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Summary
Reinforcement learning (RL) algorithms that employ high update-to-data (UTD) ratios

have demonstrated significant improvements in sample efficiency by performing multiple up-
dates per environment interaction. However, this strategy comes at a considerable compu-
tational cost that can render it impractical for large-scale or real-world applications where
efficiency is paramount. In this work we propose Offline Stabilization Phases for Efficient
Q-Learning (SPEQ), a novel RL algorithm that interleaves low-UTD online training with pe-
riodic offline stabilization phases. During these phases, Q-functions are fine-tuned with very
high UTD ratios while keeping the replay buffer fixed, reducing redundant gradient updates
on suboptimal data. To mitigate the overestimation bias problem due to the multiple and con-
secutive updates, SPEQ implements dropout regularization only for critics. This approach
improves computational efficiency without compromising learning effectiveness. Empirical
results on the MuJoCo continuous control benchmark demonstrate that SPEQ significantly
reduces computational overhead while achieving performance comparable to state-of-the-art
high UTD ratio methods.

Contribution(s)
1. We propose SPEQ, a novel reinforcement learning algorithm that integrates periodic offline

stabilization phases to balance computational and sample efficiency.
Context: Our method contrasts with traditional high UTD ratio approaches by strategi-
cally concentrating computational resources in stabilization phases rather than uniformly
distributing Q-function updates.

2. We empirically demonstrate that SPEQ requires from 40% to 99% fewer gradient updates
and from 27% to 78% less training time compared to state-of-the-art, high UTD ratio rein-
forcement learning methods while maintaining competitive performance.
Context: This highlights the computational advantages of structured training schedules
over conventional high UTD ratio strategies.

3. We show that SPEQ outperforms simple reductions in UTD ratio, demonstrating that peri-
odic stabilization phases provide a more effective way to optimize learning efficiency.
Context: This distinction is crucial for designing more scalable and efficient reinforcement
learning algorithms.
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Abstract

High update-to-data (UTD) ratio algorithms in reinforcement learning (RL) improve
sample efficiency but incur high computational costs, limiting real-world scalability.
We propose Offline Stabilization Phases for Efficient Q-Learning (SPEQ), an RL algo-
rithm that combines low-UTD online training with periodic offline stabilization phases.
During these phases, Q-functions are fine-tuned with high UTD ratios on a fixed re-
play buffer, reducing redundant updates on suboptimal data. This structured training
schedule optimally balances computational and sample efficiency, addressing the lim-
itations of both high and low UTD ratio approaches. We empirically demonstrate that
SPEQ requires from 40% to 99% fewer gradient updates and 27% to 78% less train-
ing time compared to state-of-the-art high UTD ratio methods while maintaining or
surpassing their performance on the MuJoCo continuous control benchmark. Our find-
ings highlight the potential of periodic stabilization phases as an effective alternative to
conventional training schedules, paving the way for more scalable reinforcement learn-
ing solutions in real-world applications where computational resources are constrained.
Source code is available at github.com/CarloRomeo427/SPEQ.

1 Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018; Arulkumaran et al., 2017) has gained signif-
icant attention due to its ability to solve complex decision-making tasks through interactions with
environments (Andrychowicz et al., 2018; Schwarzer et al., 2023). However, one of the primary
challenges in RL is sample efficiency, which is the ability to learn effectively from a limited number
of environment interactions. Typically, RL requires millions of interactions with the environment
to achieve strong performance, which becomes impractical in real-world applications where such
interactions are expensive, time-consuming, or risky (Arulkumaran et al., 2017).

Traditional off-policy RL algorithms perform a limited number of optimization updates per interac-
tion stored in the replay buffer, leaving much of the potential learning signal unused (D’Oro et al.,
2023). Recent studies have proposed increasing the Update-To-Data (UTD) ratio – the number of
optimization steps performed per environment interaction – as a simple yet effective strategy to
address this issue (Chen et al., 2021; Hiraoka et al., 2021). By performing more updates for each

https://github.com/CarloRomeo427/SPEQ.git
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Figure 1: Comparison of state-of-the-art high UTD ratio RL approaches and SAC. This plot shows
the performance averaged over four MuJoCo environments as a function of the total number of
gradient steps (averaged over 5 random seeds). While high-UTD methods achieve strong final per-
formance, they require significantly more gradient updates (and training time) compared to SAC. In
contrast, SAC converges rapidly with far fewer updates, but its final performance remains limited.
Solid lines represent the average performance across seeds, whereas the shaded areas indicate the
standard deviation.

experience sampled from the environment, this approach allows the agent to extract more value from
each interaction, thereby improving sample efficiency.

