(M) (%) (%) (im/s)

MobileNet-V2
No pruning 301 72.10 90.60 3080 1⇥
HALP-60% 183 70.42 89.75 5668 1.84⇥
HALP-65% 218 71.41 90.08 5003 1.62⇥
HALP-70% 227 71.88 90.39 4478 1.45⇥
HALP-75% 249 72.16 90.44 4109 1.33⇥
HALP-90% 273 72.45 90.68 3443 1.12⇥
HALP-95% 281 72.55 90.79 3265 1.06⇥

GBN [71], we finetune the pruned network for 60 epochs, where initial learning rate is set to 0.01
with batch size 256. The learning rate is divided by 10 at epoch 36, 48 and 54. When compared to
QCQP [28], the pruned network is finetuned for 80 epochs with batch size 384 and the initial learning
rate of 0.015. Then, the learning rate is decayed at epoch 30 and 60 by deviding 10. As shown in
Tab. 5, HALP method consistently outperforms with lower FLOPs and higher Top1 accuracy. When
it comes to the actual inference speed comparison with QCQP [28], our method yields 0.16% less
accuracy drop while getting 0.08⇥ faster speed.
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Figure 5: Pruning MobileNets on the ImageNet dataset.

Table. 6 and Fig. 5 provide additional prun-
ing results for lightweight networks such as
MobileNet-V1 and MobileNet-V2. For the un-
pruned models, we find that even MobileNet-V2
has significantly lower FLOPs, the inference
time is larger compared to MobileNet-V1.In
both cases, HALP yields inference speeds-ups
of 1.22⇥ and 1.33⇥ for MobileNet-V1 and
MobileNet-V2 respectively, while maintaining
the original top1 accuracy.

D Efficacy of neuron grouping on MobileNet

In this section, we show the benefits of latency-aware neuron grouping and the performance under
different group size settings on MobileNetV1.

Since MobileNet has group convolutional layers to speedup the inference, we take the group convolu-
tional layer with its preceding connected convolutional layer together as coupled cross-layers [17] to
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Figure 6: Performance comparison of our latency-aware grouping to
different fixed sizes for a MobielNetV1 pruned with different latency
constraints on ImageNet. We compare to heuristic-based group selection
studied by [69]. LG denotes the proposed latency-aware grouping in
HALP that yields consistent latency benefits per final accuracy.

make sure the input channel number and out-
put channel number of the group convolution
remain the same. All the 27 convolutional lay-
ers can be divided into 14 coupled layers. In our
method, with the neuron grouping, we set the
individual group size of 1 coupled layer to 16,
of 3 coupled layers to 32 and 10 coupled layers
to 64. Also, for MobileNetV1 pruning, we add
the additional constraint that each layer has at
least one group of neurons remaining to make
sure that the pruned network is trainable.

We compare our latency-aware neuron grouping
with an heuristic option by setting a fixed group
size for all layers. Fig. 6 shows the comparison
results between our neuron grouping method and various fixed group sizes for a MobielNet pruned
with different latency constraints on ImageNet. As shown, similar to ResNet50, using small group
sizes such as 8, 16 leads to worse performance; a large group size like 128 also harms the performance
significantly. Our observations on ResNet50 pruning also hold in MobileNetV1 setting, further
emphasizing the efficacy of our latency-aware neuron grouping.

E Ablation study of pruning step k
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Figure 7: Performance comparison of different pruning steps k for
ResNet50 pruning on ImageNet.

In this work, similar to many other prior meth-
ods [2, 45, 72], we do iterative pruning with k

pruning steps in total. In this experiment, we
analyze the the accuracy of the final result as
a function of k. We set the value of k to 10,
20, 30 and 40 for iterative pruning, and also use
k = 1 to perform a single-shot pruning. The
result of this experiment is shown in Fig. 7. As
shown, we get similar results independent of
k. Imporantly, all these results outperform Ea-
gleEye [32]. As expected, there is a drop in
accuracy for single-shot pruning (k = 1), espe-
cially for large pruning ratios. The main reason is the neuron importance would change as we remove
some other neurons and, in this setting, the value is not updated. Iterative pruning does not have this
limitation as the importance score and the latency cost of the remaining neurons is updated after each
pruning step to reflect any changes. In our experiments, we use k = 30 as it provides a good trade off
between latency and accuracy.

F Comparison with EagleEye on ImageNet
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Figure 8: Pruning ResNet50 on the ImageNet dataset using the same
baseline model as in EagleEye with a top-1 accuracy of 77.23%. The
proposed HALP surpasses EagleEye ECCV20 [32] in accuracy and
latency. Top-left is better.

