
A Appendix

A.1 Preview of Existing Deep OD Methods

Table 8: Representative unsupervised deep OD models from 4 different families (for a broader cover-
age, see surveys [31, 36, 9]), annotated in terms of data used for training, test, and validation/model
selection (if any). No existing work attempts (unsupervised) model selection; vast majority reports
results for a fixed (how, unclear) “recommended” config. or tune some but not all HPs using labeled
validation and even test (!) data. AE: autoencoder, SSL: self-supervised learning, Clean: inlier-only.
Method Year Family Train Test Validation (HP/Model Selection)
RandNet [11] 2017 AE ensemble Polluted =Train None, fixed – sensitivity analysis on some HPs
RDA [48] 2017 AE Polluted =Train Best � on Test, other HPs fixed
DAGMM [49] 2018 AE & density Clean & Pol.d Disjoint None, fixed – sensitivity on reg. param.s {�1, �2}
DeepSVDD [35] 2018 One-Class Clean Disjoint Best ⌫ on Test, other HPs fixed
DROCC [18] 2020 One-Class Clean Disjoint Validation data to tune some (not all) HPs
HRN [23] 2020 One-Class Clean Disjoint 10% of Test for tuning {�, n}, other HPs fixed
(f-)AnoGAN [37, 38] 2017 GAN Clean & Pol.d Disjoint None, fixed
EGBAD [46] 2018 (Bi)GAN Clean Disjoint None, fixed
GANomaly [4] 2018 GAN Clean Disjoint Best reg. weights {wadv, wcon, wenc} on Test, others fixed
GOAD [5] 2020 SSL Clean Disjoint None, fixed
NeuTraL [6] 2020 SSL Clean Disjoint 10% of Test for tuning transformation HPs, others fixed

A.2 Details on Hyperparameter-Sensitivity Analysis

Clean versus Polluted Testbed Setup. For sensitivity analysis, we construct our testbed on several
datasets, including MNIST, CIFAR10, Thyroid and Cardio. For MNIST, we choose Digit ‘4’ and ‘5’
as the inlier-class, individually. For CIFAR10, we choose class ‘automobile’ as the inlier-class. The
inlier-class is assigned the label 0, while we regard all classes other than the inlier-class as outliers and
mark them with label 1 instead. Since MNIST and CIFAR10 are image data, we first apply the global
contrast normalization to each individual image. We utilize the default train/test data-split (supported
with Pytorch vision package). In the Clean setting, we select only the inlier-class data from train
data-split as the training data. We measure and report the AUROC of the compared methods on the
test data-split, with label 0 being the inlier-class and 1 being rest of the classes. In the Polluted setting,
we utilize all the inlier-class data from the train data-split as the label 0, and we mix the data with
10% outlier-classes’ data within the train data-split.

The tabular data, Thyroid and Cardio, are downloaded from the ODDS repository (available at
http://odds.cs.stonybrook.edu/. The data come in Polluted setting, with 2.5% and 9.6%
outliers, respectively. The inliers are labeled 0 and outliers are denoted as label 1. For tabular data,
we transform and scale each feature between zero and one.

We also conduct experiment using GANomaly [4]’s data (MNIST digit ‘4’ as the outlier class, rest as
inliers). The data split and configuration are the same as described in the authors’ provided code.

Model HP Descriptions and Grid of Values.
• VanillaAE:

1. n_layers: number of encoder layers (i.e. depth)
2. layer_decay: the rate of NN width’s shrinkage between current and next encoder

layers, the decoder layers are expanded at the same rate.
3. LR: learning rate
4. iter: number of epochs/iterations

• RDA:
1. � (model-specific reg.): a penalty term that tunes the level of sparsity in the outlier

matrix S (refer to Section 3.1 in [48]).
2. n_layers: number of encoder layers (i.e. depth)
3. layer_decay: the rate of NN width’s shrinkage between current and next encoder

layers, the decoder layers are expanded at the same rate.
4. LR: learning rate
5. inner_iter: number of epochs/iterations to train the underlying autoencoder (AE),

before updating the outlier matrix S and inlier matrix L (refer to Section 4.1 in [48]).
6. iter: number of epochs/iterations in the algorithm, which first separates the training

data into outlier matrix S and inlier matrix L, then trains AE on the inlier matrix.

