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Abstract

Large models have emerged as the most recent groundbreaking achievements
in artificial intelligence, and particularly machine learning. However, when it
comes to graphs, large models have not achieved the same level of success as in
other fields, such as natural language processing and computer vision. In order to
promote applying large models for graphs forward, we present a perspective paper
to discuss the challenges and opportunities associated with developing large graph
modelﬂ First, we discuss the desired characteristics of large graph models. Then,
we present detailed discussions from three key perspectives: representation basis,
graph data, and graph models. In each category, we provide a brief overview of
recent advances and highlight the remaining challenges together with our visions.
Finally, we discuss valuable applications of large graph models. We believe this
perspective can encourage further investigations into large graph models, ultimately
pushing us one step closer towards artificial general intelligence (AGI). We are the
first to comprehensively study large graph models, to the best of our knowledge.

1 Introduction

In recent years, there has been a growing interesting in large models for both research and practical
applications. Large models have been particularly revolutionary in fields such as natural language
processing (NLP) [, 2, 3] and computer vision (CV) [4} 5, 6], where pre-training extremely large
models on large-scale unlabeled data has yielded significant breakthroughs. However, graphs, which
are commonly used to represent relationships between entities in various domains such as social
networks, molecule graphs, and transportation networks, have not yet seen the same level of success
with large models as other domains. In this paper, we present a perspective about the challenges
and opportunities associated with developing large graph models. First, we introduce large graph
models and outline four key desired characteristics, including graph models with scaling laws,
graph foundation model, in-context graph understanding and processing abilities, and versatile
graph reasoning capabilities. Then, we offer detailed perspectives from three aspects: (1) For graph
representation basis, we discuss graph domains and transferability, as well as the alignment of
graphs with natural languages. Our key takeaway is the significance of identifying a suitable and
unified representation basis that spans diverse graph domains, which serves as a fundamental step
towards constructing effective large graph models; (2) For graph data, we summarize and compare
the existing graph datasets with other domains, and highlight that the availability of more large-scale
high-quality graph data is resource-intensive yet indispensable; (3) For models, we systematically
discuss backbone architectures, including graph neural networks and graph Transformers, as well
as pre-training and post-processing techniques, such as prompting, parameter-efficient fine-tuning,
and model compression. We also discuss LLMs as graph models, which is a newly trending
direction. Finally, we discuss the significant impact that large graph models can have on various
graph applications, including recommendation systems, knowledge graphs, molecules, finance, code
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and program, and urban computing and transportation. We hope that our paper can inspire further
research into large graph model

2 Desired Characteristics of Large Graph Models

Similar to large language models (LLMs) [3]], a large graph model can be characterized as a graph
model with a vast number of parameters which empower it with abilities that are substantially
more powerful than smaller models, thereby promoting the understanding, analyses, and processing
of graph-related tasks. Apart from having numerous parameters, we summarize the key desired
characteristics of an ideal large graph model from the following perspectives. An illustration of these
characteristics is provided in Appendix [A]

1. Graph models with scaling laws: The scaling laws indicate an empirical phenomenon where
the performance of LLMs continues to improve as the model size, dataset size, and training
computation increase [[L6]. This phenomenon offers a clear direction for enhancing performance
and empowering the model to capture complex patterns and relationships within graph data. By
emulating the success of LLMs [17], a large graph model is expected to exhibit emergent abilities
that smaller models lack. However, accomplishing this objective in large graph models is highly
non-trivial, with difficulties span from collecting more graph data to solving technical problems
such as addressing the over-smoothing and over-squashing problem of graph neural networks,
along with engineering and system challenges.

2. Graph foundation model: A large graph model holds greater value when it can serve as a graph
foundation model, i.e., capable of handling different graph tasks across various domains. This
requires the model to gain understandings of the inherent structural information and properties of
graphs to be equipped with “commonsense knowledge” of graphs. The graph pre-training paradigm
is a highly promising path to develop graph foundation models, as it can expose the model to
large-scale unlabeled graph data and reduce the reliance on expensive and laborious collection of
graph labels. Besides, a generative pre-training paradigm can potentially empower the model with
the ability to generate graphs, thereby opening up possibilities for valuable applications like drug
synthesis, code modeling, and network evolution analysis [[18]]. It is worthy clarifying that, since
graphs serve as general data representations with extreme diversity, it is exceedingly challenging,
if not unlikely, to develop a “universal graph model” for all graph domains. Therefore, multiple
graph foundation models may be necessary for different “clusters of domains”, which is somewhat
different from LLMs or foundation models in computer vision.