However, the sample efficiency of high-UTD algorithms comes at a significant computational
cost. As illustrated in Figure 1, these approaches typically require significantly more gradient
updates, which increases the overall computational cost and training time (Hiraoka et al., 2021).
SAC (Haarnoja et al., 2018), a low-UTD approach, converges at around one million gradient up-
dates, achieving good performance, while high-UTD solutions such as DroQ (Hiraoka et al., 2021)
and REDQ (Chen et al., 2021) require one to two orders of magnitude more gradient updates, re-
spectively, to converge to a better solution than SAC. The substantial increase in required gradient
updates translates into the substantial amount of time needed for training with high UTD ratios.

This issue becomes particularly critical in scenarios involving robotic agents interacting with the
real world, where computational efficiency is essential (Tang et al., 2024; Paduraru et al., 2021; Li
et al., 2025; Huang et al., 2023; Luo et al., 2024). The trade-off between sample efficiency and
computational cost represents a fundamental bottleneck in the scalability of reinforcement learning
for real-world applications. The primary challenge lies in striking an optimal balance between fully
exploiting high UTD training strategies and maintaining computational feasibility.

In this paper we propose an alternative update schedule to improve the computational efficiency of
off-policy RL through an increase of the performance per gradient step value (see Figure 4). Our
approach, which we refer to as Offline Stabilization Phases for Efficient Q-Learning (SPEQ), com-
bines the SAC (Haarnoja et al., 2018) algorithm with UTD = 1 with periodic offline stabilization
phases during which we interrupt online interaction with the environment, thus fixing the replay
buffer, and fine-tune only the Q-functions (see Figure 2). To mitigate the problem of overestimation
bias, caused by the consecutive updates during offline stabilization, we incorporate dropout regu-
larization (Srivastava et al., 2014; Hiraoka et al., 2021) which has been demonstrated to be more
computationally efficient than large ensemble networks (Chen et al., 2021).

In summary, the key contributions of this work are:

• We propose Offline Stabilization Phases for Efficient Q-Learning (SPEQ), a SAC variant that uses
offline stabilization phases scheduled periodically during online training to achieve competitive
performance while minimizing gradient updates and thus overall computational cost.

• We evaluate SPEQ on the MuJoCo benchmark (Todorov et al., 2012) and compare with state-of-
the-art, high UTD ratio methods. Our experimental results show that SPEQ is significantly more
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efficient, performing from 40% to 99% fewer gradient updates and requiring from 27% to 78%
less training time, while maintaining or surpassing the high-UTD state-of-the-art.

• We show that SPEQ outperforms simple reductions in UTD ratio, demonstrating that periodic
stabilization phases are more effective than high-UTD reinforcement learning approaches.

2 Related Work

The potential of high UTD ratios for off-policy reinforcement learning has been gaining interest
from the RL research community. Model-Based Policy Optimization (MBPO) is a model-based
algorithm that uses a mix of real and synthetic data along with a large UTD ≫ 1, achieving higher
sample efficiency compared to standard model-free algorithms (Janner et al., 2019).

Randomized Ensemble Double Q-Learning (REDQ) is a model-free high UTD ratio approach using
a large ensemble of Q-functions (Chen et al., 2021). Through careful selection of the size of the
ensemble, as proposed by Lan et al. (2020), and using a random subset of the ensemble to estimate
target values, Chen et al. (2021) showed that their approach is able to minimize the expected differ-
ence between the predicted Q-values and the target Q-values (defined as the Q-function bias). The
authors showed that high-UTD algorithms reach sub-optimal performance because they are unable
to cope with this bias. REDQ is independent of the underlying optimization algorithm and can be
implemented on top of any other model-free approach, such as Soft Actor-Critic (SAC) (Haarnoja
et al., 2018), Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), or Twin-Delayed
DDPG (TD3) (Fujimoto et al., 2018). Despite its sample efficiency, the large ensemble renders the
approach expensive from a computational efficiency perspective. In contrast, our method is able
to alleviate the problem of increasing bias in high-UTD scenarios by using only two critics with
their corresponding targets, as in classical Double Q-Learning (Van Hasselt et al., 2016) and thus
avoiding a large ensemble and consequently further increasing computational efficiency.

