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1. Introduction 
 Accelerated materials discovery is imperative for 
advancing technologies in energy conversion, storage, 
and catalysis. However, the search for new inorganic 
materials with multiple functional properties remains 
a formidable challenge due to data scarcity and the 
complexity of multi-objective optimization. In the 
past year, several attempts have been made to 
address these challenges, including MatterGen [1], 
DiffCSP++ [2], and CrystalFormer [3]. However, no 
existing model has successfully demonstrated multi-
property-directed design while explicitly conserving 
space group symmetry across all space groups. 
 
In this study, we present a generative inverse design 
framework that overcomes this limitation by 
integrating Wyckoff-position-based data 
augmentation and transfer learning, enabling the 
controlled generation of novel functional inorganic 
crystal structures while preserving site symmetry 
constraints. Our framework simultaneously 
optimizes key material properties, including space 
group, band gap, and formation energy, facilitating a 
systematic approach to property-driven materials 
discovery beyond P1 translational symmetry 
constraints. 
 
2. Results and discussion 
2.1. Wyckoff augmentation and transfer learning 
Wyckoff augmentation applies space group-
constrained E(3)-transformations to enrich 
crystallographic data by providing multiple, 
symmetry-equivalent views of the same structure, 
thereby expanding the effective training set (Fig 1a). 
This process embeds the necessary symmetry 
constraints directly into the model, enhancing its 
ability to predict functional properties and generate 
site symmetry-compliant materials. 
 
Transfer learning employs a two-step procedure: 
first, the model is pre-trained on a large dataset to 
capture broad, fundamental symmetry–property 
relationships; then, it is fine-tuned on a smaller, 
target-specific dataset to refine the prediction of key 
material properties such as formation energy and 
band gap (Fig 1b). 
 
Combined, these two strategies reduce the MAE for 
formation energy and band gap predictions by 10–
30% while enhancing the reconstruction accuracy of 
Wyckoff positions—essential for preserving crystal 
symmetry—by more than 30%. 

 
Fig. 1: (a) Wyckoff augmentation and symmetry equivalent 
structures; (b) An overview of the multi-property guided 
WyCryst generation framework [4] 
 
2.2 MPVAE Generative Model Performance  
Figure 2 illustrates the multi-property-structured 
latent space learned by the Multi-Property-directed 
Variational Autoencoder (MPVAE), where distinct 
regions correspond to specific target values or ranges 
for band gap, formation energy, and crystal systems. 
Conditional generation shifts the sampling 
distribution from the broad, unconditional baseline 
toward desired property targets, demonstrating the 
MPVAE’s effective control over multiple properties 
simultaneously. 

 
 
Fig. 2: Multi-property-structured latent space and 
conditional generation. (a-c) Property-structured latent 
space: (a) band gap (eV); (b) formation energy (eV/atom); 
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(c) crystal systems; (d-i) Density of property values for 
conditional and unconditional generation using the MPVAE 
model for two different multi-property targets: Condition 1 
(d) band gap = 1.5 eV, (e) formation energy < -1.5 eV/atom, 
and (f) space group ≥ 195; Condition 2 (g) band gap = 4.0 
eV, (h) formation energy < -2.5 eV/atom, and (i) space 
group ≥ 143. 

 

2.3 Multi-property-directed De Novo Generation Task 
In our multi-property directed de novo generation 
task, we aimed to design high symmetry inorganic 
semiconductors with lower formation energies and 
band gaps ranging from 0.5 to 2.0 eV. The end-to-end 
process, illustrated in Figure 3, begins with 
conditionally generating thousands of Wyckoff 
representations that are rigorously screened for 
physicochemical validity, including charge neutrality, 
synthesizability [5], and thermodynamic stability, 
yielding 135 promising candidates. Subsequent DFT 
validations confirm our predictions through detailed 
comparisons of predicted versus DFT-calculated 
formation energies and band gaps, with further 
analysis identifying 8 dynamically stable novel 
semiconductors, as validated by Γ-phonon stability, 
and revealing favorable thermoelectric descriptors 
for potential applications. 
 
 

 

Fig. 3: Validation of property-directed design of 
semiconductor materials. (a) Screening steps for 
generated compounds. (b) WyCryst+ predicted and DFT-
calculated formation energies for 135 candidates. (c) 
WyCryst+ predicted and DFT-calculated band gaps for 35 
semiconductors, colored by the DFT-calculated Ehull. (d, e) 
DFT-relaxed crystal structures and corresponding 
electronic band structures of eight generated 
semiconductors with Γ-phonon stability. 
 
3. Summary 
 In this work, we present a multi-property-directed 
generative model for the inverse design of inorganic 
materials by integrating Wyckoff-position-based data 
augmentation and transfer learning. Our framework 
addresses key challenges in materials discovery, 
particularly data scarcity and multi-objective 
optimization, improving both symmetry-preserving 
crystal generation and prediction accuracy for 
multiple target properties like formation energy, 
band gap, and space group. The integration of 
Wyckoff augmentation and transfer learning 
enhanced both forward property predictions and 
crystal structure generation by leveraging space 
group site symmetry and the two-step learning 
approach. Furthermore, we showcased the MPVAE’s 
capability of controlling the distribution of multiple 
target properties in our multi-objective de novo 
generation tasks. Notably, this framework 
successfully generated 8 novel semiconductor 
materials with targeted functional properties, 
thermodynamic stability, and lattice-dynamic 
stability, offering a significant step forward in AI-
driven inverse design of inorganic materials. 
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