3. In-context graph understanding and processing abilities: An effective large graph model is
expected to comprehend graph contexts, including nodes, edges, subgraphs, and entire graphs, and
process novel graph datasets and tasks during testing with minimum samples as well as without
intensive model modifications or changes in the paradigm. This characteristic is also closed
related to and can facilitate capabilities of few-shot/zero-shot graph learning [19]], multi-task graph
learning [20], and graph out-of-distribution generalization [21]. Moreover, these abilities are vital
when the input graph data and task are different between the training and testing stages. In-context
learning abilities can enable large graph models to leverage knowledge learned in the pre-training
stage and quickly adapt to the testing stage with desired performance.

4. Versatile graph reasoning capabilities: Although graphs span diverse domains, there exist
common and fundamental graph tasks. We generally refer to handling of these tasks as “graph
reasoning”. While there is no clear consensus on what these tasks are, some representative examples
are provided as follows. Firstly, a large graph model should understand basic topological graph
properties, such as graph sizes, node degrees, node connectivity, etc. These properties form
the foundation for a deeper understanding of graph structures. Secondly, a large graph model
should be able to flexibly and explicitly reason over multi-hop neighborhoods, enabling it to
perform more sophisticated tasks. Such capabilities, akin to the chain-of-thought of LLMs [22]
in principle, can also enhance transparency in the graph decision-making process and improve
model explainability [23]. Lastly, besides local information, a large graph model should be able to
understand and handle graph tasks that involve global properties and patterns, such as the centrality
and position of nodes, overall properties of graphs, the evolution laws of dynamic graphs, etc.

There are also works to use graphs to improve large language models, such as enhancing their reasoning
ability 7,181 19|10, [11}[12,113]] or using graphs as tools [[14}[15]], which is beyond the scope of this paper.



3 Graph Representation Basis

3.1 Graph Domains and Transferability

Large models, LLMs, serve as foundation models [24], as they can be adapted to a wide range
of downstream tasks after being pre-trained. The remarkable ability of LLMs stems from the
underlying assumption of the existence of a common representation basis for various NLP tasks. For
instance, word tokens for natural language processing are universal and information-preserving data
representations that do not rely on specific tasks. In contrast, graphs are general data structures that
span a multitude of domains. Therefore, the raw input data, i.e., nodes and edges, may not always
be the most suitable representation basis for handling all graph data. Nodes and edges in social
networks, molecule graphs, and knowledge graphs, for instance, have distinct meanings with their
unique feature and topological space. Thus, directly sharing information and transferring knowledge
based on input graph data often poses significant challenges.

It is widely believed that there exist more high-level or abstract common graph patterns, which can
be shared across different graphs and tasks within a certain domain. For example, many human
interpretable patterns have been identified in classical network science [25], such as homophily,
small-world phenomenon, power-law distribution of node degrees, etc. Nevertheless, even with these
high-level shared knowledge, creating effective large models that can perform well across diverse
graph domains is still non-trivial.

3.2 Aligning with Natural Languages

Another key competency of recent large models is their ability to interact with humans and follow
instructions, as we are naturally capable of understanding languages and visual perceptions. In
contrast, humans are less capable of handling graphs, especially more complex reasoning problems.
As aresult, communicating and instructing large models to behave for graph tasks the way we desire,
especially using natural languages, is particularly challenging. We summarize three categories of
strategies worth exploring to overcome this obstacle.

The first strategy is to align the representation basis of graphs and text through a large amount of
paired data, similar to computer vision in principle. If successful, we will be able to interact with
graph models using natural languages. For example, we can ask the model to generate molecule
graphs with desired properties or ask the model to perform challenging graph reasoning tasks. Some
initial attempts have been made for text-attributed graphs [26, 27]], which serve as a good starting
point. However, collecting such data for general graphs is much more costly and challenging than
image-text pairs.

The second strategy is to transform graphs into natural languages, and then work solely in the
language basis. Some initial attempts using this strategy have been developed, where graph structures
are transformed into text representations, such as the adjacency list or the edge list, and inserted into
LLMs as prompts. Then, natural languages are used to perform graph analytical tasks. We provide
more detailed discussions in Section[5.4, However, directly transforming graph data and tasks into
languages may lose the inner structure and inductive bias for graphs, resulting in unsatisfactory task
performance. More delicate designs, such as effective prompts to convert graph structures and tasks
into texts, are required to further advance this strategy.