15

http://odds.cs.stonybrook.edu/


Table 9: We define a grid of 1-3 unique values for each hyperparameter (HP) of each deep OD method
studied. With 4-to-8 different HPs each, the total number of configurations, and i.e. models trained,
quickly grows to several hundreds. When applicable/available, we include the author-recommended
value (marked in bold and underlined) in the respective grid.

Method Hyperparameter Grid #values Method Hyperparameter Grid #values

VanillaAE

n_layers [2, 3, 4] 3

DeepSVDD

conv_dim [8, 16, 32] 3
layer_decay [1, 2, 4] 3 fc_dim [16, 32] 2
LR [1e-3, 1e-4, 1e-5] 3 Relu_slope [1e-1, 1e-3] 2
iter [200, 500, 1000] 3 pretr_iter [200, 350, 400] 3

Total = 81 pretr_LR [1e-4, 1e-5] 2

RDA

� [5e-1, 5e-3, 5e-5] 3 iter [100, 200, 250] 3
n_layers [2, 3, 4] 3 LR [1e-4, 1e-5] 2
layer_decay [1, 2, 4] 3 wght_dc [1e-5, 1e-6] 2
LR [1e-3, 1e-4] 2 Total #models = 864
inner_iter [20, 50] 2

RandNet

n_layers [3, 5, 7, 9] 4
iter [5, 20, 50] 3 layer_decay [0.3, 0.6] 2

Total #models = 324 sample_r [1.00, 1.01] 2

GANomaly

wadv 1 1 ens_size [50, 200] 2
wcon [25, 50, 100] 3 pretr_iter 100 1
wenc [0.1, 1] 2 iter [300, 1000] 2
z_dim [50, 100, 200] 3 LR [1e-2, 1e-3, 1e-4] 3
LR [5e-3, 2e-3, 5e-4] 3 wght_dc 0 1
iter [10, 15, 25] 3 Total #models = 192

Total #models = 162

• DeepSVDD:
1. conv_dim: the output number of channels, after the first- convolutional encoder layer.

After the first-layer, the number of channels expand at rate of 2.
2. fc_dim: the output dimension of the fully connected layer between convolutional

encoder layers and decoder layers, in the LeNet structure [27].
3. Relu_slope: DeepSVDD utilizes leaky-relu activation to avoid the trivial, uninforma-

tive solutions [35]. Here we alter the leakiness of the relu sloping.
4. pretr_iter: In [35], an AE is pre-trained, to set the hypersphere center c to the mean

of the mapped data. pretr_iter determines the number of epochs/iterations to train AE.
5. pretr_LR: the learning rate to pretrain the AE.
6. iter: the number of epochs/iterations in training the DeepSVDD
7. LR: the learning rate during training
8. wght_dc: weight decay rate

• GANomaly
1. wadv: weight parameter that adjusts the adversarial loss function (See Section 3.2 in

[4].)
2. wcon: weight parameter that adjusts the contextual loss, for learning the contextual

information about the input data (See Section 3.2 in [4].)
3. wenc: weight parameter that adjusts the encoder loss and minimizes the distance

between the bottleneck features and the encoder of the generated features (See Section
3.2 in [4].)

4. z_dim: the dimension of the reduced embedded space after the input is passed through
the encoders

5. LR: learning rate
6. iter: number of epochs/iterations

• RandNet
1. n_layers: number of encoder layers (i.e. depth) in BAE
2. layer_decay: the rate of NN width’s shrinkage between current and next encoder

layers, the decoder layers are expanded at the same rate.
3. sample_r: sample size selection for adaptive sampling (See Section 3.3 in [3].)
4. ens_size: number of ensemble members/models
5. pretr_iter: number of epochs/iterations to pretrain the BAE
6. iter: number of epochs/iterations
7. LR: learning rate
8. wght_dc: weight decay rate

16



A.3 Additional Results: Hyperparameter-Sensitivity Analysis

In Fig. 6, we show the AUROC performance of deep OD methods in Clean setting. In Fig. 7, Fig. 8,
Fig. 9 and Fig. 10 we show additional experiment results and AUROC performances over 3 runs with
different random initializations.