We now use the same unpruned baseline model
provided by EagleEye [32] to compare our pro-
posed HALP method with EagleEye [32] vary-
ing the latency constraint. As shown in Fig. 8,
our approach dominates EagleEye by consis-
tently delivering a higher top-1 accuracy with a
significantly faster inference time.

We then analyze the structure difference be-
tween our pruned model and the EagleEye
model. As mentioned in the main text that the
proposed HALP method tries to make the num-
ber of remaining neurons in each layer fall to the
right side of a step if the latency on the targeting
platform presenting a staircase pattern. Fig. 9
shows two examples of pruned layers after pruning from HALP-45% and EagleEye-2G model. In the
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Figure 9: Two examples of pruned layers from HALP model and EagleEye [32] model. The scattered
black points are the locations of the layers fall to after pruning.

Table 7: Pruning ResNet50 on the ImageNet dataset (TITAN V) targeting on inference with batch
size 1. HALP-X% indicates that X% latency to remain after pruning. The speedup is calculated as
the ratio of FPS between the pruned network and the unpruned model.

Method FLOPs Top1 Acc Top5 Acc FPS Speedup(G) (%) (%) (imgs/s)

No pruning 4.1 76.2 92.87 181 1⇥
0.75⇥ ResNet50 [21] 2.3 74.8 - 192 1.06⇥

AutoSlim [72] 2.0 75.6 - 181 1.00⇥
MetaPruning [36] 2.0 75.4 - 190 1.05⇥
EagleEye-2G [32] 2.1 76.4 92.89 190 1.05⇥

GReg-2 [63] 1.8 75.4 - 196 1.09⇥
HALP-90% (Ours) 2.9 76.4 93.10 220 1.22⇥
0.50⇥ ResNet50 [21] 1.1 72.0 - 193 1.07⇥

AutoSlim [72] 1.0 74.0 - 191 1.06⇥
MetaPruning [36] 1.0 73.4 - 196 1.09⇥
EagleEye-1G [32] 1.0 74.2 91.77 192 1.06⇥

GReg-2 [63] 1.3 73.9 - 206 1.14⇥
HALP-80% (Ours) 2.3 75.3 92.35 247 1.37⇥

left figure, we show that the layer in our pruned model has only 5 more neurons pruned than that in
EagleEye model, the latency is reduced to a much lower level which is a 0.76ms drop while we have
31 more input channels. In the right figure, we also show that sometimes we can remain a lot more
neurons (30 neurons) in layer with only little latency (0.21ms) increase. These two examples both
show the ability of method to fully exploit the latency traits and benefit the inference speed.

Our method benefits a lot from the non-linear latency characteristic since we are trying to keep as
many neurons as possible under the latency constraint. If the latency of the layer on the targeting
platform shows linear pattern, the advantage of our method becomes smaller. Fig. 9 shows the latency
behavior of the example layers on the targeting platform when reducing the number of input and
output channels. As we can see, the staircase pattern becomes less obvious as the number of input
channel reduces and the GPU has sufficient capacity for the reduced computation. This happens
during pruning, especially for large prune ratios. In such a case, the FLOP count reflects the latency
more accurately, and the performance gap between reducing FLOPs and reducing latency can possibly
become small. Nevertheless, our method can help avoid some latency peaks as shown in Fig. 9, which
could otherwise happen using other pruning methods.

G Pruning results for small batch size

In the main paper, we use a large batch 256 in the experiment to allow for highest throughput for
inference, which also makes the latency of the convolution layers show apparent staircase pattern so
that we can take full advantage of the latency characteristic. In this section, we show that with small
batch size 1 that no obvious staircase pattern showing up in layer latency, our HALP algorithm still
delivers better results compared to other methods.

When we use batch size 1 for inference, the layer latency of ResNet50 does not show obvious staircase
pattern in most of the layers due to the insufficient usage of GPU. Therefore in this experiment, we
use the latency lookup table granularity as a neuron grouping size, which in our case is 2, to fully
exploit the hardware latency traits during pruning. We show our pruned results and the comparison
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Table 8: HALP for object detection on the PASCAL VOC dataset.
Model mAP FLOPs (G) params (M) FPS (BS=1) FPS (BS=32)

SSD512-RN50, base model 77.98 65.56 21.97 68.24 103.48

SSD512-RN50-slim 75.83 46.09 16.33 76.49 114.80
SSD300-RN50 75.69 16.23 15.43 128.85 309.32

SSD300-VGG16 [35] 76.72 31.44 26.29 122.28 262.93
FasterRCNN-VGG16 [52] 70.10 91.23 137.08 29.21 -

RetinaNet-RN50 [34] 77.27 106.50 36.50 36.92 -
SSD512-RN50-HALP (Ours) 77.42 15.38 10.40 132.57 323.36

with other methods in Tab. 7. As shown in the table, while other methods reduce the total FLOPs of
the network after pruning, they do not reduce the actual latency much, which is up to 1.09⇥ faster
than the original one at the cost of 2.8% top1 accuracy drop. Compared to these methods, although
we get less FLOPs reduction using our proposed method, the pruned models are faster and get higher
accuracy, which is 1.22⇥ faster than the unpruned model while getting slightly higher accuracy and
1.37⇥ faster with only 0.9% accuracy drop.