The last category is to find other representation basis as a middle ground for different graph tasks and
natural languages. The most straight-forward way is to use some hidden space of neural networks.
However, it faces the challenge that deep neural networks are largely not explainable at the moment,
not to mention that finding the desired shared hidden space can be frustratingly challenging. On
the other hand, although humans are not capable of directly handling graph data, we can design
appropriate algorithms to solve graph tasks, including many well-known algorithms in graph theory
such as finding shortest paths, dynamic programming, etc. Therefore, if we can align the behavior of
graph models with these algorithms, we can understand and control the behaviors of these models to a
certain extent. Some efforts have been devoted in this direction, known as algorithmic reasoning [28]],
which we believe contains rich potentials.

In summary, finding the suitable representation basis, potentially aligning with natural languages,
and unifying various graph tasks across different domains is one fundamental step towards building
successful large graph models.



4 Graph Data

The success of big models is largely dependent on the availability of high-quality, large-scale datasets.
For instance, GPT-3 was pre-trained on a corpus of approximately 500 billion tokens [1]], while CLIP,
a representative model that bridges natural language processing and computer vision, was trained
on 400 million image-text pairs. It is reasonable to assume that even more data has been utilized
in more recent large models, such as GPT-4 [29]]. This massive amount of data for NLP and CV
tasks is typically sourced from publicly accessible human-generated content, such as web pages in
CommonCrawl or user-posted photos in social media, which are easily collected from the web.

In contrast, large-scale graph data is not as easily accessible. There are typically two scenarios for
graph data: numerous small-scale graphs, such as molecules, or a single/few large-scale graphs, such
as social networks or citation graphs. For example, Open Graph Benchmark [30], one of the most
representative public benchmarks for graph machine learning, includes two large graph datasets:
MAG?240M, which contains a large citation graph with approximately 240 million nodes and 1.3
billion edges, and PCQM4M, which contains approximately 4 million molecules. However, their
scale is considerably lower than the datasets used in NLP or CV. If we treat each node in MAG240M
as a token (though a node may contain arguably more information) or each graph in PCQM4M as an
image, these graph datasets are at least 103 to 10* times smaller than their NLP or CV counterparts.

In addition to the data utilized for pre-training, commonly accepted and widely adopted benchmarks,
such as SuperGLUE [31]] and BIG-bench [32] for NLP and ImageNet [33] for CV, have been found to
be beneficial in the development of large models. These benchmarks are especially useful in assessing
model quality and determining the most promising technical routes during the early stages. Although
there are numerous benchmarks available for graph learning, such as Open Graph Benchmark [30]
and Benchmarking GNN [34], it is likely that their scope, including factors like scale, task and
domain diversity, and evaluation protocols, may not be suitable or sufficient for evaluating large graph
models. Therefore, the creation of more specialized benchmarks can further facilitate the progress of
large graph models.

In summary, the availability of high-quality graph data is critical to the development of large graph
models, which requires more resources and efforts. Since collecting such graph data is difficult and
costly, community-wide collaboration may be essential to accelerate this process.

5 Graph Models

In this section, we continue the discussion from the graph model aspect. Similar to large models in
other domains, we divide our discussion into three topics: backbone architecture, pre-training, and
post-processing. We also discuss LLMs as graph models, which is a recently trending direction.

5.1 Backbone Architecture

To date, Transformers [35]] have been the de facto standards for NLP and CV. However, no similar
consensus has been reached for the graph domain. We briefly discuss two promising deep learning
architectures for graphs: graph neural networks (GNNs) and graph transformers.

GNNs are the most popular deep learning architectures for graphs [36] and have been extensively
studied. Most representative GNNs adopt a message-passing paradigm, where nodes exchange
messages with their neighbors to update their representations. GNNs can incorporate both structural
information and semantic information such as node and edge attributes in an end-to-end manner.
However, despite achieving considerable successes in many graph tasks, one key obstacle for further
advancing GNNs into large models is their limited model capacity. As opposed to the scaling law in
large models [16], the performance of GNNs saturates or even dramatically drops as the model size
grows. Many research efforts have been devoted to explain this problem, such as over-smoothing [37]]
and over-squashing [38], as well as strategies to alleviate it. Nevertheless, progress has not been
groundbreaking. To date, most successful GNNs only have at most millions of parameters, and
further scaling to billions of parameters leads to minimum or no additional improvement.

