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A ADDITIONAL RELATED WORKS

Personalized FL: Personalized FL has received much attention. In addition to the clustering and
local fine-tuning methods introduced in the main paper, we also review other types of personaliza-
tion techniques used in FL framework.
Model interpolation: Hanzely & Richtárik (2020) also study a mixed model (local and global
model) with a tuning parameter. In their model, as the mixing parameter decreases, it relaxes the
local model to be similar to the global model, which can be more personalized. Mansour et al.
(2020) propose an idea to combine the global and local model with weight ω, and Deng et al.
(2020) adaptively find the optimal ω→ as a trade-off at each round for the best performance. Zec
et al. (2020); Peterson et al. (2019) both consider using a gating model as a mixing parameter
between local and global models. However, Peterson et al. (2019) consider a linear gating model
and differentially private FL under domain adaptation, while Zec et al. (2020) split data into two
parts used for local and global learning, and they further consider a dropout scenario and the same
gating model structure as local and global models.
Data interpolation: As also suggested in Mansour et al. (2020), in addition to the model interpo-
lation, it is possible to combine the local and global data and train a model on their combination.
Zhao et al. (2018) create a subset of data that is globally shared across all clients. However, this
method is facing the risk of information leaking.

FL with Fairness. In addition to works considering social (group) fairness in FL reviewed in the
main paper, we review other types of FL fairness in detail below.
Performance fairness: This line of work measures fairness based on how well the learned model(s)
can achieve uniform accuracy across all clients. Li et al. (2019a) propose the q-fair FL algorithm
which minimizes the aggregate reweighted loss. The idea is that the clients with higher loss will be
assigned a higher weight so as to encourage more uniform accuracy across clients. Li et al. (2021b)
further extend this by considering robustness and poisoning attacks; here, performance fairness and
robustness are achieved through a personalized FL method. Zhang et al. (2021) aim to achieve small
disparity in accuracy across the groups of client-wise, attribute-wise, and potential clients with ag-
nostic distribution, simultaneously. Wang et al. (2021) discuss the (performance) unfairness caused
by conflicting gradients. They detect this conflict through the notion of cosine similarity, and itera-
tively eliminate it before aggregation by modifying the direction and magnitude of the gradients.
Good-Intent fairness: The good-intent fairness aims to minimize the maximum loss for the pro-
tected group. Mohri et al. (2019) propose a new framework of agnostic FL to mitigate the bias in
the training procedure via minimax optimization. Similarly, Cui et al. (2021) consider a constrained
multi-objective optimization problem to enforce the fairness constraint on all clients. They then
maximize the worst client with fairness constraints through a gradient-based procedure. Papadaki
et al. (2021) show that a model that is minimax fair w.r.t. clients is equivalent to a relaxed minimax
fair model w.r.t. demographic group. They also show their proposed algorithm leads to the same
minimax group fairness performance guarantee as the centralized approaches.
Other types of fairness: There are also other types of fairness considered in the FL literature. For
instance, Huang et al. (2020) studied the unfairness caused by the heterogeneous nature of FL,
which leads to the possibility of preference for certain clients in the training process. They propose
an optimization algorithm combined with a double momentum gradient and weighting strategy to
create a fairer and more accurate model. Chu et al. (2021) measure fairness as the absolute loss
difference between protected groups and labels, a variant of equality opportunity fairness constraint.
They propose an estimation method to accurately measure fairness without violating data privacy
and incorporate fairness as a constraint to achieve a fairer model with high accuracy performance.
Similarly, Zhang et al. (2022) study a new notion of fairness, proportional fairness, in FL, which is
based on the relative change of each client’s performance. They connect with the Nash bargaining
solution in the cooperative gaming theory and maximize the product of client utilities, where the
total relative utility cannot be improved. Similarly, Lyu et al. (2020) study collaborative fairness,
meaning that a client who has a higher contribution to learning should be rewarded with a better-
performing local model. They introduce a collaborative fair FL framework that incorporates with
reputation mechanism to enforce clients with different contributions converge to different models.
Their approach could also be viewed as a variant of clustering that separates clients based on their
contributions.
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B PERSONALIZATION CAN ALSO IMPROVE FAIRNESS: THEORETICAL
SUPPORT

To support and validate our findings from the numerical experiments in Section 4, in this section,
we analytically show that personalized Federated clustering algorithms (which cluster/group similar
clients to improve their models’ local accuracy) can also lead to better local fairness, when compared
to a (non-personalized) shared global model.

We consider the following additional assumptions in our general model of Section 3. We assume
the n clients can be potentially grouped into two clusters, Cω and Cε , based on similarities in their
data distributions fy,c

g (x), with a fraction p of clients in cluster Cω.

We assume features are single dimensional x → R, and that clients can use their local data to learn a
threshold-based, binary classifiers hϑ(x) : R ↑ {0, 1},1 under which samples with features x ↓ ε
are classified as label 1 (i.e., ŷ(ε) = 1). Clients choose these thresholds to minimize classification
errors. Formally, consider a client i from cluster c; let rcg be the fraction of its samples that are from
group g, and ωy,c

g be the fraction of its samples that are from group g and have true label y. The
client chooses its decision threshold ε→i to (empirically) solve the following optimization problem:

ε→i = argmin
ϑ

∑

g↑{a,b}

rcg

(
ω1,c
g

∫ ϑ

↓↔
f1,c
g (x)dx+ ω0,c

g

∫ +↔

ϑ
f0,c
g (x)dx

)
. (3)

For personalized learning, we consider a cluster-based FL algorithm where each cluster can learn its
own optimal cluster-specific model ε→i , i → {ω,ϑ} (obtained after solving equation 3), and contrast
that with the average optimal model ε→G that would be obtained if all n clients collaboratively learn
a shared global model. We then contrast the average local fairness !ω

f (ε) obtained for clients in
cluster Cω under a personalized model ε→ω vs. a shared model ε→G, for two notions of fairness:
f → {EqOp,SP}.

We start with the EqOp (Equality of Opportunity) fairness constraint, which aims to equalize true
positive rates (TPR) between the protected groups a and b. The following proposition shows that if
ε→ω < ε→ε (i.e., the data heterogeneity is such that cluster Cω has a lower optimal threshold than Cε),
then clients in cluster Cω can obtain better local fairness (in addition to better local accuracy) with
their cluster-specific model compared to if they used a global model shared with clients in Cε .
Proposition 1 (Improved EqOp through clustering). Assume fy,c

g (x), y → {0, 1}, g → {a, b}, c →
{Cω, Cε}, are unimodal distributions, with modes my,c

g such that my,c
b ↔ my,c

a , ↗i, c, and ω1,c
g ↓

ω0,c
g , ↗g, c. If ε→ω < ε→ε , there exist a cluster size p̂ such that for p ↓ p̂, we have !ω

EqOp
(ε→ω) <

!ω
EqOp

(ε→G); that is, the global model is more unfair than the cluster-specific model for Cω.