H Pruning results on object detection

In this section we show the detailed pruning results on objection detection task for Sec. 4.5. To prune
the detector, we first train a SSD512 with ResNet50 as backbone. We also train some other popular
models for performance comparison. The detailed numbers of Fig. 4 are shown in Tab. 8.

I Implementation details

Convert latency in float to int. Solving the neuron selection problem using the proposed augmented
knapsack solver (Algo. 1 in the main paper), requires the neuron latency contribution and the latency
constraint to be integers as shown in line 4 of the algorithm. To convert the measured latency from a
full precision floating-point number to integer type, we multiply the latency by 1000 and perform
rounding. Accordingly, we also scale and round the latency constraint value.

Deal with negative latency contribution. The neuron latency contribution in our augmented
knapsack solver must be a non-negative value since we have dp_array 2 RC and we need to visit
dp_array[c� cn] as in line 5 of Algo. 1 in the main paper. However, by analyzing the layer latency
from the look-up table we find that for some layers the measured latency might even increase when
reducing some number of neurons. This means that the latency contribution could possibly be negative.
The simplest way to deal with the negative values is to directly set the negative latency contributions
to be 0. This leads to the problem that the summed latency contribution would be larger than the
actual latency value, causing less neurons being selected. Thus, during our implementation, we keep
those negative latency values as they are, but update the vector size of dp_array to RC�min(min(c),0)

where min(c) is the minimum latency contribution. With such, the vector size of dp_array would be
extended when there is negative latency contribution. This makes it possible to add one neuron with
negative latency contribution to a subset of neurons whose summed latency is larger than the latency
constraint. After the addition, the total latency will still remain under the constraint.

Pruning of the first layer. In our ImageNet experiments, we leave the first convolutional layer
of ResNets unpruned to help maintain the top-1 classification accuracy. For MobileNet, the first
convolutional layer is coupled with its following group convolutional layer. In our MobileNet
experiments, we prune the first coupled layers at most to the half of neurons.

SSD for object detection. Our SSD model is based on [35]. When we train SSD-VGG16, we use the
exactly same structure as described in the paper. When we train a SSD-ResNet50, the main difference
between our model and the model described in the original paper is in the backbone, where the VGG
is replaced by the ResNet50. Following [27], we apply the following enhancements in our backbone:

• The last stage of convolution layers, last avgpool and fc layers are removed from the original
ResNet50 classification model.

• All strides in the 3rd stage of ResNet50 layers are set to 1⇥ 1.
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Table 9: The additional convolution layers in SSD.
layer SSD512 SSD512-slim SSD300

layer1-conv1 (512, 3, 1, 1) (256, 1, 1, 0) (512, 3, 1, 1)
layer1-conv2 (512, 3, 2, 1) (512, 3, 2, 1) (512, 3, 2, 1)
layer2-conv1 (256, 1, 1, 0) (256, 1, 1, 0) (256, 1, 1, 0)
layer2-conv2 (512, 3, 2, 1) (512, 3, 2, 1) (512, 3, 2, 1)
layer3-conv1 (128, 1, 1, 0) (128, 1, 1, 0) (128, 1, 1, 0)
layer3-conv2 (256, 3, 2, 1) (256, 3, 2, 1) (256, 3, 2, 1)
layer4-conv1 (128, 1, 1, 0) (128, 1, 1, 0) (128, 1, 1, 0)
layer4-conv2 (256, 3, 2, 1) (256, 3, 2, 1) (256, 3, 1, 0)
layer5-conv1 (128, 1, 1, 0) (128, 1, 1, 0) (128, 1, 1, 0)
layer5-conv2 (256, 3, 2, 1) (256, 3, 2, 1) (256, 3, 1, 0)
layer6-conv1 (128, 1, 1, 0) (128, 1, 1, 0) -
layer6-conv2 (256, 4, 1, 1) (256, 4, 1, 1) -

Table 10: Pruning ResNet50 on the ImageNet dataset with FLOPs constraint and comparison with
state-of-the-art method EagleEye (ECCV’20) [32]. We remeasure the FLOPs, top1 and top5 accuracy
of EagleEye to get results with two digits.