Graph Transformer is another architecture that extends and adapts the typical Transformers for graph
data [39]. In a nutshell, since classical Transformers cannot naturally process graph structures, Graph
Transformer adopts various structure-encoding strategies to add graph structures to the input of



Transformers [40]. Graph Transformers evaluate the importance of each neighboring node, giving
larger weights to nodes that provide more pertinent information. The self-attention mechanism
empowers Graph Transformers the ability to dynamically adapt. One of the most successful graph
Transformers is Graphormer [41]], which ranked first in the PCQM4M molecule property prediction
task of OGB Large-Scale Challenge [42] in 2021. More efforts further improve Graph Transformer
from various aspects including architecture designs, efficiency, model expressiveness, etc. For exam-
ple, Structure-Aware Transformer (SAT) [43] proposes a new self-attention mechanism to capture the
structural similarity between nodes more effectively. AutoGT [40] proposes a unified graph trans-
former formulation for existing graph transformer architectures and enhances the model performance
using AutoML. To improve efficiency, General, Powerful, and Scalable graph Transformer (GPS) [44]
introduces a general framework with linear complexity by decoupling the local edge aggregation from
the fully-connected Transformer. NAGphormer [435]] also aims to address the complexity challenge of
graph Transformers for large graphs by treating different hops of neighbors as a sequence of token
vectors. For the expressiveness, SEG-WL test [46] introduces a graph isomorphism test algorithm,
which can be used for assessing the structural discriminative power of graph Transformers. FeTA [47]]
analyzes the expressiveness of graph Transformers in the spectral domain and proposes to perform
attention on the entire graph spectrum.

We briefly summarize the key differences between GNNs and graph Transformers, while more
discussions for the relationships between transformers and GNNs can be found [48] 149|150, 51]:

» Aggregation vs. Attention: GNNs employ message passing functions to aggregate information
from neighboring nodes, whereas Graph Transformers weigh contributions from neighbors using
self-attentions, potentially enhancing the flexibility for large graph models.

* Modeling structures: GNNs naturally incorporate graph structures in the message passing functions
as an inductive bias, while graph Transformers adopt pre-processing strategies, such as structure-
encoding, to incorporate structures.

* Depth and Over-smoothing: As aforementioned, deep GNNs may suffer from over-smoothing,
leading to a decrease in their discriminative power. Graph Transformers, on the other hand, do not
exhibit similar issues empirically. One plausible explanation is that Graph Transformers adaptively
focus on more relevant nodes, enabling them to effectively filter and capture informative patterns.

* Scalability and Efficiency: GNNs, with their relatively simpler operations, may offer computational
benefits for certain tasks. In contrast, the self-attention mechanism between node pairs in Graph
Transformers can be computationally intensive, especially for large graphs. Considerable efforts
have been dedicated to further enhancing the scalability and efficiency for both methods.

While both GNNs and Graph Transformers have made remarkable progress, it is not very clear which
one, or some other architectures, may be best suited as the backbone for large graph models. Besides
empirical evidence from trials and errors, further research into how large models work and what
graph problems they may solve could bring principled advancements. It is also worth noting that most
graph tasks relate to reasoning rather than perception. Therefore, the inductive bias in architecture
designs usually does not come from mimicking human brains.

In our opinion, given the scale of existing graph datasets, GNNs are still a strong backbone model
thanks to their strong inductive bias and expressive power. However, as the size of the training graph
datasets continues to increase, graph Transformers may become more powerful through increasing
the number of parameters and gradually become the prevailing approach.

5.2 Pre-training

Pre-training, as a widely adopted practice in NLP with well-known models like BERT [2]] and
GPT [52], involves training a model on a massive dataset before applying it for specific tasks. The
primary objective is to capture general patterns or knowledge present in the data and subsequently
adapt the pre-trained model to meet downstream requirements. Graph pre-training, also known as
unsupervised or self-supervised graph learning, has received significant attention in recent years [53,
54]. It aims to capture the inherent structural patterns within the training graph data, analogous to
how language models capture the syntax and semantics of languages. As explained in Section[2] we
recognize pre-training as an essential paradigm for large graph models. Next, we provide a more
detailed discussion of graph pre-training.