The proof is presented in Appendix B.2.1. Intuitively, clients in Cω are better off under their per-
sonalized model as, given the proposition’s conditions, an increase in the decision threshold (which
happens when moving from ε→i to ε→G) will decrease the TPR of the disadvantaged group b (the one
with a lower mode in its feature distribution) faster than that of the advantaged group a, increasing
the fairness gap for clients in Cω.

(a) SP (b) EqOp
Figure 9: Fairness gap vs ε.

We next consider SP (Statistical Parity) fairness,
which assesses to disparity in the selection (posi-
tive classification) rate between the two protected
groups. This is impacted by both the group a vs.
b feature distributions as well as the label rates, ren-
dering it more stringent than EqOp fairness. Fig-
ure 9 illustrates this by plotting the fairness gap vs.
the decision threshold ε for SP vs. EqOp, showing
that SP exhibits less structured changes as the deci-
sion threshold moves (e.g., due to the use of a global model). Therefore, to facilitate theoretical

1Our analysis assumes one-dimensional features and threshold classifiers. The former can be viewed as the
one-dimensional representation of multi-dimensional features obtained from the last layer outputs of a neural
network. For the latter, existing works (Corbett-Davies et al., 2017; Raab & Liu, 2021) show that threshold
classifiers are optimal when multi-dimensional features can be properly mapped into a one-dimensional space.
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analysis, we further assume that fy,c
g (x) follows Gaussian distributions with equal variance ϖ2 but

different means µy,c
g , such that µ0,c

b ↔ µ0,c
a ↔ µ1,c

b ↔ µ1,c
a ; the ordering is chosen so that label

0 samples have lower features than label 1 samples, and that for the same label, group a samples
have higher features than group b samples (making group a advantaged). We again find that then
clients in cluster Cω can obtain better local SP-fairness (in addition to better local accuracy) with
their cluster-specific model compared to if they joined in on a global model shared with clients in
Cε .

Proposition 2 (Improved SP through clustering). Assume fy,c
g (x), y → {0, 1}, g → {a, b}, c →

{Cω, Cε}, are Gaussian distributions with means µ0,c
b ↔ µ0,c

a ↔ µ1,c
b ↔ µ1,c

a and equal variance

ϖ2
. Assume further that µ1,c

a ↘ µ0,c
a = µ1,c

b ↘ µ0,c
b , ε→ω < ε→ε , and that either ω1,c

g ↓ ω0,c
g , ↗g,

or rcb ↓ rca, ↗c and ω1,c
a > ω0,c

b > ω1,c
b > ω0,c

a . Then, if ω0,c
a exp( (ϑ̄↓µ0,c

a )2

↓2ϖ2 )(ε̄ ↘ µ0,c
a ) ↘

ω1,c
b exp(

(ϑ̄↓µ1,c
b )2

↓2ϖ2 )(ε̄ ↘ µ1,c
b ) ↓ ω0,c

b exp(
(ϑ̄↓µ0,c

b )2

↓2ϖ2 )(ε̄ ↘ µ0,c
b ) ↘ ω1,c

a exp( (ϑ̄↓µ1,c
a )2

↓2ϖ2 )(ε̄ ↘ µ1,c
a )

holds, where ε̄ :=
µ1,c
a +µ0,c

b
2 , there exist a p̂ such that for p ↓ p̂, !ω

SP
(ε→ω) < !ω

SP
(ε→G).

A detailed proof is presented in Appendix B.2.2. Proposition 2 assumes an equal distance between
mean estimates (reflecting a uniform, systematic underestimation of group b features); we relax this
in Appendix D.1-D.4. Intuitively, the proposition states the following: when ω1,c

g > ω0,c
g , there are

more label 1 data in both groups, and ε→G will pull ε→ω up to account for the label imbalance, resulting
in a deterioration in both fairness and accuracy. Similarly, the other condition means that group a’s
clients are majority label 1, while group b’s clients are majority label 0; then, ε→ω < ε̄ if rb ↓ ra,
resulting in a higher fairness gap for clients in Cω under ε→G for the same reason as the first condition.

B.1 ADDITIONAL DISCUSSION ON THE ASSUMPTIONS USED IN THE ANALYTICAL RESULTS

(a) SP (b) EqOp

Figure 10: Fairness under different values of decision threshold

In Fig.10, both cluster-wise SP and EqOp fairness and loss are assessed under the different values
of decision threshold ε on local data, depicted in red and green colors. The solid lines denote the
corresponding fairness performance, while the dotted lines illustrate the corresponding loss under the
corresponding decision threshold. The vertical red/green lines show the optimal decision threshold
determined by solving Eq. 3, with the blue vertical line indicating the FedAvg solution with the
parameter p = 0.5.

For a more insightful comparison, we assume that in the cluster Cε (green), the data distribution
exhibits an equalized distance between distributions, equalized group rate, and equalized label
rate (e.g., (µ1

a, µ
1
b , µ

0
a, µ

0
b) = (10, 9, 7, 6),ωy

g = 0.5, rg = 0.5). Meanwhile, in the cluster Cω
(red), we relax all of these assumptions (e.g., (µ1

a, µ
1
b , µ

0
a, µ

0
b) = (7, 6, 4, 2), (ω1

a,ω
1
b ,ω

0
a,ω

0
b) =

(0.6, 0.3, 0.4, 0.7), (ra, rb) = (0.65, 0.35)). The comparison depicted in Fig. 10 reveals that the SP
fairness exhibits less structured changes as the decision moves (e.g., due to the used of a global
model). This is because EqOp fairness solely considers the true positive rates across two protected
groups. The observation also underscores the necessity for more restrictive assumptions in our ana-
lytical support for SP fairness (Proposition 2).
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B.2 PROOFS

B.2.1 PROOF OF PROPOSITION 1

For simplicity, we assume that clients within the same cluster are identical. Before we show the
impact of the global model ε→G on the fairness performance, we first prove that the global model will
lie between two clusters’ models ε→ω and ε→ε .

Lemma 1. Under the assumptions of our problem setup, the optimal solution ε→G for the FedAvg

algorithm will lie between ε→ω and ε→ε .

Proof. We prove this by contradiction. By definition, let ε→G := argmin p ≃
∑

j↑Cω
Lj(ε) + (1 ↘

p) ≃
∑

j↑Cε
Lj(ε) and ε→i := argmin

∑
j↑Ci

Lj(ε) are the optimal solutions for the FedAvg and the
clustered FL algorithms, respectively, where Lj is the objective function in Eq. 3. Without loss of
generality, we assume ε→ω < ε→ε . The following proof considers the scenario with ε→G > ε→ε ; the other
case can be shown similarly.