Figure 6: AUROC performance of deep OD methods with different HP configurations (circles) on
MNIST-4 with Clean training data showcase notable variation (i.e., sensitivity). Hyper-ensemble (9)
improves notably over Mean (⇤).

A.4 Regularization Effect of Weight Sharing

One noticeable problem with applying autoencoders (AE) and reconstruction loss for outlier detection
is that for AE, the decision boundary is hard to draw due to noise and outliers that can impact the
quality of the reconstruction. In some cases, the AE can overfit to all the data points including the
outliers, causing large false negative rate. In other cases, it may underfit to data and fail to reconstruct
the input satisfactorily. While the “denoising AEs” [44] or “correntropy AEs” [32] may help to
alleviate such problems, they both rely on clean inlier-only data, which is typically not available in
real-world scenarios. On the other hand, ROBOD with AE-S allows an implicit ensemble of various
NN depths and widths and plays a regularization effect on the outliers scores, in effect helping prevent
AE from potential failures due to underfitting or overfitting.

To demonstrate the regularization effect with AE-S, we compare the reconstructed images of AE
versus AE-S, with number of layers {2, 4, 6, 8, 10, 12, 14}, respectively (hidden dimension decays at
a constant rate of 2). We compare the individual AE and AE-S, keeping the other HP-configurations
same, and training under the Polluted setting with MNIST digit ‘5’ as the inlier class. Fig. 11 shows
the reconstructed images with these 7 individual AEs and a single AE-S ensemble, with implicit AE-i
(i 2 {2 . . . 14}). We see that individual AEs are overfitting to the outlier classes (digit ‘3’ and ‘7’)
providing good reconstructions when layers L equal to 2 and 4. In contrast, they underfit and fail to
reconstruct any inliers or outliers when layers L equals to 6, 8, and 10. When L increases to 12 and
14 layers, individual AEs provide low-quality reconstructions to both inliers and outliers, distorting
all outliers to inlier class (digit ‘5’). In contrast, AE-S provides lower-resolution reconstruction for
outlier classes during AE-2 and AE-4, that is overfitting showcases at a lower degree. AE-S can still
provide signal to distinguish the outliers from the inliers from AE-6 through AE-12 where the outliers
gradually become more blurred and start to deform into inlier’s shape. Only at very large depth at
AE-14, AE-S cannot distinguish between outlier instances from inlier instances, providing low quality
predictions to both classes.

Intuitively, this regularization effect is due to the weight sharing between AE-i’s. Since the next AE-i
utilizes the weights optimized by the previous AE-i, the training phase becomes easier and underfitting
is less likely to occur. Moreover, AE-S has a similar structure as U-Net [34], which is known to
reduce the overfitting in medical image segmentation tasks.

While both i-ROBOD and ROBOD average the reconstruction loss from ensemble members, ROBOD
with AE-S structure (and hence parameter sharing) is able to better capture the outlier information
thanks to this regularization effect. This phenomenon also explains why ROBOD’s performance is
better than that of i-ROBOD, e.g. on MNIST datasets in Table 4.

17



Figure 7: AUROC results under varying HP-configurations on MNIST-4 dataset under the Clean (only
train on digit ‘4’ images) and Polluted (digit ‘4’ as inliers, the rest nine classes down-sampled at 10%
as outliers) settings. We conduct each experiment 3 times with different random initialization, where
each plot’s x-axis corresponds to the experiment index. Note: y-axes are not directly comparable –
we use different y-axis to better reflect the spread for each experiment.

A.5 Details on Experiment Setup

A.5.1 Hyperparameter Configurations: Details

In experiments, we compare to VanillaAE, RDA [48], DeepSVDD [35] and RandNet [11]. We have not
compared to GANomaly due to the higher variance of performances we observed during sensitivity
analysis. We define a small grid of values for the HPs of each of these methods.