Compared to the straightforward yet effective masking operation used in language modeling,
graph pre-training strategies are more diverse and complicated, ranging from contrastive to pre-
dictive/generative approaches. Generally, graph pre-training methods leverage the rich structural
and semantic information in the graph to introduce pretext learning tasks. Through these tasks, the
pre-trained model learns useful node, edge, or graph-level representations without relying on explic-
itly annotated labels. In contrastive pre-training methods, positive and negative graph samples are
constructed through various graph data augmentation techniques, followed by optimizing contrastive
objectives, such as maximizing the mutual information between positive and negative pairs. On the
other hand, in generative and predictive methods, specific components of the graph data, such as
node features and edges, are first hide by masking. Then, the graph model aims to reconstruct the
masked portions, which serve as pseudo-labels for pre-training. For more details, we refer readers to
dedicated surveys [53] 54].

We summarize the desired benefits of graph pre-training using the following “four-E" principle:

* Encoding structural information: Unlike pre-training methods for other types of data, such
as languages and images, which focus primarily on semantic information, graphs contain rich
structural information. Pre-training large graph models essentially needs to integrate structural
and semantic information from diverse graph datasets. This also highlights the unique challenges
and opportunities of graph pre-training.

» Easing data sparsity and label scarcity: Large graph models, with their substantial model capacity,
are prone to overfitting when confronted with specific tasks that have limited labeled data. Pre-
training on a wide range of graph datasets and tasks can act as a regularizing mechanism, preventing
the model from overfitting to a specific task and improving generalization performance.

* Expanding applicability domains: One of the hallmarks of pre-training is the ability to transfer
learned knowledge across various domains. By pre-training large graph models on diverse graph
datasets, they should be able to capture a wide range of structural patterns, which can then be
applied, adapted, or fine-tuned to graph data in similar domains, maximizing the model’s utility.

* Enhancing robustness and generalization. Pre-training methods can expose large graph models to
diverse graphs with distinct characteristics, including varying sizes, structures, and complexities.
This exposure can potentially lead to more robust models that are less sensitive to adversarial
perturbations [55]]. Moreover, models trained in this manner are more likely to generalize well to
unseen graph data or novel graph tasks.

In summary, graph pre-training is not merely a beneficial or supplementary step, but a pivotal and
necessary paradigm for large graph models.

5.3 Post-processing

After obtaining a substantial amount of knowledge through pre-training, LLMs still require post-
processing to enhance their adaptability to downstream tasks. Representative post-processing tech-
niques include prompting [56l], parameter-efficient fine-tuning [S7]], reinforcement learning with
human feedbacks [58]], and model compression [59]. For graphs, some recent efforts have also been
devoted to study post-processing techniques for pre-trained models.

Prompting originally refers to methods that provide specific instructions to language models for
generating desired contents for downstream tasks. Recently, constructing prompts with an in-context
learning template demonstrates great effectiveness in LLMs [60]. Language prompts usually contain a
task description and a few examples to illustrate the downstream tasks. Graph prompts, which mimic
natural language prompts to enhance downstream task performance with limited labels and enable
interaction with the model to extract valuable knowledge, have been extensively studied [61]. One
significant challenge for graph prompts is the unification of diverse graph tasks, spanning from node-
level and link-level to graph-level tasks. In contrast, tasks in natural language can be easily unified as
language modeling under specific constraints. To tackle this challenge, GPPT [62] unifies graph tasks
into edge prediction, considering that a typical node classification task can be reformulated as the
link prediction task between the structure-token and the task-token. Each structure-token represents a
node in the graph data, and each task-token corresponds to a class. GraphPrompt [61] further extends
the idea and unifies link prediction, node classification, and graph classification as subgraph similarity
calculation by describing node and graph classes as prototypical subgraphs. Similarly, ProG [63]



reformulates node and edge-level tasks as graph-level tasks and further proposes multi-task prompting
by realizing prompting as a learnable token that is directly added to the node feature, mirroring the
prefix phrase prompting technique in NLP. ProG also employs meta learning to learn prompting for
different tasks. Other graph prompts such as PRODIGY [64], GPF [65], Gare [66], SGL-PT [67],
DeepGPT [68], and G-Prompt [69] follow similar principles.