First, it is easy to verify that the objective function is convex in ε. Then, if ε→G > ε→ε , it should be that∑
j↑Cε

Lj(ε→G) >
∑

j↑Cε
Lj(ε→ε) because ε→ε can yield a smaller loss compared to the ε→G. Similarly,

we have
∑

j↑Cω
Lj(ε→G) >

∑
j↑Cω

Lj(ε→ε) >
∑

j↑Cω
Lj(ε→ω) due to convexity. Therefore, ε→G is not

the optimal solution, contradicting the assumption. Hence, the FedAvg solution would lie between
ε→ω and ε→ε .

Now, we are ready to prove the Proposition 1 that global model is more unfair than the cluster-
specific model (i.e., !ω

EqOp(ε
→
ω) < !ω

EqOp(ε
→
G)).

Proof. We start with the scenario where ra = rb, balanced label participation rates, and equalized
distance between peaks. As the following analysis focuses on the cluster Cω, we drop the cluster
notation from the derivation for notation simplicity. Let !EqOp(ε) be the cluster-wise EqOp fairness
gap at the given decision threshold ε. Based on the definition, it could be written as

!EqOp(ε) =

∫ ↔

ϑ
f1
a (x)dx↘

∫ ↔

ϑ
f1
b (x)dx.

According to the Leibniz integral rule (Weisstein, 2003), we can find the derivative of !EqOp(ε)
w.r.t. ε as following:

!
→

EqOp(ε) = f1
b (ε)↘ f1

a (ε)

Let the intersection point of the feature-label distribution fy
g and fy→

g→ be Igy,g→y→ . It is easy to verify
that the optimal decision threshold ε→ω obtained from 3 could be written in the closed form such that

ε→ω = Ia1,b0 = Ib1,a0

When !
→

EqOp(ε) = 0, ε = ⇐,↘⇐ or Ia1,b1 . Furthermore, at extreme cases where ε ↑ ⇐ or ↘⇐,
we can find that the value of EqOp fairness gap !EqOp(⇐) = !EqOp(↘⇐) = 0. Therefore, to
investigate the impact of FedAvg solution ε→G on the EqOp fairness gap, it is equivalent to check the
sign of !

→

EqOp(ε) at the optimal decision threshold ε→ω obtained by solving 3.

To relax the equalized distance assumption, we could treat the location of modes of f1
a , f

0
a , f

1
b as

fixed, and vary the mode of f0
b , and there are two cases we can discuss:

1. Ia1,b1 ↘ Ia0,b1 < Ia0,b1 ↘ Ia0,b0

Under this condition, we could consider a smaller value of the mode of f0
b . As a result, the

optimal decision threshold ε→ω will shift to the left, resulting in a smaller value compared to
the equalized distance case. In other words, it means ε→ω ↔ Ia1,b1 , indicating !

→

EqOp(ε
→
ω) ↓

0.
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2. Ia1,b1 ↘ Ia0,b1 > Ia0,b1 ↘ Ia0,b0

Under this condition, we could consider a larger value of the mode of f0
b , but it is still less

than that of f0
a according to our assumption. At the extreme case when they are equal, the

optimal decision threshold determined from 3 would be smaller than Ia0,a1 because of the
mode of f1

b is less than that of f1
a , which is also smaller than Ia1,b1 . Therefore, we can still

conclude !
→

EqOp(ε
→
ω) ↓ 0.

For the scenario of ra ⇒= rb, we can find that the change of rg does not affect the value of !EqOp(ε),
but the location of ε→ω. According to our distribution assumption, when ra ↓ (resp. ↔)rb, the optimal
solution ε→ω will be in favor of the group a (resp. b) distributions, leading to a right (resp. left) shift
compared to the optimal solution when ra = rb. However, when ra ↑ 1 (resp. 0), ε→ω ↑ Ia0,a1

(resp. Ib0,b1 ), which is still less than Ia1,b1 , indicating !
→

EqOp(ε
→
ω) ↓ 0.

With the assumption that the majority of samples are labeled as 1 (i.e., ω1
g ↓ ω0

g), the decision
threshold ε→ω will shift towards the left to account for label imbalance. In other words, the sign of
!

→

EqOp(ε
→
ω) remains positive. Since ε→ω < ε→ε , there exist a cluster size weight p such that the FedAvg

solution ε→G will make the cluster Cω unfairer.

B.2.2 PROOF OF PROPOSITION 2

Proof. For simplicity, we assume that clients within the same cluster are identical. We start with the
scenario where ra = rb and balanced label participation rate. As the following analysis focuses on
the cluster Cω, we drop the cluster notation from the derivation for notation simplicity. Let !SP(ε)
be the cluster-wise SP fairness gap at the given decision threshold ε. According to its definition, it
could be written as

!SP(ε) = ω1
a

∫ ↔

ϑ
f1
a (x)dx+ ω0

a

∫ ↔

ϑ
f0
a (x)dx↘ ω1

b

∫ ↔

ϑ
f1
b (x)dx↘ ω0

b

∫ ↔

ϑ
f0
b (x)dx.

According to the Leibniz integral rule (Weisstein, 2003), we can find the derivative of !SP(ε) w.r.t.
ε as following:

!
→

SP(ε) = ω1
bf

1
b (ε) + ω0

bf
0
b (ε)↘ ω1

af
1
a (ε)↘ ω0

af
0
a (ε)

According to our distribution assumptions, we can write the above expression in the following closed
form with ω = ωy

g ↗y, g

!
→

SP(ε) =
ω⇑
2ϱϖ

(
exp(↘ (ε ↘ µ1

b)
2

2ϖ2
)+exp(↘ (ε ↘ µ0

b)
2

2ϖ2
)↘exp(↘ (ε ↘ µ1

a)
2

2ϖ2
)↘exp(↘ (ε ↘ µ0

a)
2

2ϖ2
)
)

Furthermore, it is easy to verify that the optimal decision threshold ε→ω obtained by solving 3 could
be written in the closed form such that

ε̄ = ε→ω =
µ1
a + µ0

b

2
=

µ1
b + µ0

a

2

At the optimal solution ε→ω, !
→

SP(ε
→
ω) = 0. Similar to the proof of Proposition 1, to investigate the

impact of FedAvg solution ε→G on the SP fairness gap, it is equivalent to check how the !
→

SP(ε
→
ω)

change in the neighborhood of the optimal solution ε→ω. Also, at extreme cases, we can easily
find that the value of SP fairness gap !SP(⇐) = !SP(↘⇐) = 0. Therefore, if !

→

SP(ε
→
ω) ↓ 0,

then we can conclude that the FedAvg solution ε→G would lead to a worse fairness performance
compared to the optimal solution ε→ω. Let ς1(ε) = exp(↘ (ϑ↓µ1

b)
2

2ϖ2 ) ↘ exp(↘ (ϑ↓µ0
a)

2

2ϖ2 ) and ς2(ε) =

exp(↘ (ϑ↓µ1
a)

2

2ϖ2 )↘ exp(↘ (ϑ↓µ0
b)

2

2ϖ2 ). At the solution ε→ω, we can find that ς1(ε→ω) = ς2(ε→ω) = 0.

