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Abstract

Deep neural networks (DNNs) are not naturally robust to adversarial at-
tacks on their inputs, leading to loss of reliability in a general use case.
One of the state-of-the-art defenses against adversarial attacks is adversar-
ial training, which introduces adversarial examples into the training set.
While adversarially trained models are more robust to attacks, their ac-
curacy on clean images drops and the additional robustness gained does
not generalize well to different types of attacks. Previous studies have
proposed energy-based models (EBMs) with a Hopfield-like energy func-
tion are inherently robust to adversarial perturbations without any drop in
clean accuracy. However, EBMs trained with equilibrium propagation re-
quire attaining a fixed point during their dynamical evolution, thus making
inference a time consuming process on traditional digital hardware as op-
posed to neuromorphic hardware which is well-suited for such minimization
problems. In this work we report that by training feedforward networks to
mimic the fixed points of EBMs, we achieve similar robustness but at dras-
tically shorter inference times. We demonstrate the adversarial robustness
conferred by EBM distillation using both white-box and black-box attacks
as well as natural corruptions on the CIFAR-10 and CIFAR-100 dataset.
We thus posit that EBM distillation could provide an alternative method
to adversarial training.

1 Previous work on EBMs

Energy-based models that involve minimization of an energy function are relatively new
in the domain of adversarial robustness. One of the pioneering works in this context are
dense associative memories, which have been shown to produce more semantically meaning-
ful interpretations of adversarial images on MNIST Krotov & Hopfield (2018), which the
authors attribute to the use of highly nonlinear activation functions, although this study
was conducted with a fully connected layer architecture. A large body of work exists on the
adversarial robustness of sparse LCA networks that involve lateral connections and a sparse
objective Paiton et al. (2020); Teti et al. (2022); McAlister et al. (2024) which suggest that
cortical networks increase selectivity through lateral inhibition, where the inhibition is pro-
portional to the overlap in their receptive fields. Such lateral interactions are thus expected
to give rise to increased robustness in comparison to purely feedforward neural networks
that lack these interactions. A recent study explored the robustness of EBMs trained with
equilibrium propagation (EP) Laborieux et al. (2021) and found EBMs to be inherently ro-
bust without any adversarial training or augmentations to the training set Mansingh et al.
(2024). However, an overarching feature of energy-based models is that they require settling
into an attractor or a fixed point both during training and inference. Training and inference
in such models on standard hardware is time consuming since they require to be evolved for
multiple time steps and thus are not well suited for learning large complex datasets.

1



New Frontiers in Associative Memory workshop at ICLR 2025

Physical computing platforms such as neuromorphic hardware Parpart et al. (2023); Fair
et al. (2019), memristor crossbars Yi et al. (2022) and self adjusting resistor networks Wycoff
et al. (2022) are well suited for such energy minimization problem. However such platforms
are not commercially available, and experiments on these physical platforms have also been
limited to small datasets. Attempts to accelerate the optimization problem involve asyn-
chronous state updates Scellier et al. (2023), which are reminiscent of the leap-frog method
as well as casting the energy minimization problem into a deep equilibrium model (DEQ)
setting Goemaere et al. (2024), which involves reaching the steady state in one shot, without
the need of explicit state evolution.
DEQs fall into a class of implicit models Bai et al. (2019). which involve finding equilib-
rium/fixed points for an effectively infinite depth feedforward network, in one shot. DEQs
however are not robust to adversarial attacks Gurumurthy et al. (2021). Because of implicit
methods involved in reaching the fixed point, tests on robustness of DEQs often involve
evaluation of approximate gradients raising concerns about gradient obfuscation in case of
white-box attacks Yang et al. (2022). Since DEQs are vulnerable to adversarial attacks,
they are often adversarial trained to gain robustness Yang et al. (2023) which alludes to our
hypothesis that energy minimization dynamics play a vital role in adversarial robustness.
This is consistent with insights from neuroscience which suggest that humans take longer to
identify challenging images compared to control images Kar et al. (2019).
In cases where inference is time-consuming and computationally expensive, knowledge dis-
tillation Hinton (2015) is a popular technique of compressing knowledge present in large
(teacher) models and transferring to small (student) models. This is useful in situations
where computational resources are constrained such as edge devices. However knowledge
distillation does not guarantee the transfer of adversarial robustness to the student models.
To address this, adversarial robust distillation Goldblum et al. (2020) has been proposed,
that trains the student model to keep its predictions within an 𝜖 ball of the teacher’s outputs,
thus staying close to adversarial training in spirit. In contrast, knowledge distillation with
input gradient alignment Shao et al. (2021) achieves distillation by forcing the student to
learn both the logits and the gradients arising out of training samples. To address the above
mentioned concerns, we propose distillation of energy-based models trained with EP.