Because DeepSVDD is originally trained with LeNet [27] (Convolutional AE) structure, we also
implement Convolutional AEs for algorithms that are either pretrained with AEs, or utilize AEs as
the backbone algorithm. The detailed HP configurations are shown in Table 10. The VanillaAE and

18



Figure 8: For DeepSVDD algorithm, we show various HP-configurations’ AUROC results under the
Clean setting. Left: MNIST digit ‘5’ as the inlier data. Right: CIFAR10 ‘automobile’ as the inlier
data. We conduct each experiment 3 times with different random initialization, where each plot’s
x-axis corresponds to the experiment index. Performance reported in the original paper [35] appears
above what we have obtained on average for both datasets.

Figure 9: AUROC results with varying HP configurations for the GANomaly algorithm. We utilize
the same experimental setting as in [4], with MNIST digit ‘4’ as the outlier class, and rest of the digit
classes as inliers (also in Clean setting). The x-axis corresponds to the experiment index among 3
independent runs each with a different random initialization. Performance reported in the original
paper [4] appears above what we have obtained on average.

Figure 10: AUROC results with varying HP configurations for the RandNet algorithm. As RandNet
implementation contains fully connected layers, we evaluate it only on tabular data under Polluted
setting, similar to the experiments in [3]. Left: Thyorid dataset, Right: Cardio dataset. Each plot’s
x-axis corresponds to the experiment index for 3 different runs with random initialization.

RandNet are trained with AE for all three kinds of datasets; DeepSVDD is trained with Convolutional
AE (LeNet) on image data and AE on tabular data; RDA is trained on AE for MNIST and tabular
data, it utilizes Convolutional AE (LeNet) on CIFAR10. If an algorithm is trained with AE as the
underlying structure, we define a shared grid of HPs: number of encoder layers, decay rate (the rate of
NN width’s shrinkage between current and next encoder layers), dropout rate, train learning rate, etc.
Similarly for Convolutional AE, the algorithms apply the same grid of HPs: convolution channels,
fully-connected layer dimensions, weight decay, learning rate, etc.

With respect to model-specific HPs, RDA uses � as a penalty constant for sparsity of the outlier matrix.
It also uses inner_iters and iter, to specify the number of epochs respectively for training an
AE and for separating the data into outlier and inlier matrices. For RandNet, we fix the number of
ensemble members to 5 due to computational overhead in training high-dimensional image datasets,
while [3] uses 50 ensemble members as RandNet is trained on tabular data only. Other model-specific
HP descriptions can be found in Sec. A.2 Model HP Descriptions and Grid of Values.

19



Table 10: Grid of values for the HPs and neural architectures used in experiments.

HPs AE LeNet (MNIST) LeNet (CIFAR10)

Number of encoder layers [2,3,4,5,6] [2] [3]
Decay rate [1.5,1.75,2,2.25,2.5,2.75,3,3.25] - -
Convolution channels - [8] [16]
FC layer dimensions - [16,32,64] [32,64,128]
Dropout rate [0.0,0.2] - -
Weight decay [0,1e-5] [0,1e-5,1e-6] [0,1e-5,1e-6]
Train Learning Rate [1e-3,1e-4] [1e-4,1e-5] [1e-4,1e-5]

NN settings for dataset: MNIST CIFAR10 Tabular Data

VanillaAE AE AE AE
DeepSVDD LeNet (MNIST) LeNet (CIFAR10) AE
RDA AE LeNet (CIFAR10) AE
RandNet AE AE AE

Method Other HP settings

VanillaAE train iters: [250,500]
RDA �: [1e-1,1e-3,1e-5], iters: [20,30], inner iters: [20,30]
DeepSVDD LeakyRelu Slope: [1e-1, 1e-3], pretrain iters: [100,350],

pretrain lr: [1e-4], train iters: [250,500]]
RandNet pretrain iters: [100], pretrain lr:[1e-4] adaptive sampling rate: [1.0]

train iters: [250,500], ens_size = [5]