Hence, to investigate how the !
→

SP(ε
→
ω) change, we can find the rate of change for both ς1(ε) and

ς2(ε) in the neighborhood of ε→ω such that

ς
→

1(ε
→
ω) = exp( (ϑ

↑
ω↓µ0

a)
2

↓2ϖ2 ) ϑ
↑
ω↓µ0

a
ϖ ↘ exp( (ϑ

↑
ω↓µ1

b)
2

↓2ϖ2 ) ϑ
↑
ω↓µ1

b
ϖ = 1

ϖ exp( (ϑ
↑
ω↓µ1

b)
2

↓2ϖ2 )(µ1
b ↘ µ0

a)

ς
→

2(ε
→
ω) = exp( (ϑ

↑
ω↓µ0

b)
2

↓2ϖ2 ) ϑ
↑
ω↓µ0

b
ϖ ↘ exp( (ϑ

↑
ω↓µ1

a)
2

↓2ϖ2 ) ϑ
↑
ω↓µ1

a
ϖ = 1

ϖ exp( (ϑ
↑
ω↓µ0

b)
2

↓2ϖ2 )(µ1
a ↘ µ0

b)
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By setting ς
→

1(ε
→
ω) ↓ ς

→

2(ε
→
ω), it means the increment of ς1 is larger than the decrement of ς2.

Therefore, with Lemma 1, there exists a cluster size weight p such that the FedAvg solution ε→G will
make the cluster Cω unfairer. The inequality is obtained by considering unequalized ωy

g .

In addition, for the scenario of ra ⇒= rb, similar to the proof of Proposition 1, we can find that
the change of rg does not affect the expression of !SP(ε), but it will affect the location of ε→ω.
According to our distribution assumption, when ra ↓ (resp. ↔)rb, the optimal solution ε→ω will be
in favor of the group a (resp. b) distributions, leading to a right (resp. left) shift compared to the
optimal solution when ra = rb. However, when ra ↑ 1 (resp. 0), ε→ω ↑ µ0

a+µ1
a

2 (resp. µ0
b+µ1

b
2 ),

which is limited within the range of (µ
0
a+µ0

b
2 , µ1

a+µ1
b

2 ). When ε = µ1
a+µ1

b
2 , we can easily find that

!
→

SP(ε) ⇓ 0 especially when ϖ is small. In other words, we can conclude that !SP(ε) ↓ !SP(ε→ω)

for any ε→ω → (µ
0
b+µ1

b
2 , µ0

a+µ1
a

2 ). Therefore, the claim still holds.

Furthermore, when the equalized label participation rate assumption is relaxed, the above proof strat-
egy still holds by considering different ωy

g into the expression. It is worth noting that when the label
participation rates are balanced, the fairness !SP(ε) has two equal-height peaks (e.g., !↗

SP(ε) = 0)
by symmetricity of the Gaussian distribution when ε ⇓ µ1

a+µ1
b

2 and µ0
a+µ0

b
2 . However, when the ma-

jority of samples are labeled as 1, we observe a shift in the decision threshold ε→ω ↔ ε̄ towards the left
to account for label imbalance. In this case, since ε→G > ε→ω, the FedAvg solution pulls ε→ω upwards,
favoring label 1, which results in both accuracy and fairness deteriorating. Moreover, when rb ↓ ra
and the majority of samples are labeled 1 in one group where the other group has a better balance
in the label (i.e., ω1

a > ω0
b > ω1

b > ω0
a), ε→ω ↔ ε̄ holds. Therefore, !SP(ε) will increase initially

and then decrease, and there still exist a cluster size weight p such that the FedAvg solution ε→G will
make the cluster Cω unfairer.

C EXPERIMENT DETAILS AND ADDITIONAL NUMERICAL EXPERIMENTS

C.1 DATASET AND MODELS

In this section, we detail the data and model used in our experiments.

Retiring Adult dataset. We use the pre-processed dataset provided by the folktables Python pack-
age (Ding et al., 2021), which provides access to datasets derived from the US Census. In this
package, there are three tasks: ACSEmployment, ACSIncome, and ACSHealth. For the ACSEm-
ployemnt task, the goal is to predict whether the person is employed based on its multi-dimensional
features; for the ACSIncome task, the goal is to predict whether the person earns more than $50,000
annually; and for the ACSHealth task, the goal is to predict whether the person is covered by insur-
ance.

Model. We train a fully connected two-layer neural network model for both tasks, where the hid-
den layer has 32 neurons for the ACSIncome task, and 64 neurons for the ACSEmployment and
ACSHealth tasks. For all tasks, we use the RELU activation function and a batch size of 32. Fur-
thermore, we utilize the SGD optimizer for training, with a learning rate of 0.001 for both FedAvg
and MAML algorithms and 0.05 for the clustered FL algorithm. In FL, each client updates the global
model for 10 epochs in the FedAvg and MAML algorithms and sends it back to the server, while the
clustered FL algorithm that has a larger learning rate updates the global model for 1 epoch. We also
follow the encoding procedure for categorical features provided by the folktables Python package.
The input feature size is 54, 109 and 154 for the ACSIncome, ACSEmployment and ACSHealth
tasks, respectively. In the experiments, we consider either sex (e.g., male and female) or race (e.g.,
White and Non-White) as the protected attribute.

ACSEmployment task with different protected attributes.

As shown in Figure 11 and 12, within the same ACSEmployment task, the data distributions for
race (left) and sex (right) are significantly different. For the protected attribute of sex, the number
of samples is nearly even across groups and labels. However, for the protected attribute of race, the
White group has significantly more samples compared to Non-White groups for both labels 0, 1.

ACSIncome and ACSHealth tasks with protected attribute of sex.
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Figure 11: Fraction of samples over all states for ACSEmployment

We can see from Figure13, 14 and 15 that the fraction of samples in the ACSIncome task is similar
across groups for label 0 data but differs significantly for label 1 data. Additionally, we can observe
that the ACSHealth task has similar fractions of samples from each group, akin to the ACSEmploy-
ment task, in contrast to the ACSIncome task.

C.2 ADDITIONAL EXPERIMENTS ON OTHER TYPES OF FAIRNESS NOTIONS

In addition to the SP fairness investigated in Section 4, we also study the impact of personalization
techniques on other types of fairness notions such as EO and EqOp. From Fig. 16, we find that
the introduction of personalization techniques can enhance other types of fairness due to the com-
putational advantages of collaboration. However, compared to the improvement of SP and EqOp
fairness, the local EO fairness improvement is less significant because the EO matches both the true
and false positive rates across two protected groups, rendering it a more stringent criterion.