Parameter-efficient fine-tuning refers to techniques where only a small portions of model parameters
are optimized, while the rest is kept fixed. Besides reducing computational costs, it also helps to enable
the model to adapt to new tasks without forgetting the knowledge obtained in pre-training, preserving
the general capabilities of the model while allowing for task-specific adaptation. Graph parameter-
efficient fine-tuning has also recently begun to received attention. For example, AdapterGNN [70]
and G-Adapter [[/1] both investigate adapter-based fine-tuning techniques for graph models, aiming
to reduce the number of tuneable parameters while preserving comparable accuracy. Specifically,
AdapterGNN tunes GNNs by incorporating two adapters, one inserted before and another one after
the message passing process. On the other hand, G-Adapter focuses on graph transformers and
introduces a message passing process within the adapter to better utilize graph structural information.
S2PGNN [72] further proposes to search for architecture modifications to improve the adaptivity of
the fine-tuning stage.

Model compression aims to reduce the memory and computational demands of models through
various techniques, including knowledge distillation, pruning, and quantization, which are particularly
valuable when deploying large models in resource-constrained environments. Here, we focus on
quantization, which has gained popularity and proven effectiveness in LLMs [3]], and refer readers
to dedicated surveys for other methods [73} [74} [75]. Quantization entails reducing the precision
of numerical values used by the model while preserving model performance to the greatest extent
possible. In the case of large models, post-training quantization (PTQ) is particularly preferred,
as it does not require retraining. PTQ in graph learning has also been explored in SGQuant [[76],
which proposes a multi-granularity quantization technique that operates at various levels, including
graph topology, layers, and components within a layer. Other methods such as Degree-Quant [[77]],
BiFeat [78]], Tango [[79], VQGraph [80Q], A2Q [&1]], and AdaQP [82] adopt a quantization-aware
training scheme, which are inspiring but cannot be used standalone during the post-processing stage.

In summary, the success of post-processing techniques shown in LLMs has sparked interest in similar
research in the graph domain. However, due to the unavailability of large graph models at present, the
assessment of these methods is limited to relatively small models. Therefore, it is crucial to further
verify their effectiveness when applied to large graph models, and more research challenges and
opportunities may arise.

5.4 LLMs as Graph Models

Recent research has also explored the potential of directly utilizing LLMs for solving graph tasks.
The essential idea is to transform graph data, including both graph structures and features, as well as
graph tasks, into natural language representations, thereby treating graph problems as regular NLP
problems. In the following discussion, we provide a brief overview of these advancements. More
detailed discussions are provided at Appendix

NLGraph [83]] conducts a systematic evaluation of LLMs, such as GPT-3 and GPT-4, on eight graph
reasoning tasks in natural language, spanning varying levels of complexity, including connectivity,
shortest path, maximum flow, simulating GNNS, etc. It empirically finds that LLMs show preliminary
graph reasoning abilities, but struggle with more complex graph problems, potentially because they
solely capture spurious correlations within the problem settings. Meanwhile, GPT4Graph [84]] also
conducts extensive experiments to evaluate the graph understanding capabilities of LLMs across
ten distinct tasks, such as graph size and degree detection, neighbor and attribute retrieval, etc. It
reveals the limitations of LLMs in graph reasoning and emphasizes the necessity of enhancing their
structural understanding capabilities. LLMtoGraph [85] also tests GPT-3.5 and GPT-4 for various
graph tasks and makes some interesting observations.

More recently, Graph-LLM [86] systematically investigates the utilization of LLMs in text-attributed
graph through two strategies: LLMs-as-Enhancers, where LLMs enhance the representations of
text attributes of nodes before passing them to GNNs, and LLMs-as-Predictors, where LLMs are
directly employed as predictors. Comprehensive studies have been conducted on these two pipelines



across various settings, and the empirical results provide valuable insights into further leveraging
LLMs for graph machine learning. InstructGLM [87] further introduces scalable prompts designed to
describe the graph structures and features for LLM instruction tuning, which enables tuned LLMs
to perform various graph tasks during the inference stage in a generative manner. Experiments
conducted on GNN benchmarks empirically show the strong potential of adopting LLMs for graph
machine learning.

Although still in their early stages, these works highlight that LLMs also represent a promising avenue
for developing large graph models, which is worthy further exploration and investigation.

5.5 Summary

To summarize, substantial research efforts have been devoted to studying various aspects of graph
models. However, there is currently no clear framework for effectively integrating these techniques
into large graph models. Consequently, more efforts are required to compare existing methods and
develop advanced models. In this endeavor, automated graph machine learning techniques [88]], such
as graph neural architecture search, can be valuable in reducing human effort and accelerating the
trial-and-error process.