For each data point, i-ROBOD provides a score by averaging each individual VanillaAE’s reconstruc-
tion error for a data point, thus the training time required for i-ROBOD sums up each VanillaAE’s
time. ROBOD speeds up i-ROBOD with fast ensembles across varying NN depths and widths. Table
11 shows the architecture overview for ROBOD. Specifically, the NN depths and widths are set to 8
and 6, representing the implicit ensembles. ROBOD explicitly ensembles over various train iterations,
learning rates, dropout rate, weight decay, providing an averaged reconstruction error score for each
data point. We also experiment with two subsampling based versions, denoted ROBOD-�, where
� = 0.1 and 0.5, respectively. We let ROBOD-� to train each ensemble member only on 10% or 50%
of the training data, and score “out-of-sample” points, i.e. the rest of the (unseen) data points.

Table 11: ROBOD architecture overview
List of HPs Settings

BatchEnsemble num_models 8 (implicit ensemble over decay rate: [1.5,1.75,2,2.25,2.5,2.75,3,3.25])
num_layers 6 (implicit ensemble over AE-2, AE-4, AE-6,AE-8,AE-10,AE-12)
Train iterations [250,500]
Train Learning Rate [1e-3,1e-4]
Dropout rate [0.0, 0.2]
Weight decay [0, 1e-5]

A.5.2 Dataset Description

Similar to the experiment settings in our sensitivity analysis, we evaluate the baseline methods and
ROBOD on image data (MNIST, CIFAR10) as well as tabular data (Thyroid, Cardio and Lympho).
For MNIST, we conduct three sets of experiments; each chooses digit ‘4’,‘5’, or ‘8’ as the inlier
class, respectively. For CIFAR10, we conduct two sets of experiments, with ‘airplane’ (CIFAR10-0)
and ‘automobile’ (CIFAR10-1) as the inlier classes. For image data, we employ global contrast
normalization to individual images. The inliers are assigned the label 0 and all classes other than
the inlier class will be marked with 1, indicating the outlier class. We conduct all experiments under
the Polluted setting, where we use all the inlier class points from Pytorch’s train data-split as label
0, and combine them with 10% of points from the outlier classes within the train data-split. The
tabular data, Thyroid, Cardio and Lympho, are downloaded from the ODDS repository (available at
http://odds.cs.stonybrook.edu/, which contain 2.5%, 9.6% and 4.1% outliers, respectively.
Similar to image data, the inliers have label 0 and outliers have label 1. Prior to model training, we
transform and scale each feature between zero and one using the MinMaxScaler.

20

http://odds.cs.stonybrook.edu/


A.6 Additional Experiment Results

Fig. 11 is shown to illustrate the regularization effect of parameter sharing in AE-S versus a vanilla
AE. (See A.4 for discussion.)

Figure 11: Left: Reconstructed inlier class instances (MNIST digit ‘5’), generated by individual
AEs vs AE-S structure in ROBOD. Right: Reconstructed outlier class instances (MNIST digit ‘3’
and ‘7’) by individual AEs versus AE-S structure. L denotes the number of layers.

Fig. 12 shows the running time (in log scale) vs. AUROC performance of OD methods (symbols) on
datasets MNIST-4, MNIST-5, CIFAR-airplane, CIFAR-automobile, Thyroid and Lympho.

Figure 12: Running time (in log scale) vs. AUROC of OD methods (symbols) on other datasets.
Vertical bars depict one (1) stdev across HP config.s. ROBOD often improves detection performance
and importantly, provides robust low-variance performance. Sampling based ROBOD reduces running
time considerably with small difference in relative performance.

21



A.7 HP Sensitivity Analysis for Ensemble Models

In this section, we want to show whether or not hyper-ensembles are robust to their own HPs: (1) the
HP value ranges, and (2) the number of sub-models. We remark that the number of sub-models and
HP ranges are directly related for a hyper-ensemble, since expanding (or shrinking) the HP ranges
result in more (or fewer) sub-models constituting the ensemble. Finally, we show how the proposed
ROBOD is robust to both the number of sub-models and varying HP value ranges.