Through the combination of dropout regularization (Srivastava et al., 2014) and layer normaliza-
tion (Ba et al., 2016), Dropout Q-Functions (DroQ) is able to leverage a smaller ensemble of Q-
functions than REDQ to improve computational efficiency (Hiraoka et al., 2021). Nevertheless, the
total number of gradient steps required for convergence is unchanged with respect to REDQ, thus
leaving room for improvement in terms of computational efficiency.

Sample Multiple Reuse (SMR) is one of the latest state-of-the-art approaches proposed to increase
sample efficiency in model-free, off-policy RL (Lyu et al., 2023). SMR applies multiple gradient
steps using the same batch of transitions while avoiding overfitting thanks to the moving targets
in Q-value estimation. Similarly to REDQ, SMR can be applied on top of different optimization
algorithms, such as SAC and REDQ. However, the main drawback is the overall computational
efficiency: in the REDQ algorithm the UTD ratio is set to 20, and, in combination with SMR, 5 more
gradient steps are performed for each sampled batch. In addition, as we will see in Section 4, SMR
is computationally less efficient than SPEQ due to the larger number of gradient updates needed.

3 Offline Stabilization Phases for Efficient Q-Learning (SPEQ)

D’Oro et al. (2023) observed that, by setting the UTD ratio ≫ 1, high-UTD approaches start to
resemble Offline Reinforcement Learning (Levine et al., 2020; Kumar et al., 2020). The problem
with offline learning sessions interleaved between consecutive interactions with the environment –
a characteristic of all high-UTD approaches – is that the replay buffer is enriched with only one
new experience between one offline learning session and the next. From a computational efficiency
perspective, the high-UTD approach may not be optimal due to excessive gradient updates on sub-
optimal data distributions. Based on these observations, the motivation behind our approach is to
allow the replay buffer to grow in order to gather new and potentially more rewarding and informa-
tive experiences before investing computational resources in high-UTD learning.
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Figure 2: Overview of SPEQ. (a) Classical online RL training with high UTD ratios. For each
environment interaction, the agent is trained UTD times on the replay buffer. (b) Our approach
(SPEQ) which separates the training of the agent into two distinct phases. In the online interaction
phase (b.1), we update the agent only once before moving to the next environment step (equivalent
to UTD = 1). Every F environment steps we switch to an offline stabilization phase (b.2) in which
we fine-tune the agent Q-functions for N optimization steps on the current replay buffer.

Algorithm 1 SPEQ
1: Input: Period of offline stabilization phases F, number of stabilization iterations phases N
2: Initialize policy parameters θ, Q-function parameters ϕ and empty replay buffer D.
3: for m = 1, . . . ,M do
4: Take action am ∼ πθ(·|sm). Observe reward rm, next state sm+1.
5: D ← D ∪ (sm, am, rm, sm+1)
6: if (m mod F ) = 0 then G← N else G← 1.
7: for g = 1, . . . , G do
8: Sample a mini-batch B = {(s, a, r, s′)} from D.
9: Update Q-functions ϕ

10: Update policy θ

We propose SPEQ (Offline Stabilization Phases for Efficient Q-Learning). SPEQ is a variant of SAC
that interleaves low-UTD learning during online interactions with the environment with periodic
offline stabilization phases. The goal of SPEQ is to optimize the computational expense of high-
UTD algorithms by accentuating the offline nature of the learning process.

During the online interactions with the environment we set the UTD = 1 to keep a one-to-one
ratio between agent updates and addition of new experiences to the replay buffer and to minimize
consecutive updates on similar distributions of experiences. This also helps mitigate overfitting to
early-stage transitions (Li et al., 2024; Nikishin et al., 2023; D’Oro et al., 2023). After collecting
enough new experiences, we switch to an offline stabilization stage that fine-tunes the critics on a
fixed replay buffer.