6 Applications

Instead of attempting to overwhelmingly handle various graph domains and tasks, it may be more
effective to focus on specific graph-related vertical fields by leveraging domain knowledge and
domain-specific datasets. In this section, we highlight several graph application scenarios that can
significantly benefit from large graph models.

6.1 Recommendation System

Graph data naturally exists in recommendation systems. For example, the interaction between users
and items can be modeled as a bipartite graph or more complex heterogeneous graphs that include
clicks, buys, reviews, and more. Currently, LLMs for recommendation systems focus on modeling
semantic information [89], while explicitly utilizing the structural information of graphs has the
potential to yield better results [90]. A potential challenge is that graphs in recommendation system
are usually multi-modal [91]], covering text, images, interactions, etc. Since large models for multi-
modal data are not yet mature, significant efforts are needed to develop truly effective large graph
models for recommendation systems.

6.2 Knowledge Graph

Knowledge graphs are widely adopted to store and utilize ubiquitous knowledge in human society.
LLMs have been used for various knowledge graph tasks [92l[87], including construction, completion,
and question answering. Despite their achievements, most of these methods focus primarily on the
textual information, leaving the structural and relational information of knowledge graphs under-
explored. Large graph models, potentially combined with existing LLMs, can greatly complement
the status quo and further promote research and application of knowledge graphs.

6.3 Molecules

Graphs are natural representations for molecules, where nodes represent atoms and edges indicate
bonds. Building effective graph models for molecules can advance various applications, including
molecular property prediction and molecular dynamics simulations, ultimately benefiting drug
discovery. Currently, some variants of LLMs are applied to molecules [93|94] by first transforming
molecules into strings using SMILES [95]], which allows molecules to be represented and generated as
regular texts. Nevertheless, graphs serve as a more natural way to represent the structural information
of molecules with numerous modeling advantages [96]. Meanwhile, a great number of graph-
based pre-training techniques have also been developed for molecules [97]], including multi-modal
strategies [98]]. Besides, molecule data is relatively easier to collect, e.g., ZINC20 [99] contains
millions of purchasable compounds. Therefore, we believe graph-based or graph-enhanced large
models for molecule modeling can soon to be expected.



6.4 Finance

Graph machine learning has proven to be beneficial for multiple financial tasks such as stock
movement prediction and loan risk prediction [[100]. Moreover, the large abundance of financial data
makes it possible to construct domain-specific large models, exemplified by BloombergGPT [101]].
By combining the strengths of both worlds, the application of large graph models in the field of
finance holds great promise. A potential challenge lies in the sensitive and private nature of most
financial data, making industries reluctant to release related models and data to the public. Efforts
are required to promote open-source initiatives and democratization [[102} [103]] to fully unleash the
potential of large graph models in the finance area.

6.5 Code and Program

Thanks to the large amount of code data available on repository hosting platforms such as GitHub,
LLMs show remarkable ability in understanding and generating codes and programs. Notable
examples include CodeX [104], AlphaCode [[105]], and GPT-4 [29], which have exerted a significant
impact on the programming landscape, potentially even reshaping it. In addition to treating codes and
programs as textual data, graphs offer a natural means to represent the structural aspects of codes. For
example, abstract syntax trees, including control flow graph, data flow graph, etc., effectively capture
the syntactic structure of source codes [[106]. Studies have demonstrated that the integration of
graphs can further enhance the performance of LLMs by providing complementary information [107]].
Therefore, large graph models hold valuable potential for a wide range of code and program-related
tasks, including code completion and generation, code search, code review, program analysis and
testing, among others.

6.6 Urban Computing and Transportation

Graph data is pervasive in the domains of urban computing and transportation, such as road networks.
Therefore, graph machine learning can benefit many applications, including traffic forecasting,
various urban planning and management tasks, crime prediction, and epidemic control [108} [109].
Moreover, large-scale urban data naturally exists, such as mobility data collected from GPS and
diverse sensors. Currently, some LLM-based large models have been explored for urban computing
and transportation, such as TransGPT [110]. Nevertheless, their focus has primarily revolved around
natural language related applications, leaving developing large graph models for broader and more
comprehensive utilization still an open opportunity. One major technical challenge in the process lies
in that graph data in urban and transportation contexts is dynamic in nature, containing complicated
spatial-temporal patterns. Thus, a large graph model needs to effectively capture both structural and
temporal information to achieve satisfactory performance.