Method FLOPs (G) Top1 Acc (%) Top5 Acc (%)

No pruning 4.1 77.23 93.70

EagleEye-3G 3.08 77.10 93.36
FLOP-T (Ours) 2.99 77.36 93.62

EagleEye-2G 2.06 76.38 92.90
FLOP-T (Ours) 1.95 76.64 93.21

EagleEye-1G 1.03 74.18 91.78
FLOP-T (Ours) 0.96 74.84 92.26 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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The backbone is followed by 6 additional coupled convolution layers for input size 512⇥ 512, or 5
for input size 300⇥ 300. A BatchNorm layer is added after each convolution layer. The settings of
these additional convolution layers are listed in Tab. 9, each layer is represented as (output channel,
kernel size, stride, padding).

The detector heads are similar to the ones in the original paper. The first detection head is attached to
the last layer of the backbone.The rest detection heads are attached to the corresponding additional
layers. No additional BatchNorm layer in the detector heads.

J FLOPs-constrained pruning

Our implementation of latency-constrained pruning can be easily converted to be a FLOPs-constrained.
When constraining on FLOPs, �(·) in the objective function (Eq.1 in the main paper) becomes the
FLOPs measurement function and C becomes the FLOPs constraint. Since the FLOPs of a layer
linearly decreases as the number of neurons decreases in the layer, we do not need to group neurons
in a layer any more. The problem can also be solved by original knapsack solver since each neuron’s
FLOPs contribution in a layer is exactly the same and no preceding constraint is required. We conduct
some experiments by constraining the FLOPs and compare the results with EagleEye [32]. We name
the experiments using the same algorithm as HALP but targeting on optimizing the FLOPs as FLOP-T.
As shown in Tab. 10, with our pruning framework applying the knapsack solver, our results show
higher top-1 accuracy compared to the pruned networks of EagleEye with similar FLOPs remaining.
We also observe a larger gap between the methods when it comes to a more compact network.

K FLOPs vs. latency

FLOPs can be regarded as a proxy of inference latency; however, they are not equivalent [4, 33,
35, 40, 42]. We do global filter-wise pruning and have the same problem as NAS. The latency on a
GPU usually imposes staircase-shaped patterns for convolutional operators with varying channels
and requires pruning in groups. In contrast, FLOPs will change linearly. Depth-wise convolution,
compared to dense counterparts, has significantly fewer FLOPs but almost the same GPU latency
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Table 11: ResNet50 pruning with FLOPs/latency constrain.
method Top1(%) FLOPs (G) FPS (imgs/s) FPS vs FLOPs
FLOP-T 74.84 0.962 2202

0.5 1 1.5 2 2.5 3
FLOPs (G)

1000

1500

2000

2500

FP
S 

(im
gs

/s
) FLOP-T

HALPHALP 74.92 1.210 2396
FLOP-T 76.64 1.949 1436
HALP 76.55 1.957 1672

FLOP-T 77.36 2.988 1146
HALP 77.45 2.988 1203

due to execution being memory-bounded2. The discrepancy also holds for ResNets where the same
amount of FLOPs impose more latency in earlier layers than later ones as the number of channels
increases and feature map dimension shrinks – both increase compute parallelism. For example, the
first 7⇥ 7 conv layer and the first bottleneck 3⇥ 3 conv in ResNet50 have nearly identical FLOPs
but the former is 60% slower on-chip.

We compare our results of FLOPs-targeted (FLOP-T) showed in Sec. J and results using latency-
targeted pruning (HALP) in Tab. 11. As shown in the table, using different optimization targets leads
to quite different FPS vs FLOPs curves. In overall, with similar FLOPs remaining, using our HALP
algorithm targeting on reducing the actual latency can get more efficient networks with more image
being processed per second.

Figure 10: The measured latency vs. FLOPs of the
2nd convolution layer in the 1st residual block of
ResNet50.

We also show a more straightforward relationship between the
actual latency of a layer and its FLOPs in Fig. 10. We use the
2nd convolution layer in the 1st residual block of ResNet50 as
an example. We vary the number of neurons of the layer from
0 to 128 and measure the actual latency on GPU (TITAN V)
as well as the FLOPs of the layer. We can see from the figure
that the actual latency does not strictly linearly decrease as the
FLOPs decreasing.

L Different choice of importance calculation

We use the first Taylor expansion [45] to estimate the loss change induced by pruning as the importance
score of the neurons. It is a gradient-based importance calculation and is shown to be given promising
results. In this section, we use the L2 norm of the neuron weights as the importance measurement
and apply HALP framework to ResNet50 ImageNet classification task. As shown in Tab. 12, Our
algorithm is generic applying to different importance measurements. As shown, using L2 norm of
weights as importance measurements leads to slightly lower accuracy.

Table 12: The results of HALP algorithm on ResNet50 ImageNet classification task with different
choices of neuron importance measurements.