2 Robustness of EBMs trained with Equilibrium Propagation

The Hopfield-like energy function used to train the EBM, with input 𝑥 and weights 𝑤𝑛, 𝑛 ∈
[1, 𝑁𝑡𝑜𝑡] with 𝑁𝑐𝑜𝑛𝑣 convolutional layers and 𝑁𝑡𝑜𝑡 − 𝑁𝑐𝑜𝑛𝑣 fully connected layers, is given as

𝐸(𝑥, {𝑠𝑛}) = ∑
𝑛<𝑁conv

𝑠𝑛+1 ⋅ 𝒫(𝑤𝑛+1 ⋆ 𝑠𝑛) +
𝑁tot−1

∑
𝑛=𝑁conv

𝑠𝑛+1⊺ ⋅ 𝑤𝑛+1 ⋅ 𝑠𝑛 + 1
2‖𝑠2‖ (1)

where 𝒫 represents a pooling function, 𝑠0 = 𝑥, 𝑠𝑁𝑡𝑜𝑡 = 𝑦, the network has 𝑁𝑐𝑜𝑛𝑣 convolu-
tional layers and 𝑁𝑡𝑜𝑡 − 𝑁𝑐𝑜𝑛𝑣 total layers. The state evolution for the EBM is thus given
by

𝜕𝑠𝑛

𝜕𝑡 = − 𝜕𝐸
𝜕𝑠𝑛 = −𝑠𝑛 + 𝜎 (𝒫(𝑤𝑛 ⋆ 𝑠𝑛−1) + �̃�𝑛+1 ⋆ 𝒫−1(𝑠𝑛)) (2)

where �̃� is the transpose convolution/linear operation. Given the energy function being
quadratic with respect to the state of the network, the energy is guaranteed to monotonically
decrease over time Scellier & Bengio (2017). In the absence of an activation function, and
an identity pooling function, the state evolution can be simplified to the following form

𝑆𝑡+1 = 𝑊𝑆𝑡 (3)
where the transition matrix 𝑊 and state vector 𝑆 are denoted by

𝑊 =
⎡
⎢
⎢
⎢
⎢
⎣

𝕀 0 0 …
𝑤1 0 𝑤⊺

2 0
0 𝑤2 0 𝑤⊺

3
⋱ 0 ⋱

𝑤𝑁−1 0 𝑤⊺
𝑁

0 𝑤𝑁 0
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The network is said to be in a steady state 𝑆∗ if 𝑆∗ = 𝑊𝑆∗. While diagonalizing a general
nonuniform tridiagonal matrix is nontrivial, let 𝜆𝑖 and 𝜈𝑖 be the eigenvalues and eigenvectors
of the transition matrix, 𝑖 ∈ [0, 𝑁]. Since any input is guaranteed to converge to a steady
state, we know that 𝜆𝑖 ≤ 1 for a transition matrix constructed from the Hopfield-like energy
function. Any initial statevector can thus be written in eigenvector basis in the following
form

𝑆0 =
𝑁

∑
𝑖=0

𝐶𝑖𝜈𝑖 (5)

Applying the transition matrix for 𝑇 timesteps has the following effect

𝑆𝑇 = 𝑊 𝑇 𝑆0 = 𝑊 𝑇
𝑁

∑
𝑖=0

𝐶𝑖𝜈𝑖 =
𝑁

∑
𝑖=0

𝐶𝑖𝜆𝑇
𝑖 𝜈𝑖 (6)

This implies that when 𝑇 → ∞, all contributions from eigenvectors whose eigenvalues are
strictly less than one would vanish i.e., lim𝑇 →∞ 𝜆𝑇