A regularization mechanism for the critic networks is essential in SPEQ due to the very many up-
dates performed in each stabilization phase. Conventional offline reinforcement learning methods
typically employ strong regularizers (e.g. behavioral cloning (Fujimoto & Gu, 2021; Kostrikov
et al., 2021; Kumar et al., 2020)) to mitigate overestimation bias. However, these approaches tend
to be overly conservative in our setting and can significantly slow training (Nair et al., 2020), par-
ticularly since additional interactions with the environment are permitted. To address this challenge,
we adopt dropout regularization (Srivastava et al., 2014), which has been shown to effectively regu-
late Q-value estimates during high-UTD online training (Hiraoka et al., 2021). This choice offers a
computationally efficient alternative by enabling the use of only two critic networks, as in SAC, in
contrast to the large ensemble architectures required in the work by Chen et al. (2021) (see Section 6
in the Supplementary Materials for further analysis). Algorithm 1 gives the pseudocode for SPEQ,
with modifications from the standard SAC implementation highlighted in red.
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Figure 3: (a) Results of varying the number of gradient updates N during offline stabilization on the
MuJoCo Humanoid task, averaged over 5 random seeds. Offline stabilization phases are performed
every F = 10, 000 environment steps. The plot shows that the performance improves by increasing
the number of updates up to about 75K iterations, beyond which further updates result in diminishing
returns. (b) Comparison of SPEQ to DroQ with varying UTD ratios. Increasing the UTD ratio in
DroQ generally leads to improved performance. However, despite performing approximately the
same number of gradient updates as SPEQ, DroQ with a UTD ratio of 9 results in significantly
lower performance. These results indicate that reducing the UTD ratio alone significantly impacts
DroQ’s performance, whereas SPEQ offers a performant and computationally efficient solution.

4 Experimental Results

We evaluate our approach on the OpenAI MuJoCo suite (Todorov et al., 2012) in the following loco-
motion environments: Ant, Hopper, Humanoid, and Walker2d. We compare our approach with the
following algorithms: SAC (Haarnoja et al., 2018), REDQ (Chen et al., 2021), DroQ (Hiraoka et al.,
2021) and SMR (Lyu et al., 2023). All results are averaged over 5 random seeds. In each plot, solid
lines indicate the average evaluation return across seeds, whereas the shaded regions represent the
standard deviation. To ensure a fair comparison with published results we use the implementations
of DroQ and REDQ from Hiraoka et al. (2021)1, and the author implementation of SMR2. To facili-
tate future research, we have released the SPEQ code-base here: github.com/CarloRomeo427/SPEQ.
Finally, to ensure full compatibility with prior results reported in the literature, we selected MuJoCo
version 2.1, thus enabling a consistent and reliable comparison.

We verify the effectiveness of SPEQ over a span of roughly one hundred combinations of different
frequencies (F ) and number of offline steps (N ). For brevity and clarity, we only report the most
significant results. Given that SPEQ combines elements of both SAC (low UTD ratio) and DroQ
(dropout regularization with high UTD updates), through our experimentation we consider SAC as
a lower bound and DroQ as an upper bound in terms of computational efficiency.

Our experiments aim to answer the following research questions:

• Q1: How do periodic offline stabilization phases affect performance?

• Q2: How frequent should offline stabilization phases be?

• Q3: How computationally efficient is SPEQ with respect to the interactions with the environment?

• Q4: How effective is each gradient step in SPEQ at increasing performance?

• Q5: To what extent does SPEQ offline stabilization improve over reducing the UTD ratio?

1https://github.com/TakuyaHiraoka/Dropout-Q-Functions-for-Doubly-Efficient-Reinforcement-Learning.git
2https://github.com/dmksjfl/SMR.git

https://github.com/CarloRomeo427/SPEQ.git
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Table 1: Comparison of SPEQ with state-of-the-art algorithms on 300,000 environment interactions
with the MuJoCo environments in terms of total gradient steps (in millions), training time (in min-
utes), and final score. Compared to high UTD ratio baselines, our method significantly reduces the
number of gradient steps and training time, highlighting the ability of SPEQ to balance computa-
tional efficiency against performance. The score values are reported as mean ± standard deviation.