C.3 ADDITIONAL EXPERIMENTS ON OTHER DATASET AND TASKS

In addition to the ACSEmployment (sex, race) and ACSIncome (sex) experimental results presented
in Section 4, we conducted additional experiments to explore the impact of SP fairness using new
datasets, as illustrated in Fig. 17. Examining the ACSHealth data with sex as the protected attribute,
we can see from Fig. 15 that the fractions of samples from each group across all states are similar
to that of the ACSEmployment dataset shown in Fig. 11, resulting in a similar performance. From
Fig. 17, we can see that personalization techniques can improve local fairness as an unintended
benefit, similar to the observations from Section 4.
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(a) Protected attribute: Race

(b) Protected attribute: Sex

Figure 12: Normalized frequency of fraction of samples for ACSEmployment

(a) Protected attribute: Sex

Figure 13: Normalized frequency of fraction of samples for ACSIncome

In the Adult dataset, where we randomly and evenly sample data into 5 clients. We could observe
that the results are consistent with our findings in Section 4. That is, when groups are balanced (with
sex as the protected attribute), the personalization could also improve the fairness as unintended ben-
efit. However, when groups are unbalanced due to more White samples, the clustered FL algorithms
have worse local fairness performance compared to FedAvg, but the MAML-FL algorithm could
have a better performance.

C.4 ADDITIONAL EXPERIMENTS ON EQOP AND EO FAIRNESS

In Section 5, we compare SP fairness between two algorithms: ICFA and Fair-FCA. Here, we
also compare the EqOp and EO fairness between them. The observations from Table 1 are also
consistent with those from Fig 8, meaning that the Fair-FCA algorithm enables us to establish a
better fairness-accuracy tradeoff (a drop in accuracy in return for improved fairness) compared to
the IFCA algorithm.
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(a) Protected attribute: Sex

Figure 14: Normalized frequency of fraction of samples for ACSHealth

Figure 15: Fraction of samples over all states for ACSIncome and ACSHealth

C.5 DETAILS OF SETUP ON SYNTHETIC EXPERIMENT

According to the data distribution information, we can see that clients 2,4,5,6,7,8 have similar data
distributions compared to clients 1,3. Also, we can find that clients 1,3,4,6,7,8 share identical data
distribution across the two groups. We generate 1200 samples from each distribution and apply
a logistic regression classifier for binary classification tasks. We report our experiment results for
an average of 5 runs. When φ = 1, Fair-FCA prioritizes accuracy; by design, this is attained by
grouping the 6 clients having similar data distributions together ({1,3} and {2,4,5,6,7,8}). Similarly,
when φ = 0, Fair-FCA focuses only on SP fairness, this time clustering clients that have identical
distributions on the two protected groups together ({2,5} and {1,3,4,6,7,8}). Lastly, by setting
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(a) Employment-sex: EO (b) Income-sex: EO (c) Employment-sex: EqOp

Figure 16: Personalization could also improve other fairness notions

(a) Health-sex: SP (b) Income-race: SP

Figure 17: Additional experiments on other datasets with different protected attributes

φ → (0, 1), we can effectively account for both accuracy and SP fairness when clustering: when
φ = 0.3, the clusters are {2,4,5} and {1,3,6,7,8}; when φ = 0.5, the clusters are {2,4,5,6} and
{1,3,7,8}; and when φ = 0.8, the clusters are {2,4,5,6,7} and {1,3,8}.

C.6 ADDITIONAL EXPERIMENTS USING ORIGINAL RETIRING ADULT DATASET WITHOUT
FEATURE SCALING

We can see from Table 3 that compared to the IFCA algorithm, our Fair-FCA algorithm is expe-
riencing a degradation in accuracy but an improved fairness, meaning an accuracy-fairness tradeoff.
These observations are also consistent with our findings when using the Retiring Adult dataset with
feature scaling in Section 5.

D EXPERIMENTS ON SYNTHETIC DATA

To further validate our propositions, we conduct the following numerical experiments. In the ex-
periments detailed in D.1, the setup is the most restrictive, with equalized distance, balanced group
rates, and equalized label rates. In subsequent experiments, we relax one factor at a time. Finally, in
the experiments described in D.4, all these assumptions are removed.

D.1 EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED DISTANCE,
BALANCED GROUP RATE, AND EQUALIZED LABEL RATE

Numerical illustration. We now conduct numerical experiments to illustrate the findings in Prop. 1-
2. We drop the cluster notation c whenever it is clear from the context. The results are presented
in Tables 4 and 5. We proceed as follows: 10000 random samples in cluster Cω are drawn from
Gaussian distribution for each group g → {a, b} with mean µy,Cω

g and standard deviation ϖ. The
number of qualified (y = 1) and unqualified (y = 0) samples in each group is proportional to the
label participation rate ωy,Cω

g . Since samples were generated in a consistent manner across different
parameter settings, we assumed an optimal decision threshold ε→ε = 8 for cluster Cε , obtained
according to the distribution information: (f1

1 , f
0
1 , f

1
0 , f

0
0 ,ϖ) = (10, 7, 9, 6, 1) with equalized group

rate rg = 0.5, ↗g and label participation rate ωy,Cε
g = 0.5, ↗g, y. In Table 4, we consider the scenario

where ωy,Cω
g = 0.5 ↗g, y. In contrast, different values of ωy,Cω

g are applied in Table 5. Both results
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(a) Adult (Sex): SP (b) Adult (Sex): EqOp (c) Adult (Race): SP (d) Adult (Race):
EqOp

Figure 18: Additional experiments on Adult datasets with samples randomly and evenly distributed

Table 1: Fair-FCA with different datasets and protected attributes

Dataset Algorithm EqOp Acc. (EqOp) EO Acc. (EO)

Employment-Race IFCA 0.07764 0.8188 0.09319 0.8188
Fair-FCA 0.07029 0.8151 0.08946 0.8151

Employment-Sex IFCA 0.04521 0.8188 0.05808 0.8188
Fair-FCA 0.04183 0.8157 0.05655 0.8151

Income-Sex IFCA 0.05029 0.7511 0.05231 0.7511
Fair-FCA 0.04932 0.7491 0.05161 0.7489

in Table 4 and 5 consider an equalized group rate such that ra = rb and an equalized distance
between mean estimates.

From Table 4, we can find that it offers crucial insights into the conditions required for Proposi-
tion 2 (SP) to hold. For fixed mean estimates µy

g (rows 1-2), we observe that smaller values of ϖ
are preferable to satisfy the specified conditions. Similarly, for fixed ϖ (row 1, 3 and row 2, 4),
larger differences between µ1

g and µ0
g are advantageous in fulfilling the conditions. This observation

becomes intuitive at the extreme cases where samples are linearly separable with small ϖ or large
distance between µ1

g and µ0
g . Therefore, the optimal decision threshold ε→ω could achieve a perfect

classification as well as perfect fairness. Hence, the FedAvg solution ε→G deviated from the optimal
solution will lead to worse performance in both accuracy and fairness. We could also observe that
for the EqOp fairness, under an equalized label rate, the FedAvg solutions consistently make the
cluster Cω unfairer, which is consistent with our findings in Prop. 1.