𝑖 → 0 ∀ 𝜆𝑖 < 1. The only basis elements
that survive would be those eigenvectors whose eigenvalues are identically equal to 1. In
other words, for any initial statevector 𝑆0 (as denoted in Eq. 5), the steady state vector
would correspond to

𝑆∗ = ∑
𝑖∶𝜆𝑖=1

𝐶𝑖𝜈𝑖 (7)

In terms of stability and effectively adversarial robustness, any perturbation to 𝑆0 would
thus have to be made to the unit-eigenvalue basis components (𝐶𝑖 where 𝜆𝑖 = 1) in order to
non-trivially affect the steady state of the network. The current work attempts to learn the
effective transition matrix with the help of a feedforward network such that it approximates
lim𝑇 →∞ 𝑊 𝑇 . Next, we present our results on the adversarial robustness of the distilled
feedforward network when subjected to different kinds of adversarial attacks.

3 Experimental Setup

For our experiments, we train a model with equilibrium propagation using symmet-
ric/centered weight updates Laborieux et al. (2021); Scellier et al. (2023) and refer to it
as EP-CNN, which has four convolutional layers with max pooling and a fully connected
layer. To compare the performance of EP with standard models, we train a feedforward
model with the same architecture with backpropagation, hence referred to as BP-CNN.
Furthermore, we also consider adversarially trained feedforward models with various ℓ2 con-
straints and 200 iterations of projected gradient descent (PGD, Madry et al. (2017)). These
models will be denoted by Adv-CNN. Images from the training set were augmented with
random cropping and horizontal flipping and these were the only augmentations used during
training. In the next subsection, we describe distillation of fixed points of EP-CNN into a
feedforward model which we denote as Distilled BP-CNN.

3.1 Attractor Distillation

We aim to mimic the fixed points of a learned EP-CNN but with the help of a feedforward
network. This is achieved by starting with the feedforward BP-CNN backbone, which has
the same number of layers as EP-CNN. For a given input in the training set and starting
with a null state, the EP-CNN is allowed to settle into a fixed point. The ℓ2 distance
between the states of all intermediate layers in the EP-CNN and Distilled BP-CNN
represent the loss which is then further used to compute the backward pass in Distilled
BP-CNN. The loss function to train Distilled BP-CNN is thus defined as

min
𝜃

ℒDist (𝐷𝜃, EP, 𝑥) (8)

ℒDist (𝐷𝜃, EP, 𝑥) =
𝑁−1
∑
𝑖=1

MSE(𝑠𝑖
∗, ̃𝑠𝑖) + CE(𝑠𝑁

∗ , ̃𝑦)
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where 𝜃 are the weights of the Distilled BP-CNN network, 𝑠∗ is the fixed point of EP-
CNN, ̃𝑠𝑖 are the states of intermediate layers of Distilled BP-CNN post activation, for
a given input 𝑥 and ̃𝑦 is the output of Distilled BP-CNN. We would like to note that
it is not necessary for Distilled BP-CNN to have the same architecture as EP-CNN
as one could only be concerned with minimizing the distance between the predictions of
the two models and disregard the states of the previous layers. To this end, we also train
a ResNet-18 model and a Distilled BP-CNN(ℓℓ) to mimic just the prediction layer in
EP-CNN.

ℒ (𝐷𝜃, EP, 𝑥) = CE(𝑠𝑁
∗ , ̃𝑦) (9)

where ̃𝑦 is the output of the distilled model.

3.2 Adversarial Attacks

To evaluate the robustness of our models, we consider three types of attacks: i) Projected
gradient descent (PGD) Madry et al. (2017), a type of white-box attack where the ad-
versary has knowledge of the weights of the model and its predictions. ii) Square Attack
Andriushchenko et al. (2020), a type of black-box attack where the adversary only has infor-
mation of the model predictions and the input. The adversary refines its attacks by making
multiple queries to the model. Black-box attacks are meant to serve as a check for gradient
obfuscation. iii) AutoAttack Croce & Hein (2020), a state of the art attack comprised of
four different types of attacks, two different types of PGD attacksm a Square attack and a
DeepFool attack. The same set of hyperparameters were used to conduct attacks on all the
models.