Method First-Taylor Expansion (gradient-based) L2 norm (magnitude-based)

FLOPs(G) Top1(%) Top5(%) FPS(im/s) FLOPs(G) Top1(%) Top5(%) FPS(im/s)

HALP-80% 3.0 77.5 93.60 1203 3.0 77.3 93.60 1196
HALP-55% 2.1 76.7 93.16 1672 2.0 75.7 92.66 1595

M Latency look-up table creation and calibration

In this section, we provide additional details to build the latency look-up table used in HALP,
computational cost and the correlation between the estimated and the real ones. As mentioned in
Appendix B, we pre-generate the layer latency look-up table on the platform with NVIDIA cuDNN [7]
V7.6.5. For each layer, we iteratively reduce the number of neurons in the layer (each time reduce
8 neurons) and characterize the corresponding latency. For each latency measurement, we use one
profile for GPU warm up and another 3 profiles and take the average to avoid randomness. The
average standard deviation of profiles for an operation is 8.67e�3.

2https://tlkh.dev/depsep-convs-perf-investigations/
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Figure 11: The correlation between the predicted latency reduction and
the real latency reduction of the pruned models.

On a single TITAN V GPU, it takes around 5
hours to build the look-up table for ResNets fam-
ily and 1 hour for MobileNets family. Note that
the LUT can be shared by the network architec-
tures within the same family since they usually
have similar layer structures. We only need to
create the latency look-up table once for all the
possible latency targets.

There are some gaps between the predicted la-
tency and the real latency of the model, because
the latency look-up table is created layer-wise
on convolution layers. There are additional costs
in real inference such as pooling, non-linear ac-
tivation etc. We plot the correlation between the
expected latency reduction from look-up table and the real latency reduction ratio of our pruned
models in Fig. 11. We also calculate the Pearson Correlation Coefficient r for all the networks in the
figure. We can clearly see a linear correlation between the predicted and real latency reduction from
the figure, showing that the latency lookup table provides a good approximation and it is possible to
calibrate the latency estimation using the linear coefficient to have a better estimation.

Limitation of layer-wise latency lookup table. We apply layer-wise latency lookup table in our
method, which does not consider the caching and parallelization among layers. For networks like
VGG without bypass paths, the layer operations will be executed sequentially, in which case, the
latency lookup table models the actual latency well. For models with parallel paths, it depends on
the hardware implementation whether there will be parallel execution in practice. When there is
parallelization, e.g., in accelerators, models like ResNets still work well because the skip connection
only takes small portion of computation; for models like InceptionNet, taking the parallelization
and into consideration when generating the lookup table would help better estimate the latency. For
wider applications in the future, the more domain knowledge we have about the GPU execution and
improve accordingly, the more accurate estimation we will obtain using the latency lookup table.

Comparison with quadratic model. Recent work QCQP [28] models latency using a quadratic
equation and solve a latency constrained optimization problem. The main difference between our
estimation from lookup table and the QCQP’s estimation from quadratic modeling is that we use
different ways to model each layer’s latency. QCQP[1] uses ↵l + �l||r(l�1)||1 + �l||r(l�1)||1||r(l)||1
to model the layer latency where ||r||l is the number of remaining channels in the corresponding layer,
↵, � and � are the coefficients that need to be optimized for the targeting platform. Note that QCQP
also needs to profile latency for different samples of each layer, like what we do to create the lookup
table but will less samples, in order to optimize ↵, � and �. It is also important to note that QCQP
uses a linear model between the layer latency and FLOPs (the quadratic part) and memory. Therefore,
QCQP fails to capture the latency staircase pattern (see Fig. 3a in the QCQP paper) which is the key
to maximize GPU utilization (see latency surface in Fig. 1). As shown in Fig.3a in the QCQP paper,
the quadratic modeling gives different latency estimations to layers with different number of input
and output channels. However, these layers have the same real inference time. As a result, the larger
the number of input and output channels, the larger the error in the estimation of QCQP.
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Figure 12: The ResNet50 ImageNet pruning targeting INT8 inference
on NVIDIA Xavier.

We now focus on results when the target is INT8
inference which is a common requirement for
real-world applications. In particular, we use
NVIDIA Xavier as the target platform as, in this
platform, INT8 speedup is supported. We create
a INT8 latency look-up table for INT8 inference.
For comparison, we also create a FP32 latency
look-up table on the same platform and use both
look-up tables for pruning a ResNet50 model
on ImageNet classification. After convergence,
results are quantized into INT8 and the latency
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and accuracy is measured directly on the Xavier platform. We measure latency with a batch size 128,
using TensorRT (V8.2.0.1) to get INT8 speedup. Results for this experiment are shown in Fig. 12.