SAC SMR-SAC DroQ REDQ SMR-REDQ SPEQ (Ours)

Gradient steps 0.9 9.3 12.3 120 600 5.4
Time 91 640 963 2100 1460 462
Score 2894 ± 1117 3422 ± 1534 4673 ± 982 4923 ± 806 3111 ± 1989 4730 ±871

How do periodic offline stabilization phases affect performance? To address Q1, we evaluate
the effect of periodic offline stabilization phases in SPEQ by fine-tuning the Q-functions on a fixed
replay buffer. We vary the number of gradient updates per stabilization phase while keeping the
period fixed at twice the initial exploration phase length. Experiments were conducted on the Hu-
manoid task, averaging results over five seeds. To align with the computational budget of high-UTD
methods, we set an upper bound of N = 200, 000 updates. As shown in Figure 3(a), increasing the
number of steps taken during the offline stabilization initially improves performance, but reaches a
plateau after N = 75, 000. Further updates degrade performance due to Q-function overfitting, re-
ducing generalization (D’Oro et al., 2023), and introducing instability rather than improving policy
robustness.

How frequent should offline stabilization phases be? To address Q2, we evaluate the impact
of varying the stabilization phase period (F ) while keeping the stabilization phase length constant
(N = 75, 000), as identified in the previous experiment. As shown in Figure 3(b), reducing F to
5,000 maintains performance but doubles the computational cost, while increasing F to 50,000 or
100,000 leads to performance degradation because of the significant reduction in the final number
of stabilization steps performed. These results indicate that F = 10, 000 and N = 75, 000 provide
the best trade-off between computational efficiency and learning effectiveness.

Computational Efficiency. To address Q3, we evaluate the computational efficiency of SPEQ
compared to baseline methods. We analyze the following key factors:

• Gradient steps: Total number of gradient updates (in millions), accounting for the number of crit-
ics used in each method. This metric is environment invariant and depends only on the algorithm
used.

• Time: Average runtime per seed (in minutes) across all environments.

• Score: Final evaluation reward averaged over all seeds and environments.

Table 1 gives a comparative analysis of these metrics. All experiments were performed on an Intel
i7-7800X CPU and an NVIDIA GeForce GTX 1080. While SPEQ’s offline stabilization phases in-
crease total gradient steps compared to SAC, it remains significantly more computationally efficient
than high-UTD approaches. Notably, SPEQ requires less than half the gradient updates of DroQ – its
closest methodological baseline – effectively cutting training time in half. SMR-SAC falls between
SPEQ and DroQ in computational cost, but achieves less than half their final performance, demon-
strating an unfavorable trade-off between efficiency and performance. REDQ and SMR-REDQ are
the most computationally expensive, requiring approximately 60x and 12x more gradient updates
than SPEQ, respectively.

Efficiency alone is clearly insufficient without strong performance. As shown in Table 1, SPEQ
is the second best-performing method after REDQ, despite using far fewer updates, 95.5% fewer.
DroQ achieves a similar final score, but SAC and SMR-REDQ achieve about half the performance
of SPEQ. While SMR-SAC may appear computationally efficient, its poor performance highlights
the importance of balancing efficiency with learning effectiveness. SPEQ achieves this balance,
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Figure 4: Comparison of SPEQ against baseline and high-UTD methods. Each algorithm performs
the same number of gradient updates as SPEQ to evaluate the performance per gradient step value,
that is: how effective each gradient step is in increasing performance in a resource-constrained
scenario. We observe that high-UTD methods fail to achieve competitive performance when con-
strained to a limited number of updates. While SAC performs better than the high-UTD approaches,
it requires more environment interactions. On the other hand, SPEQ represents the best trade-off.

requiring from 40% to 99% fewer gradient updates and from 27% to 78% less training time while
maintaining competitive performance.

Learning effectiveness To address Q4, we evaluate the performance per gradient step value to
assess how efficiently each algorithm utilizes gradient updates when constrained to the same to-
tal number of updates as SPEQ. Unlike previous experiments where all methods were trained for
300,000 environment steps, we now standardize the training process by allowing all methods to per-
form exactly the same number of gradient updates as SPEQ. As shown in Figure 4, conventional
high-UTD methods like DroQ, SMR-SAC, SMR-REDQ, and REDQ struggle under this constraint,
with performance remaining close to zero. This highlights the inefficiency of high UTD ratios when
updates are limited, as these approaches fail to leverage their computational advantage effectively
within a restricted gradient budget.