4 Results on Adversarial Attacks

Since the Distilled BP-CNN has not been adversarially trained, it does not feature a loss
in clean accuracy as is the case with EP-CNN. Similarly both Distilled BP-CNN and
EP-CNN generalize well to different types of attacks, across the CIFAR10 and CIFAR100
datasets (see Fig. 1 and Fig. 2), when compared to adversarially trained CNNs. This is
noteworthy since these models do not involve any special augmentations (such as AutoAug-
ment Cubuk et al. (2019)) that intend to alter the training set in any way, nor do they
involve any adversarial training. Since Distilled BP-CNNs lack the feedback connections
and hence the crucial attractor dynamics, their adversarial robustness is upper-bounded
by the robustness of EP-CNN. However, models that were taught only to mimic the last
layer of EP-CNN (Eq. 9) such as Distilled BP-CNN(ℓℓ) and ResNet-18 did not perform
as well as Distilled BP-CNN. We hypothesize that mimicking the predictions does not
imply learning the dynamics of a model and since the dynamics of EP play a crucial role in
making the model robust, models that do not learn the full steady state of EP-CNN are
vulnerable to attacks.

5 Discussion and Conclusion

Deep neural networks remain vulnerable to adversarial perturbations Szegedy et al. (2014);
Madry et al. (2017), as well as to natural noise Hendrycks & Dietterich (2019). Adversarial
training Madry et al. (2017) remains the state of the art technique for increasing adversarial
robustness of DNNs, however, this is often associated with a drop in clean accuracy Schmidt
et al. (2018); Zhang et al. (2019). Morever, adversarial robustness is directly proportional
to the depth of a network, hence making it unfeasible to deploy large robust models on
edge devices. While perception in humans is a dynamic process and benefits from recur-
rent feedback connections Daniali & Kim (2023), standard hardware is not well-suited for
implementing such dynamical systems, hence leading to loss in robustness. Our proposed
method of distilling EBMs into feedforward networks by learning the attractor states is a
viable method of achieving adversarial robustness in a compute-efficient way.
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Figure 1: Line graph of accuracy as a function of 𝜖 perturbation across different types of
adversarial attacks: a) ℓ2 PGD attack, b) ℓ∞ AutoAttack and c) Square attack on the
CIFAR10 dataset. All errorbars represent a 95% CI over 5 different seeds.
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Figure 2: Line graph of accuracy as a function of 𝜖 perturbation across different types
of adversarial attacks: a)ℓ2 PGD attack, b) ℓ∞ AutoAttack and c) Square attack on the
CIFAR100 dataset. All errorbars represent a 95% CI over 5 different seeds.

Prior attempts address the issue of robust fairness (robustness across different classes) by
increasing the weights of those classes whose representation is difficult to learn Yue et al.
(2024). Other attempts at improving robustness of distilled networks involve dynamic train-
ing with the help of both adversarial teacher and clean teacher models Zhao et al. (2022). A
future work could involve investigating the class wise robustness of both the EP-CNN and
networks distilled from EP-CNN to study how the robustness is transferred across different
classes. We would like to note that most of the state-of-the-art techniques Ham et al. (2024)
that aim at making distilled robust networks are often tested on smaller datasets such as
CIFAR-100 and TinyImageNet, an evidence that scalability of such techniques remains an
issue. While there is limited work on Hopfield networks in the context of knowledge dis-
tillation, the work of Thériault and Tantari aims to provide a theoretical understanding of
student-teacher adversarial robustness of Hopfield model in a generative setting Thériault
& Tantari (2024) and one could adopt a similar formalism to analytically investigate the
robustness of EP.
As noted in earlier works on EP Scellier & Bengio (2017); Scellier et al. (2023), training is
relatively sensitive to its hyperparameters when compared to training an equivalent feedfor-
ward model with backpropagation. We would like to note that distilling the fixed point’s
last layer state i.e., 𝑆𝑁 into a feedforward model was easier than distilling the fixed point’s
entire state vector 𝑆 (see Eq. 4) and we had to adjust the layerwise learning rates in order
to achieve similar clean accuracy as the EP-CNN model. While inference in EP-CNN is
time consuming since it requires performing the free phase until the network settles into a
steady state, inference in Distilled BP-CNN is rather straightforward. While details of
EP-CNN training were not a focus of this work, future directions could involve using this
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insight of distillation to accelerate training of EP-CNN. These methods would be different
from implicit methods like DEQs to make sure the benefits of adversarial robustness are
preserved.
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