Table 5 reveals insights regarding the influence of label distribution ωy
g on SP and EqOp fairness

performance. Specifically, when the majority of samples in both groups are labeled as 1 (rows 1-2),
the optimal decision threshold (ε→ω) shifts leftward compared to the balanced scenario. However,
with Lemma 1, the FedAvg solution ε→G will be greater than ε→ω. Therefore, we can find that ε
will have even larger fairness gap when it is shifted to the right. Another intriguing observation is
that in cases where the majority of samples have different labels (row 3), the FedAvg solution (ε→G)
yields worse fairness performance when p = 2/3 or 1/2 but not when p = 1/3 (0.1720 ⇔) or 1/4
(0.1391 ⇔). This indicates the weight p plays a significant role in shaping the overall cluster-wise
average fairness performance, especially when assessing the overall cluster-wise average fairness
performance.

Since we assume clients within the same cluster are identical, and the local fairness performance
for an algorithm can be computed as a weighted sum of the local fairness performance from each
cluster, the cluster-wise average local fairness gap under different models’ optimal solution ε could
be calculated as !f (ε) = p!ω

f +(1↘p)!ε
f ; f → {SP,EqOp,EO}, where p is the fraction of clients

belonging to cluster Cω.

In Table 6 and 7, we delve into different notions of cluster-wise average fairness gap achieved
with different decision thresholds (optimal clustered FL solutions ε→C and FedAvg solutions ε→G). In
the following experiment, we keep the parameters in cluster Cε as constants while varying those in
cluster Cω to assess its impact on the corresponding fairness. From the results in Table 6 and 7, we
can find that when both conditions are not satisfied (rows 5-6), there is a cluster size weight p such
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Table 2: Data distributions over 8 clients
Client ID f1

1 f0
1 f1

0 f0
0

1 N(8, 1) N(6, 1) N(8, 1) N(6, 1)

2 N(12, 1) N(8, 1) N(11, 1) N(7, 1)

3 N(7.5, 1) N(5.5, 1) N(7.5, 1) N(5.5, 1)

4 N(12, 1) N(9, 1) N(12, 1) N(9, 1)

5 N(12, 1) N(8, 1) N(11, 1) N(7, 1)

6 N(11.5, 1) N(8.5, 1) N(11.5, 1) N(8.5, 1)

7 N(11, 1) N(8, 1) N(11, 1) N(8, 1)

8 N(10.5, 1) N(7.5, 1) N(10.5, 1) N(7.5, 1)

Table 3: Algorithm performance comparisons using original Retiring adult dataset

Dataset Algorithm SP Acc. (SP) EqOp Acc. (EqOp)

Employment-Sex IFCA 0.03667 0.8229 0.04698 0.8229
Fair-FCA 0.03594 ⇔ 0.8223 ⇔ 0.04633 ⇔ 0.8224 ⇔

Employment-Race IFCA 0.07257 0.8229 0.07315 0.8229
Fair-FCA 0.07219 ⇔ 0.8224 ⇔ 0.06527 ⇔ 0.8226 ⇔

Income-Sex IFCA 0.08355 0.7481 0.04773 0.7481
Fair-FCA 0.08227 ⇔ 0.7469 ⇔ 0.04767 ⇔ 0.7469 ⇔

Income-Race IFCA 0.1012 0.7481 0.1100 0.7481
Fair-FCA 0.1011 ⇔ 0.7468 ⇔ 0.1086 ⇔ 0.7466 ⇔

that the FedAvg solutions would lead to better fairness performance for each cluster, consequently
yielding a lower cluster-wise average fairness gap. However, when only one cluster satisfies the
condition, meaning that there is a p such that the FedAvg solutions would only make one cluster
unfairer (rows 1-2 in Table 6), we could see that a relatively small p would let the clustered FL
solutions yield a better fairness performance because ε→G will move to the cluster with a smaller value
of p to account for the cluster size imbalance. Nevertheless, when p is large, the FedAvg solutions
will again have superior fairness performance than the clustered FL solutions, similar to the results
in rows 3-4 in Table 6 and 7. Essentially, for each cluster c, there exists a range (pclow, p

c
high) such

that, within this range, FedAvg solutions result in worse fairness performance compared to clustered
FL solutions. Consequently, for any p → ↖c(pclow, p

c
high), clustered FL solutions yield a superior

cluster-wise average fairness performance relative to FedAvg solutions.

D.2 EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED DISTANCE AND
BALANCED LABEL RATE

Compared to the experiments focused on an all balanced setting in Table 4, the following exper-
iments relax the group rates setting in the cluster Cω, while we keep other settings (i.e., balanced
label rate and equalized distance) and data information for Cε unchanged.
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Table 4: Cluster Cω fairness performance with equalized distance, group rate and label rateDistribution Condition
!ω

SP(ϑ
↑
ω)

!ω
SP(ϑ

↑
G)

!ω
EqOp(ϑ

↑
ω)

!ω
EqOp(ϑ

↑
G)

(µ1
a, µ0

a, µ1
b , µ0

b , ϖ) (SP) p = 2
3 p = 1

2 p = 2
3 p = 1

2

(7, 4, 6, 3, 1) Yes 0.1359 0.1814 ↘ 0.1945 ↘ 0.1359 0.3413 ↘ 0.3829 ↘
(7, 4, 6, 3, 2) No 0.1499 0.1417 ≃ 0.1315 ≃ 0.1499 0.1915 ↘ 0.1974 ↘
(7, 5, 6, 4, 1) No 0.2417 0.2297 ≃ 0.2046 ≃ 0.2417 0.3781 ↘ 0.3721 ↘
(8, 3, 6, 1, 2) Yes 0.1866 0.1968 ↘ 0.2033 ↘ 0.1866 0.3121 ↘ 0.3590 ↘

Table 5: Cluster Cω fairness performance with equalized distance and group rate
Distribution Label rate Condition

!ω
SP(ω

→
ω)

!ω
SP(ω

→
G)

(µ1
a, µ0

a, µ1
b , µ0

b , ε) (ϑ1
a, ϑ0

a, ϑ1
b , ϑ0

b) (SP) p = 2
3 p = 1

2

(7, 4, 6, 3, 1)

(0.7, 0.3, 0.6, 0.4) Yes 0.2062 0.2146 → 0.2463 →
(0.6, 0.4, 0.7, 0.3) Yes 0.0453 0.0514 → 0.0813 →
(0.7, 0.3, 0.4, 0.6) Yes 0.3797 0.3858 → 0.3926 →
(0.6, 0.4, 0.3, 0.7) No 0.3797 0.3748 ↑ 0.2804 ↑

(EqOp) !ω
EqOp(ω

→
ω) !ω

EqOp(ω
→
G)

(7, 4, 6, 3, 2)

(0.7, 0.3, 0.6, 0.4) Yes 0.0998 0.1807 → 0.1923 →
(0.6, 0.4, 0.7, 0.3) Yes 0.0975 0.1198 → 0.1796 →
(0.1, 0.9, 0.5, 0.5) No 0.1965 0.1650 ↑ 0.1574 ↑
(0.3, 0.7, 0.2, 0.8) No 0.1974 0.1645 ↑ 0.1574 ↑

From Table 8, we can see that the changes in the group rate do not affect the fairness performance
comparison. There exists a cluster size weight p such that the FedAvg solutions would lead to worse
SP and EqOp fairness performance compared to the clustered FL solutions. This observation is also
consistent with our findings in the Proposition 1 and 2.