In contrast, SAC, which maintains a more balanced allocation of updates relative to replay buffer ex-
pansion, achieves a higher performance per gradient step value than high-UTD approaches, demon-
strating better computational efficiency. However, SAC remains less performance than SPEQ,
achieving a significant lower final score. These results emphasize the importance of strategically
allocating gradient updates based on the agent’s accumulated experience.

Comparison with Different UTD Ratios. To address Q5, we examine whether SPEQ’s computa-
tional efficiency can be replicated by simply lowering the UTD ratio. We compare SPEQ with DroQ
with UTD values of 2, 3, 9, and 20, the latter being the original DroQ setting (Hiraoka et al., 2021).
While DroQ with UTD = 9 performs approximately the same number of gradient updates as SPEQ,



Reinforcement Learning Journal 2025

0 50000 150000 250000
Environment Steps

0

1000

2000

3000

4000

5000

6000

Ev
al

Re
wa

rd

Ours
DroQ UTD 20
DroQ UTD 9
DroQ UTD 3
DroQ UTD 2

Figure 5: Comparison of SPEQ with DroQ at varying UTD ratios. We see that increasing the UTD
ratio in DroQ generally leads to improved performance. However, despite performing approxi-
mately the same number of gradient updates as SPEQ, DroQ with UTD = 9 results in significantly
lower performance. This indicates that reducing the UTD ratio alone significantly impacts DroQ’s
performance, whereas SPEQ offers a more performant and computationally efficient solution.

its performance is significantly inferior, indicating that dropout regularization alone is insufficient
to achieve the same tradeoff between efficiency and performance. As shown in Figure 5, increasing
the UTD ratio generally improves performance, with DroQ at UTD = 2 or UTD = 3 performing
the worst. Although DroQ with UTD = 20 achieves results comparable to SPEQ, it does so at
twice the computational cost. These findings highlight that SPEQ’s efficiency is not merely a result
of reducing the UTD ratio, but rather stems from a structured training schedule that strategically
allocates computational resources through offline stabilization phases. This demonstrates that our
approach is a distinct and more effective solution for optimizing training efficiency.

5 Conclusions

In this work we introduced SPEQ (Offline Stabilization Phases for Efficient Q-Learning), a novel
offline RL algorithm designed to improve computational efficiency while maintaining high sample
efficiency. Our approach addresses the inefficiencies of conventional high UTD ratio methods by
strategically interleaving low UTD online interactions with periodic offline stabilization phases.
During these stabilization phases, we fine-tune Q-functions with a high UTD ratio without additional
environment interactions, effectively decoupling the trade-off between computational and sample
efficiency.

Through extensive empirical evaluations on the MuJoCo continuous control benchmark, we demon-
strated that SPEQ significantly reduces computational costs while achieving competitive perfor-
mance compared to state-of-the-art high UTD ratio methods. Specifically, SPEQ achieves 40% to
99% fewer gradient updates and reduces training time by 27% to 78%, all while maintaining or
surpassing the sample efficiency of alternative approaches. Our results further highlight that of-
fline stabilization phases are an effective alternative to simply lowering the UTD ratio, providing a
structured and efficient way to allocate computational resources. The relevance of SPEQ lies in its
potential to enhance the scalability and practicality of RL. As RL is increasingly applied to real-
world tasks that demand computational efficiency, methods like SPEQ provide a viable solution to
mitigate excessive training costs while preserving learning effectiveness. Furthermore, our approach
offers a new perspective on the design of training schedules, paving the way for more adaptive and
efficient RL frameworks.
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Future work will focus on developing an automatic stabilization detection mechanism, which moni-
tors relevant training signals, such as the evolution of the Q-value bias, policy improvement rate, or
TD-error stability, to decide when and for how long offline stabilization should occur. This approach
would eliminate the need for fixed hyperparameters and improve generalization across different tasks
and environments. By bridging the gap between computational and sample efficiency, SPEQ offers
a promising direction for the application of reinforcement learning agents into real-world problems,
such as robotics (Tang et al., 2024; Luo et al., 2024; Paduraru et al., 2021) and autonomous driving
(Li et al., 2025; Huang et al., 2023), in which effient solutions are required.
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6 Ablation Study

This section analyzes the impact of different design choices in SPEQ. Specifically, we investigate
the following key questions:

• A1: Is regularization of the Q-functions necessary to mitigate overestimation bias during offline
stabilization phases? Furthermore, is dropout regularization the most effective solution?