As shown, even use a FP32 latency look-up table as the latency guidance, our method HALP
outperforms the state-of-the-art method EagleEye [32]. These results are consistent with Sec. 4.2
where we show the HALP acceleration on GPUs with TensorRT. Pruning results of using a INT8
look-up table show that our method yields higher accuracy with lower latency on this platform. We
obtain a 1.32⇥ speedup while maintaining the original Top1 accuracy. Compared to EagleEye, HALP
achieves up to 1.26⇥ relative speedup and 0.15% higher accuracy.

O Breakdown of the algorithm execution time

We provide additional details of the algorithm process of different methods in this section. We
estimate the time cost needed to get the pruned network structure for each method. The time of
following finetuning is not taken into consideration. For a fair comparison, we set the number of
pruning steps k for all iterative pruning methods to 30. All the values are approximated as all the
methods are running on the same device (a NVIDIA V100 GPU) to get a pruned ResNet50. For
AutoSlim [72], MetaPruning [36] and AMC [22], more GPU time is needed for additional training of
the network.

Table 13: The breakdown details of the execution process of different methods.
Method Evaluate Auxiliary net Sub-network selection Additional time cost Estimate

proposals? training? time (RN50)

NetAdapt Y N N candidates evaluation + finetune after each prune. Latency look-up table creation ⇠ 195h GPURepeat k times

ThiNet Y N 1 or 2 train epochs after each pruning. Additional forward pass to get neuron importance ⇠ 210h GPURepeat k times

EagleEye Y N 1000 candidates evaluation Monte Carlo sampling, prune to get 1000 candidates 30h GPU

AutoSlim Y Y Train slimmable model
k candidates evaluation

MetaPruning Y Y Train an auxiliary network
k candidates evaluation

AMC N Y Train an RL agent

HALP(Ours) N N 40 train iterations after each pruning. Augmented Knapsack solver (⇠ 30min in total) 6.5h GPU
Repeat 30 times. (< 1 train epoch in total) Latency look-up table creation 0.5h CPU

P Difference with prior work

KnapsackPruning (KP) [1] is one work that is mostly close to our method in the paper. While
both works look at similar problems from the same combinatorial perspective, there are several key
differences. First, KP focuses on constraining FLOPs and shows an instantiation on latency; in
contrast, we directly optimize the latency, which is more practical. Second, we show the latency
characterization on device and augment the original knapsack problem formulation accordingly,
Eq. 7, to accommodate to the latency traits - the neuron latency is dependent on the order of neuron
pruning in a layer, while KP uses a standard knapsack where the neuron FLOP cost is independent
of each other. Please note here that the formulation in KP assumes the independence thus can not
directly apply to the latency-targeted pruning, Third, we are the first ones to use the latency-aware
grouping which assigns different grouping sizes to each layer according to the latency traits rather
than predefined fixed values.

For a fair comparison of pruning to the KP method, we use the PyTorch baseline as unpruned
model and both without knowledge distillation during training. The results for ResNet50 pruning
on ImageNet are show as Tab. 16. As shown, our method performs significantly better leading to
pruned model with higher accuracy but less FLOPs. On the other side, as they are not considering the
actual latency, the resultant network structure is not GPU friendly and would fail to maximize the
GPU utilization.

Q Detailed configuration of pruned models

We provide the detailed configuration of our pruned models of Tab. 1. For each model, we list the
number of neurons remaining in each convolution layer, starting from the input to the output. For
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Table 14: ResNet50 pruning results on ImageNet comparison with Knapsack Pruning [1].
Method FLOPs (G) Top1 (%) Acc Drop (%)

KP [1] 2.38 76.17 0.03
KP [1] 2.03 75.94 0.21

HALP (Ours) 2.01 76.46 �0.26

ResNets we use [·] to denote a residual block and (·) to denote the neuron number of the residual
bypass layer.

Note that for ResNets, the configuration is the “raw” configuration after the pruning. For each residual
block [x1, x2, x3], because of the existing of bypass layer, we allow the entire layer pruning and it
still leads to trainable networks. Whenever there is entire layer pruning (x1 == 0 or x2 == 0 or
x3 == 0), all the other layers in the block can be removed and this branch can be replaced by a
constant value. In such a case, the corresponding block in our final pruned model is cleaned to be
[0, 0, 0]. We also provide the detailed structure plot of two pruned ResNet50 models in Fig. 13 for a
better visualization.