D.3 EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED DISTANCE

Similar to experiments in D.2, we further relax balanced label rate setting in the following experi-
ments, while we keep other settings (i.e., equalized distance) and data information for Cε unchanged.

From Table 9, we can observe that for the SP fairness, when the majority of samples are labeled 1
(rows 1-6), the changes in the group rate do not affect the fairness performance comparison in the
cluster Cω. There exists a cluster size weight p such that the FedAvg solution would lead to a worse
fairness performance compared to the clustered FL solutions. From Table 10, when the condition
ω1
g ↓ ω0

g holds, there exists a combination of group rates (rows 1-6) such that the FedAvg solution
would lead to a worse EqOp fairness performance. These observations from Table 9 and 10 are also
consistent with our findings in the Proposition 1 and 2.

D.4 ADDITIONAL EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION

Similar to experiments in D.2 and D.3, we now release all settings we imposed before, while we
data information for Cε unchanged.

From Table 11, we can observe that when the majority of samples are labeled 1 (rows 1-3 and 7-
9), there exists a cluster size weight p such that the FedAvg solution would lead to a worse SP
fairness performance compared to the clustered FL solutions, which also experimentally extends
our findings in the Proposition 2 to the case of an unequalized gap. However, when the majority of
samples are labeled differently (rows 4-6 and 10-12), we could find that when µ1

a ↘ µ0
a > µ1

b ↘ µ0
b ,

there exists a p such that the FedAvg solution would lead to a worse SP fairness performance, and a
distinct outcome occurs when µ1

a ↘ µ0
a < µ1

b ↘ µ0
b . One reason for the distinct behaviors is that the

corresponding condition is not satisfied for the experiments in rows 4-6. Additionally, we find that
as p enlarges in row 11, the fairness gap decreases, and it could have better fairness performance
than using the clustered FL solution. This observation is also consistent with the previous finding
that the fairness gap would increase initially and then decrease in the proof of Proposition 2. As we
described earlier, it is clearly that for row 11, p = 1/2 is not in the range of (pCω

low, p
Cω
high).

From Table 12, we could observe that when the condition ω1
g ↓ ω0

g holds (rows 1-3 and 7-9), the
changes in the group rates, label rates, and distribution distance do not affect the EqOp fairness
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Table 6: Cluster-wise average SP fairness performance with equalized distance
Distribution Label rate Condition

p !SP(ω
→
C) !SP(ω

→
G)Cω :(µ1

a, µ0
a, µ1

b , µ0
b , ε) (ϑ1

a, ϑ0
a, ϑ1

b , ϑ0
b)

Cε :(µ1
a, µ0

a, µ1
b , µ0

b , ε) (ϑ1
a, ϑ0

a, ϑ1
b , ϑ0

b) satisfied
(7, 4, 6, 3, 2) (0.5, 0.5, 0.5, 0.5) No 4/5 0.147 0.145 ↑
(10, 7, 9, 6, 1) (0.5, 0.5, 0.5, 0.5) Yes 1/3 0.141 0.160 →
(7, 4, 6, 3, 2) (0.8, 0.2, 0.7, 0.3) Yes 3/4 0.139 0.107 ↑
(10, 7, 9, 6, 1) (0.5, 0.5, 0.5, 0.5) Yes 1/2 0.138 0.178 →
(7, 4, 6, 3, 2) (0.5, 0.5, 0.5, 0.5) No 1/3 0.303 0.283 ↑
(10, 7, 9, 6, 1) (0.7, 0.3, 0.4, 0.6) No 2/3 0.227 0.200 ↑

Table 7: Cluster-wise average EqOp fairness performance with equalized distance
Distribution Label rate Condition

p !EqOp(ω
→
C) !EqOp(ω

→
G)Cω :(µ1

a, µ0
a, µ1

b , µ0
b , ε) (ϑ1

a, ϑ0
a, ϑ1

b , ϑ0
b)

Cε :(µ1
a, µ0

a, µ1
b , µ0

b , ε) (ϑ1
a, ϑ0

a, ϑ1
b , ϑ0

b) satisfied
(7, 4, 6, 3, 2) (0.3, 0.7, 0.2, 0.8) No 1/3 0.156 0.133 ↑
(10, 7, 9, 6, 1) (0.5, 0.5, 0.5, 0.5) No 2/3 0.177 0.139 ↑
(7, 4, 6, 3, 2) (0.8, 0.2, 0.7, 0.3) Yes 3/4 0.082 0.050 ↑
(10, 7, 9, 6, 1) (0.5, 0.5, 0.5, 0.5) No 1/2 0.100 0.109 →
(7, 4, 6, 3, 2) (0.3, 0.7, 0.2, 0.8) No 1/3 0.224 0.187 ↑
(10, 7, 9, 6, 1) (0.3, 0.7, 0.2, 0.8) No 2/3 0.211 0.149 ↑

performance in the cluster Cω. There exists a cluster size weight p such that the FedAvg solution
would lead to a worse fairness performance. However, when the condition is not met (rows 4-6 and
10-12), the FedAvg solution would have a better EqOp fairness performance.
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Table 8: Cluster Cω fairness performance under Gaussian distribution with equalized distance and
label rate, but not group rate

Distribution Group rate
!ω

SP(ϑ
↑
ω)

!ω
SP(ϑ

↑
G)

!ω
EqOp(ϑ

↑
ω)

!ω
EqOp(ϑ

↑
G)

(µ1
a, µ0

a, µ1
b , µ0

b , ϖ) (ra, rb) p = 2
3 p = 1

2 p = 2
3 p = 1

2

(7, 4, 6, 3, 1)

(0.5, 0.5) 0.1359 0.1814 ↘ 0.1945 ↘ 0.1359 0.3413 ↘ 0.3829 ↘
(0.7, 0.3) 0.1388 0.1558 ↘ 0.1941 ↘ 0.1780 0.2594 ↘ 0.3828 ↘
(0.9, 0.1) 0.1465 0.1702 ↘ 0.1941 ↘ 0.2217 0.3076 ↘ 0.3828 ↘
(0.3, 0.7) 0.1388 0.1359 ≃ 0.1558 ↘ 0.0996 0.1359 ↘ 0.2594 ↘
(0.4, 0.6) 0.1367 0.1372 ↘ 0.1931 ↘ 0.1161 0.1634 ↘ 0.3759 ↘