6.7 Beyond

The application scenarios we have outlined above are by no means exhaustive. Considering that
graph machine learning has been widely adopted across diverse domains ranging from industrial
applications, such as fault diagnosis [111], IoT [112], power systems [113]], and time-series anal-
ysis [IL14]], to Al for science [[115]], such as physics [[116, [117], combinatorial optimization [118]],
material science [119]], and neural science [120], exploring the usage of large graph models holds
extremely rich potentials.

7 Conclusion

In summary, large graph models can potentially revolutionize the field of graph machine learning, but
they also give rise to a multitude of challenges, ranging from the representation basis, graph data,
graph models, and applications. Meanwhile, promising endeavors are being undertaken to tackle
these challenges, creating exciting opportunities for both researchers and practitioners. We hope that
our perspective will inspire continued efforts and advancements for large graph models.
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Figure 1: An illustration of desired characteristics of a large graph model.

B Detailed Discussions for LLMs as Graph Models

In this section, we summarize and compare different models related to LLMs as graph models. The
overall summarization is shown in Table [T} Specifically, we category the key features into three
groups: model architectures, modeling Graph structure for LLMs, and graph data.

For model architectures, we summarize the following designs:

* Final Predictor: whether the model utilizes GNNs or LLMs to get the final prediction.

e LLMs: which LLMs are utilized in the model. Typical examples include GPT-3 [1], GPT-4 [29],
Llama 2 [121]], etc.

* Need Fine-tuning: whether the model needs to be fine-tuned. Note that if the model does not
necessarily require fine-tuning, but could be fine-tuned to further improve the performance, we
mark it as no. Note that close-sourced LLMs such as GPT-3 and GPT-4 are not tunable.
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» Tunable Components: which parts of the model can be fine-tuned, such as GNNSs, graph Trans-
formers, and LLMs.

* Receptive Field: how many hops of neighbors can be perceived when making predictions. K-hop
indicates the receptive field is determined by the architectures, e.g., the number of layers in GNNs.

One key challenge of using LLMs as graph models is to model graph structures and inject them into
LLMs. As this is usually achieved through prompts, we make the following summarization:

* Prompt Type: whether the model uses textual prompts (i.e., descriptions in texts) or neural prompts
(e.g., through hidden layers in neural networks).

* Prompt Details: the details of the prompt. Common textual prompts include adjacency lists and
neighborhood descriptions, and typical neural prompts include GNNs and graph Transformers.

* Advanced graph-specific prompt: the types of advanced graph-specific prompts, if they are
proposed in the paper.

Lastly, we summarize the graph data used in the experiments. Note that we focus on the experiments
conducted in the original papers, but extensions are possible, e.g., handling larger graphs by using
more computational resources or applying the model to other tasks through minor modifications.

» Dataset Type: what type of graphs are utilized in the experiments, including synthetic graphs,
TAGs, knowledge graphs (KGs), and general graphs.

» Tasks: what type of tasks are considered in the experiments, including algorithmic tasks (various
from degree counting to finding shortest paths, etc.), node classification, link prediction, question
answering (QA), etc.

* #Nodes: the approximate number of nodes handled by the model. If sampling is applied, we only
count the sampled nodes.

* Node Feature: whether and what type of node features can be utilized in the model, including no
attributes, text attributes, and general attributes.

C Graph Data

In this section, we summarize some principles that are helpful while collecting more graph data.

* Domain diversity: To enable large graph models handle different graph applications, it is crucial
to expose the model to different domains of interests, so that large graph model can be adopted
across various fields.

» Type diversity: Graphs have rich types, including homogeneous and heterogeneous, homophily
and heterophily, static and dynamic, directed and undirected, weighted and unweighted, signed
and unsigned, etc. The diversity of graph type is also important to empower the large graph model
handle diverse downstream graphs.

* Statistics diversity: Graphs also have varying statistics, e.g., size, density, degree distribution, etc.
Such diversity should be considered to ensure the effectiveness of large graph model.

 Task diversity: Graph tasks are also distinct, ranging from node-level, edge-level to graph-level,
and from discriminative tasks such as classification and prediction to generative tasks such as
graph generation. Increasing the task diversity in pre-training or post-processing phase can help
developing effective large graph models.

* Modality diversity: Graphs can combine different modalities of data, such as text, images, and
tabular data, which can enrich the utility of the large graph model.
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