A.7.1 How do HP value ranges affect the ensemble?

Starting with the same HP settings as in Table 10 for VanillaAE, we expand, shrink or shift the HP
ranges for the VanillaAE models, and then measure the resulting accuracy and variance of i-ROBOD,
which assembles multiple VanillaAEs. Table 12 summarizes the various actions taken as compared to
the original settings. For example, in Row 1, the range for the number of auto-encoders is expanded
to also include [7, 8, 9] layers, or shifted to exhibit auto-encoders with [6, 7, 8, 9] layers, shifting from
original [2, 3, 4, 5, 6] layers. Other HPs are also altered in a similar fashion.

Table 12: Overview of i-ROBOD with several HP ranges
List of HPs Original Setting Actions

Number of encoder layers [2,3,4,5,6] Expand:[2,3,4,5,6,7,8,9], Shift:[6,7,8,9], Shrink:[2,3,4]
Train iterations [250,500] Shift&Shrink:[1000], Expand:[250,500,1000]
Decay rate [1.5-3.25] Shrink:[1.5-2.0]
Train Learning Rate [1e-3,1e-4] Shift:[1e-2,1e-3], Expand:[1e-2,1e-3,1e-4]
Dropout rate [0.0, 0.2] Shift:[0.2,0.5], Expand:[0.0,0.2,0.5]
Weight decay [0.0, 1e-5] Shift: [1e-3,1e-4], Expand: [1e-3,1e-4,1e-5,0.0]

We conduct our experiments on the same MNIST dataset with ‘4’ being the inlier digit. For each
experiment, we alter a subset of the HPs from Table 12 and record the AUROC across 3 runs. We
measure the mean and standard deviation of i-ROBOD AUROC in comparison with VanillaAE’s.
Table 6 provides the mean and variance of i-ROBOD, evaluated on the performances over all these
experimental runs, in comparison to training individual VanillaAE. (Detailed results are in Table 13.)

Our results shows that i-ROBOD produces more stable results in all settings than individually trained
models. Moreover, it produces lower variance with respect to its own HPs (2.8) than that of the
individual model results (9.8). Because of the lack of any prior knowledge, for many new models
and architectures, finding a “good” HP range (a set of HPs that potentially contain the best HP for
the task) can be hard. In that case, both the hyper-ensemble and an individual model may achieve
less than satisfactory performance. However, hyper-ensemble is likely to achieve better stability
to the range of HPs, while individual models are more sensitive when finding the optimal range is
unreachable due to lack of validation.

Table 13: The altered HP ranges and AUROC results for i-ROBOD and VanillaAE. For example,
“Number of encoder layers:[6,7,8,9]” means the values are shifted from [2,3,4,5,6] in the original
experiment settings to [6,7,8,9], while the other HPs are the same as before as shown in Table 12.

Altered HP Ranges Mean&Std. (i-ROBOD) Mean&Std. (VanillaAE)

No Changes 84.5±0.0 81.4±9.4
Number of encoder layer: [2,3,4] 86.1±0.0 85.1±6.0
Number of encoder layer:[6,7,8,9] 77.4±0.1 75.1±7.1
Number of encoder layer: [2,3,4,5,6,7,8,9] 82.1±0.0 79.6±8.9
Train learning rate: [1e-2,1e-3] 83.3±0.2 79.7±12.5
Train learning rate: [1e-2,1e-3,1e-4] 83.2±0.1 79.4±12.3
Dropout rate: [0.2,0.5] 83.6±0.2 80.7±9.5
Dropout rate: [0.0,0.2,0.5] 84.1±0.1 81.1±9.6
Train iterations:[1000] 84.5±0.2 80.1±9.6
Train iterations:[250,500,1000] 84.5±0.1 81.2±9.0
Weight decay: [1e-3,1e-4] 79.4±0.1 77.9±3.8
Weight decay: [1e-3,1e-4,1e-5,0.0] 82.6±0.1 80.2±8.2
Decay rate: [1.5,1.75,2.0] 81.4±0.1 78.6±13.4