Table 15: The detailed configuration of the HALP pruned models.
ResNet50 - EagleEye [32] baseline

HALP-80% 64, [64, 32, 256](256), [32, 32, 256], [0, 32, 256], [128, 128, 512](512), [64, 96, 512], [64, 128, 512], [64, 128, 512], [256, 256, 1024](1024), [256, 160, 1024],
[256, 160, 1024], [256, 160, 1024], [256, 128, 1024], [256, 160, 1024], [512, 512, 2048](2048), [448, 416, 2048], [512, 512, 2048]

HALP-45% 64, [64, 32, 128](128), [32, 0, 128], [0, 32, 128], [64, 64, 384](384), [64, 96, 384], [32, 96, 384], [64, 128, 384], [256, 192, 1024](1024), [128, 96, 1024],
[256, 64, 1024], [256, 96, 1024], [128, 32, 1024], [256, 96, 1024], [512, 448, 2048](2048), [416, 288, 2048], [512, 352, 2048]

HALP-30% 64, [0, 0, 64](64), [0, 0, 64], [0, 32, 64], [64, 64, 256](256), [64, 64, 256], [64, 128, 256], [64, 96, 256], [256, 64, 896](896), [128, 64, 896], [0, 0, 896],
[128, 64, 896], [0, 0, 896], [0, 0, 896], [512, 320, 2048](2048), [320, 160, 2048], [480, 160, 2048]

ResNet101

HALP-60%

64, [64, 32, 192](192), [32, 32, 192], [64, 32, 192], [64, 128, 384](384), [64, 96, 384], [96, 96, 384], [128, 128, 384], [256, 256, 896](896), [256, 96, 896],
[256, 128, 896], [256, 96, 896], [256, 96, 896], [256, 128, 896], [256, 96, 896], [256, 96, 896], [256, 96, 896], [256, 96, 896], [256, 64, 896], [256, 64, 896],
[256, 96, 896], [256, 64, 896], [256, 64, 896], [256, 96, 896], [256, 64, 896], [256, 96, 896], [256, 96, 896], [256, 96, 896], [256, 64, 896], [256, 128, 896],
[256, 64, 896], [512, 512, 2048](2048), [512, 448, 2048], [512, 480, 2048]

HALP-50%

64, [64, 32, 128](128), [0, 32, 128], [64, 32, 128], [64, 128, 384](384), [32, 32, 384], [128, 96, 384], [128, 96, 384], [256, 256, 896](896), [256, 96, 896],
[256, 96, 896], [256, 96, 896], [256, 64, 896], [256, 96, 896], [256, 95, 896], [256, 96, 896], [256, 64, 896], [256, 64, 896], [0, 0, 896], [0, 0, 896], [256, 64, 896],
[0, 0, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896], [256, 64, 896],
[512, 512, 2048](2048), [480, 416, 2048], [512, 416, 2048]

HALP-40%

64, [64, 32, 128](128), [0, 32, 128], [0, 0, 128], [64, 128, 384](384), [32, 64, 384], [64, 96, 384], [64, 128, 384], [256, 256, 896](896), [0, 64, 896], [128, 96, 896],
[0, 64, 896], [0, 64, 896], [128, 64, 896], [128, 64, 896], [0, 0, 896], [0, 0, 896], [128, 96, 896], [128, 64, 896], [256, 96, 896], [256, 64, 896], [256, 64, 896],
[128, 32, 896], [128, 64, 896], [0, 0, 896], [0, 0, 896], [256, 64, 896], [256, 64, 896], [256, 96, 896], [256, 64, 896], [256, 96, 896], [512, 512, 2048](2048),
[512, 352, 2048], [512, 352, 2048]

HALP-30%

64, [64, 32, 128](128), [0, 0, 128], [0, 0, 128], [64, 128, 256](256), [0, 96, 256], [64, 96, 256], [64, 128, 256], [256, 192, 768](768), [0, 64, 768], [128, 64, 768],
[0, 64, 768], [0, 64, 768], [128, 64, 768], [128, 64, 768], [0, 0, 768], [0, 0, 768], [128, 64, 768], [128, 96, 768], [256, 64, 768], [0, 0, 768], [0, 0, 768], [128, 32, 768],
[128, 64, 768], [128, 64, 768], [128, 64, 768], [0, 0, 768], [0, 0, 768], [256, 64, 768], [256, 0, 768], [256, 64, 768], [512, 512, 2048](2048), [480, 288, 2048],
[480, 256, 2048]

MobileNet-V1
HALP-60% 896, 14, 14, 32, 32, 64, 64, 64, 64, 192, 192, 192, 192, 384, 384, 320, 320, 384, 384, 384, 384, 384, 384, 448, 448, 960, 960

HALP-42% 832, 16, 16, 32, 32, 32, 32, 32, 32, 64, 64, 128, 128, 320, 320, 256, 256, 256, 256, 256, 256, 320, 320, 320, 320, 896, 896

MobileNet-V2

HALP-75% 16, 16, 16, 64, 64, 24, 64, 64, 24, 112, 112, 32, 128, 128, 32, 128, 128, 32, 192, 192, 64, 384, 384, 64, 352, 352, 64, 352, 352, 64, 384, 384, 96, 512, 512, 96,
512, 512, 96, 576, 576, 160, 960, 960, 160, 960, 960, 160, 960, 960, 320, 1280