• A2: How does updating both the policy and Q-functions during offline stabilization phases impact
performance?

Regularization of the Q-Functions To address A1, we evaluate whether dropout regularization
is required to maintain stability and prevent overestimation bias in the Q-functions during offline
stabilization phases. Additionally, we compare dropout against an alternative regularization strategy
that employs a large ensemble of critics, as proposed in REDQ (Chen et al., 2021). We consider the
following variants of SPEQ for comparison:

• SPEQ w/o dropout: SPEQ without any form of regularization.

• SPEQ w/ ensemble: SPEQ regularized using a large ensemble of critics.

• SPEQ (ours): The proposed SPEQ variant with dropout regularization.

For completeness, we also include vanilla implementations of REDQ (UTD = 20) and SAC
(UTD = 1) to provide a baseline and assess the effects of offline stabilization phases.

As shown in Figure 6, the absence of Q-function regularization (SPEQ w/o dropout) leads to per-
formance degradation, performing even worse than SAC without offline stabilization phases. This
result confirms that regularization is essential when performing multiple consecutive updates on
a fixed replay buffer. Comparing dropout to ensemble-based regularization (SPEQ w/ ensemble),
we observe that dropout achieves superior performance while significantly reducing computational
overhead. The ensemble approach, while effective in mitigating bias, requires a much higher num-
ber of gradient updates due to the presence of multiple critics, making it computationally expensive.
Specifically, the computational cost of SPEQ w/ ensemble scales proportionally to the number of
critics (20 in the original REDQ implementation), further highlighting the efficiency of dropout
regularization.

Impact of Policy Updates During Stabilization Phases To address A2, we evaluate different up-
date strategies during offline stabilization phases by considering the following variants:

• SPEQ (ours): Only the Q-functions are updated during stabilization phases.

• SPEQ w/ policy update: Both the policy and Q-functions are updated.

• SPEQ w/ only policy update: Only the policy is updated.

The results, presented in Figure 7, reveal two key insights: (i) Updating only the policy during
offline stabilization phases leads to a collapse in performance, confirming that Q-function updates
are crucial for effective learning. (ii) Updating both the policy and Q-functions does not yield
additional benefits compared to updating only the Q-functions. Instead, it introduces additional
computational overhead, making the approach less efficient.

These findings indicate that the most effective strategy is to exclusively update the Q-functions
during stabilization phases, as it optimally balances performance and computational efficiency.



SPEQ: Offline Stabilization Phases for Efficient Q-Learning in High UTD Reinforcement Learning

0 50000 150000 250000
Environment Steps

1k

2k

3k

4k

5k

6k

Ev
al

 R
ew

ar
d

SPEQ (Ours)
SPEQ w/ ensemble
SPEQ w/o dropout

SAC
REDQ

Figure 6: Comparison of different regularization techniques for mitigating overestimation bias dur-
ing offline stabilization phases on the MuJoCo Humanoid task, averaged over five random seeds.
SPEQ (OURS) employs dropout regularization for Q-functions, while SPEQ w/ ensemble utilizes a
large critic ensemble. SPEQ w/o dropout does not include any regularization. All SPEQ variants
use the following hyperparameters: UTD = 1, F = 10, 000, N = 75, 000. The plot also includes
REDQ (UTD = 20) and SAC (UTD = 1) as baselines, where F and N are set to zero. The results
demonstrate that (i) Q-function regularization is necessary when performing multiple consecutive
updates and (ii) dropout regularization outperforms ensemble-based regularization while being sig-
nificantly more computationally efficient.
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Figure 7: Evaluation of different update strategies during offline stabilization phases on the MuJoCo
Humanoid task, averaged over five random seeds. The blue line represents SPEQ (ours), where only
the Q-functions are updated. The orange line corresponds to updating only the policy, while the
green line represents updating both the policy and Q-functions. The results indicate that updating
only the policy leads to performance collapse, while updating only the Q-functions yields the best
performance and computational efficiency.