22



Table 14: We define a grid of values for each HP of our studied DeepSVDD and VanillaAE. With
4-to-8 different HPs each, the total number of configurations quickly grows to several hundreds.
Method Hyperparameter Grid #values Method Hyperparameter Grid #values

VanillaAE

n_layers [2,3,4,5, 6,7,8,9] 8

DeepSVDD

conv_dim [8, 16, 32] 3
layer_decay [1.5,1.75,2,2.25,2.5,2.75,3,3.25] 8 fc_dim [16, 32] 2
LR [1e-2, 1e-3, 1e-4] 3 Relu_slope [1e-1, 1e-3] 2
iter [200, 500, 1000] 3 pretr_iter [200, 350, 400] 3
wght_dc [1e-3,1e-4,1e-5,0] 4 pretr_LR [1e-4, 1e-5] 2
Dropout [0.0, 0.2, 0.5] 3 iter [100, 200, 250] 3

Total #models = 6,912 LR [1e-4, 1e-5] 2
wght_dc [1e-5, 1e-6] 2

Total #models = 864

A.7.2 How does the number of sub-models affect the ensemble?

Next we investigate how the number of sub-models change the performance of various deep en-
semble models. Here, we choose DeepSVDD and VanillaAE as the baseline ensembles, for which
results under 764 and 6,912 individual models are reported in Table 14, conducted on MNIST-4
dataset. We subsample the sub-models among all the 764 and 6, 912 models, with sizes equal to
[1, 5, 10, 15, 20, 30, 50, 100, 200, 500]. We conduct each subsampling 100 times independently, and
since we have 3 experimental runs reported in the previous sections of the paper, we provide the
results regarding detection accuracy and variances among 3 ⇥ 100 experimental runs.

Fig. 5 shows the AUROC corresponding to different number of sub-models (for DeepSVDD we have
both Polluted (left) and Clean (middle) settings, and for VanillaAE we have Polluted (right) setting
only). Notice that when the number of sub-models is less than 20, the overall performance variance
is relatively larger, where the ensemble performance is similar to an individual model prediction.
AUROC quickly stabilizes and the variance shrinks as the number of sub-models becomes larger
than 20 –especially for the DeepSVDD’s Clean setting and VanillaAE’s Polluted setting– with little
difference beyond. These results suggest that ensembles are not sensitive to the number of sub-models
beyond a certain size, where the larger the number, the more stable is the performance.

A.7.3 HP Sensitivity Analysis: ROBOD

In this section, we perform the sensitivity analysis to both HP value ranges as well as the number
of sub-models (since they are correlated) for our proposed ROBOD. We extend, shrink or shift the
number of layers and number of BatchEnsemble models within the AE-S structure, which corresponds
to changing the HP-ranges of NN widths and depths. We also recognize the additional training HPs
such as train iterations, learning rate, dropout rate, weight decay, etc. Table 15 summarizes the
HP-ranges we used to conduct our HP-sensitivity analysis based on Table 11. These additional
experiments are on the Cardio dataset. For each set of HP configurations, we repeat 3 experimental
runs and summarizes mean and variance of ROBOD’s AUROC. The results among different hyper-
ensembles (for both HP ranges and number of sub-models) are given in the following two tables,
Table 16 (which alters the AE-S structure HPs) and Table 17 (which alters the other training HPs).

Our results on ROBOD match with the two observations in the previous subsections, in that ROBOD,
the sped-up version of the i-ROBOD hyper-ensemble, provides stable results with the varying (1)
number of sub-models, and (2) HP value ranges. Moreover, the mean performance and standard
deviation of all ROBOD experiments listed in Tables 16 and 17 are considerably more competitive
than all the other benchmarked models we studied, while ROBOD yields smaller variance to its own
HP configurations than many banchmarked models (Table 7).

Our analyses provide practical insights on how to reduce an ensemble model’s sensitivity to their HP
settings. As long as time and resources permit, one should employ as many number of sub-models
as possible, and expand the HP value ranges under a fine grid. In contrast, finding a single set of
optimal/good HPs for an individual OD model is almost infeasible for the unsupervised setting.