HALP-60% 16, 16, 8, 32, 32, 16, 16, 16, 16, 64, 64, 32, 32, 32, 32, 64, 64, 32, 176, 176, 64, 288, 288, 64, 320, 320, 64, 320, 320, 64, 384, 384, 96, 448, 448, 96, 448, 448, 96,
576, 576, 160, 960, 960, 160, 960, 960, 160, 960, 960, 192, 1152

R Discussion on the augmented knapsack solver

Our augmented knapsack solver in Algo. 1 is modified based on the standard dynamic programming
solution for the 0-1 knapsack problem [3, 43, 44]. With the original 0-1 knapsack problem formulation,
each neuron can be selected to be removed or kept independently. However, the fact is that 1). the
layer always has the same latency with the same number of channels remaining no matter which
neurons are selected; 2). the neurons with higher importance are favored to maximize the accuracy.
So in this latency-aware pruning problem, we add an additional constraint, namely, each neuron can
be selected only when all the more importance neurons in the same layer are already kept, leading to
Eq. 7. The original solution is modified in lines 6-9 in Algo. 1 accordingly, and is converted into a
greedy approximation selection to retain the same time complexity as the original problem. We’ll
discuss the non-greedy solution later.

In the augmented solver lines 6-9, every time when we decide whether to keep a neuron, we not only
compare the total importance score can be reached under the constraint, but also check the inclusion
of the “preceding” neurons. This is a greedy selection as it does not consider the potential importance
value that the following neurons in the same layer would bring if the current neuron is kept. The
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(a) ResNet50 HALP-45%
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Figure 13: Visualization of the pruned ResNet50 structure.

overall time complexity of the solution is O(N ⇥ C) where N =
PL

l=1 Nl is the total number of
neuron groups in the network and C is the latency constraint. We also provide the non-greedy solution
in Algo. 2. In this solution, for each neuron we add a process calculating and comparing the potential
importance score that the layer would further bring if the current neuron is selected to be kept. This
brings additional O(Nl) complexity for each neuron in layer l. As a result, the total time complexity
of the solution increases to O(

PL
l=1 N

2
l ⇥ C). We test both of the solutions and observe similar

performance in the ImageNet experiments as shown in Tab. 16. We hypothesize that the efficacy of
the greedy approach suffices from the already decreasingly ranked neurons feeding into the solver
and the iterative nature during pruning. Thus, the greedy approximation solution Algo. 1 is applied in
our method to have a better pruning efficiency.

Table 16: ResNet50 pruning results on ImageNet with the greedy method Algo. 1 and non-greedy
method Algo 2

Method 1G model 2G model 3G model
Algo. 1 Algo. 2 Algo. 1 Algo. 2 Algo. 1 Algo. 2

Top1 (%) 77.45 77.51 76.56 76.51 74.45 74.51
FPS (img/s) 1203 1185 1672 1688 2597 2524
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Algorithm 2 Non-greedy solution for Eq. 7
Input: Importance score {Il 2 RNl}Ll=1 where Il is sorted descendingly; Neuron latency contribution {cl 2 RNl}Ll=1 ; Latency constraint C.

1: maxV 2 R(C+1) , keep 2 RL⇥(C+1) . maxV[c]: max importance under constraint c; keep[l, c]: # neurons to keep in layer l to achieve maxI[c]
2: for l = 1, . . . , L do
3: for j = 1, . . . , Nl do
4: for c = 1, . . . , C do
5: vkeep = Ij

l + maxV[c� cjl ], vprune = maxV[c] . total importance can achieve under constraint c with object n being kept or not
6: flag = False
7: for pl = j + 1, . . . , Nl do

8: vpotential =
Ppl

j0=j
Ij0
l + maxV[c�

Ppl
j0=j

cj
0

l ] . calculate the potential score this layer would bring if keep this neuron.

9: if vpotential > vprune and keep[l, c� cjl ] == j � 1 then . check if leads to higher score and more important neurons in layer are kept
10: flag = True
11: break
12: end if
13: end for
14: if flag == True then
15: keep[l, c] = j, update_maxV[c] = vkeep
16: else
17: keep[l, c] = keep[l, c� 1], update_maxV[c] = vprune
18: end if
19: end for
20: maxV update_maxV
21: end for
22: end for
23:
24: keep_n = to save the kept neurons in model
25: for l = L, . . . , 1 do . retrieve the set of kept neurons
26: pl = keep[l, C]
27: keep_n keep_n [ {pl top ranked neurons in layer l}
28: C  C �

Ppl
j=1 cjl

29: end for
Output: Kept important neurons (keep_n).
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