Table 9: Cluster Cω SP fairness performance under Gaussian distribution with equalized distance,
but not label rate and group rate

Distribution Label rate Group rate
!ω

SP(ω
→
ω)

!ω
SP(ω

→
G)

(µ1
a, µ0

a, µ1
b , µ0

b , ε) (ϑ1
a, ϑ0

a, ϑ1
b , ϑ0

b) (ra, rb) p = 2
3 p = 1

2

(7, 4, 6, 3, 1)

(0.7, 0.3, 0.6, 0.4)
(0.5, 0.5) 0.2062 0.2146 → 0.2463 →
(0.3, 0.7) 0.2024 0.2056 → 0.2167 →
(0.7, 0.3) 0.2136 0.2309 → 0.2793 ↑

(0.6, 0.4, 0.7, 0.3)
(0.5, 0.5) 0.0453 0.0514 → 0.0813 →
(0.3, 0.7) 0.0460 0.0446 ↑ 0.0482 →
(0.7, 0.3) 0.0535 0.0751 → 0.1467 →

(0.7, 0.3, 0.4, 0.6)
(0.5, 0.5) 0.3797 0.3858 → 0.3926 →
(0.3, 0.7) 0.3780 0.3819 → 0.3451 ↑
(0.7, 0.3) 0.3821 0.3899 → 0.3936 →

(0.4, 0.6, 0.7, 0.3)

(0.7, 0.3) 0.1005 0.0662 ↑ 0.0766 ↑
(0.9, 0.1) 0.0725 0.0078 ↑ 0.0868 →
(0.3, 0.7) 0.1013 0.1084 → 0.1090 ↑
(0.1, 0.9) 0.0767 0.0860 → 0.0972 →

Table 10: Cluster Cω EqOp fairness performance under Gaussian distribution with equalized dis-
tance, but not label rate and group rate

Distribution Label rate Group rate
!ω

EqOp(ω
→
ω)

!ω
EqOp(ω

→
G)

(µ1
a, µ0

a, µ1
b , µ0

b , ε) (ϑ1
a, ϑ0

a, ϑ1
b , ϑ0

b) (ra, rb) p = 2
3 p = 1

2

(7, 4, 6, 3, 2)

(0.7, 0.3, 0.6, 0.4)
(0.5, 0.5) 0.0998 0.1222 → 0.1807 →
(0.3, 0.7) 0.0952 0.1109 → 0.1784 →
(0.7, 0.3) 0.1044 0.1386 → 0.1825 →

(0.6, 0.4, 0.7, 0.3)
(0.5, 0.5) 0.0975 0.1198 → 0.1796 →
(0.3, 0.7) 0.0798 0.0874 → 0.1799 →
(0.7, 0.3) 0.1180 0.1957 → 0.1792 →

(0.1, 0.9, 0.5, 0.5)
(0.5, 0.5) 0.1965 0.1650 ↑ 0.1574 ↑
(0.3, 0.7) 0.1751 0.1742 ↑ 0.1620 ↑
(0.7, 0.3) 0.1869 0.1569 ↑ 0.1537 ↑

(0.3, 0.7, 0.2, 0.8)
(0.5, 0.5) 0.1974 0.1645 ↑ 0.1574 ↑
(0.3, 0.7) 0.1974 0.1630 ↑ 0.1569 ↑
(0.7, 0.3) 0.1973 0.1660 ↑ 0.1585 ↑
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Table 11: Cluster Cω SP fairness performance under Gaussian distribution without equalized dis-
tance, label rate and group rate

Distribution Label rate Group rate
!ω

SP(ω
→
ω)

!ω
SP(ω

→
G)

(µ1
a, µ0

a, µ1
b , µ0

b , ε) (ϑ1
a, ϑ0

a, ϑ1
b , ϑ0

b) (ra, rb) p = 2
3 p = 1

2

(7, 4.5, 6, 3, 1)

(0.7, 0.3, 0.6, 0.4)
(0.5, 0.5) 0.2598 0.2649 → 0.2902 →
(0.3, 0.7) 0.2589 0.2593 → 0.2655 →
(0.7, 0.3) 0.2646 0.2781 → 0.3074 →

(0.7, 0.3, 0.4, 0.6)
(0.5, 0.5) 0.4263 0.4220 ↑ 0.3917 ↑
(0.3, 0.7) 0.4288 0.4248 ↑ 0.3222 ↑
(0.7, 0.3) 0.4240 0.4198 ↑ 0.3971 ↑

(7, 4, 6, 3.5, 1)

(0.7, 0.3, 0.6, 0.4)
(0.5, 0.5) 0.1871 0.2046 → 0.2483 →
(0.3, 0.7) 0.1785 0.1910 → 0.2167 →
(0.7, 0.3) 0.1984 0.2236 → 0.2784 →

(0.7, 0.3, 0.4, 0.6)
(0.5, 0.5) 0.3576 0.3752 → 0.3882 →
(0.3, 0.7) 0.3538 0.3697 → 0.3335 ↑
(0.7, 0.3) 0.3620 0.3798 → 0.3903 →

Table 12: Cluster Cω EqOp fairness performance under Gaussian distribution without equalized
distance, label rate and group rate

Distribution Label rate Group rate
!ω

EqOp(ω
→
ω)

!ω
EqOp(ω

→
G)

(µ1
a, µ0

a, µ1
b , µ0

b , ε) (ϑ1
a, ϑ0

a, ϑ1
b , ϑ0

b) (ra, rb) p = 2
3 p = 1

2

(7, 4.5, 6, 3, 2)

(0.7, 0.3, 0.6, 0.4)
(0.5, 0.5) 0.0993 0.1251 → 0.1796 →
(0.3, 0.7) 0.0947 0.1115 → 0.1780 →
(0.7, 0.3) 0.1045 0.1635 → 0.1814 →

(0.3, 0.7, 0.2, 0.8)
(0.5, 0.5) 0.1948 0.1610 ↑ 0.1558 ↑
(0.3, 0.7) 0.1967 0.1610 ↑ 0.1558 ↑
(0.7, 0.3) 0.1924 0.1615 ↑ 0.1558 ↑

(7, 4, 6, 3.5, 2)

(0.7, 0.3, 0.6, 0.4)
(0.5, 0.5) 0.1051 0.1409 → 0.1799 →
(0.3, 0.7) 0.1016 0.1293 → 0.1776 →
(0.7, 0.3) 0.1080 0.1564 → 0.1822 →

(0.3, 0.7, 0.2, 0.8)
(0.5, 0.5) 0.1959 0.1625 ↑ 0.1569 ↑
(0.3, 0.7) 0.1950 0.1605 ↑ 0.1553 ↑
(0.7, 0.3) 0.1964 0.1650 ↑ 0.1579 ↑
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