23



Table 15: ROBOD HP-ranges overview. Note that num_models corresponds to implicit ensemble
over decay rate [1.5,1.75,2,2.25,2.5,2.75,3,3.25] (see Table 11), and num_layers corresponds to
implicit ensemble over AE-i; e.g. num_layers=6 assembles over AE-2, AE-4, AE-6, AE-8, AE-10,
and AE-12.

List of HPs Original Settings Actions

BatchEnsemble num_models 8 Shrink:[4] Shrink:[5] Shrink:[6] Shrink:[7]
num_layers 6 Shrink:[4] Expand:[8]
Train iterations [250,500] Shift:[500,1000] Expand:[250,500,1000] Shrink: [250]
Train Learning Rate [1e-3,1e-4] Shift:[1e-1,1e-2] Expand: [1e-1,1e-2,1e-3,1e-4]
Dropout rate [0.0, 0.2] Shrink&Shift:[0.5] Expand: [0.0,0.2,0.5]
Weight decay [0, 1e-5] Expand: [1e-4,1e-5,0] Shrink: [0]

Table 16: Results of ROBOD over different AE-S structures. With different num_models and
num_layers, various number of AE models are implicitly assembled. We report the mean AUROC
and standard deviation across 3 runs, along with the number of (implicit) sub-models in parenthesis.

Mean&Std. for different AE-S structures and the number of sub-models

num_models:4 num_models:5 num_models:6 num_models:7
num_layers:4 92.4±0.6 (128) 93.3±0.3 (160) 93.1±0.4 (192) 93.3±0.2 (224)
num_layers:6 93.6±0.4 (192) 93.6±0.1 (240) 93.5±0.1 (288) 93.8±0.3 (336)
num_layers:8 93.8±0.1 (256) 93.7±0.1 (320) 93.5±0.1 (384) 93.8±0.1 (448)

Table 17: The altered HPs and results for ROBOD. For example, “Train iterations: [250,500,1000]”
means that the training iterations are expanded from the original experiment settings (see Table 15)
to include the additional value [1000], while the AE-S HPs are the same as before (BatchEnsemble
num_models equals to 8, num_layers equals to 6). Mean and Std. of AUROC over 3 runs are reported.

Altered HP Ranges Mean&Std. (ROBOD)

No Changes (384 submodels) 93.5±0.1
Train iterations: [250,500,1000] (576 submodels) 93.7±0.1
Train iterations: [250] (191 submodels) 94.0±0.2
Train Learning Rate: [1e-1,1e-2] (384 submodels) 93.7±0.2
Train Learning Rate: [1e-1,1e-2,1e-3,1e-4] (576 submodels) 93.8±0.0
Dropout Rate: [0.5] (191 submodels) 93.7±0.1
Dropout Rate: [0.0,0.2,0.5] (576 submodels) 93.6±0.2
Weight Decay: [1e-4,1e-5,0.0] (576 submodels) 94.0±0.0
Weight Decay: [0.0] (191 submodels) 93.7±0.3

24


	Introduction
	Related Work
	Hyperparameter-Sensitivity Analysis of Deep OD
	Testbed Setup
	Results and Observations

	RobOD: A Deep Hyper-ensemble for Hyperparameter-Robust OD
	Motivation and Overview
	Design Strategies for Speeding up Ensemble Training
	Hyper-ensembling depth: One model for multiple depths
	 Hyper-ensembling width: Zero-masked joint training
	RobOD: The overall hyper-ensemble
	Further speed up by subsampling


	Experiments
	Experimental Setup
	Results

	Conclusion
	Appendix
	Preview of Existing Deep OD Methods
	Details on Hyperparameter-Sensitivity Analysis
	Additional Results: Hyperparameter-Sensitivity Analysis
	Regularization Effect of Weight Sharing
	Details on Experiment Setup
	Hyperparameter Configurations: Details
	Dataset Description

	Additional Experiment Results
	HP Sensitivity Analysis for Ensemble Models
	How do HP value ranges affect the ensemble?
	How does the number of sub-models affect the ensemble?
	HP Sensitivity Analysis: RobOD



