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A ADDITIONAL RELATED WORKS

Personalized FL: Personalized FL has received much attention. In addition to the clustering and
local fine-tuning methods introduced in the main paper, we also review other types of personaliza-
tion techniques used in FL framework.

Model interpolation: |Hanzely & Richtarik (2020) also study a mixed model (local and global
model) with a tuning parameter. In their model, as the mixing parameter decreases, it relaxes the
local model to be similar to the global model, which can be more personalized. Mansour et al.
(2020) propose an idea to combine the global and local model with weight «, and |Deng et al.
(2020) adaptively find the optimal o* as a trade-off at each round for the best performance. |Zec
et al.| (2020); |[Peterson et al. (2019) both consider using a gating model as a mixing parameter
between local and global models. However, [Peterson et al. (2019) consider a linear gating model
and differentially private FL. under domain adaptation, while [Zec et al. (2020) split data into two
parts used for local and global learning, and they further consider a dropout scenario and the same
gating model structure as local and global models.

Data interpolation: As also suggested in Mansour et al.| (2020), in addition to the model interpo-
lation, it is possible to combine the local and global data and train a model on their combination.
Zhao et al.| (2018)) create a subset of data that is globally shared across all clients. However, this
method is facing the risk of information leaking.

FL with Fairness. In addition to works considering social (group) fairness in FL reviewed in the
main paper, we review other types of FL fairness in detail below.

Performance fairness: This line of work measures fairness based on how well the learned model(s)
can achieve uniform accuracy across all clients. [Li et al.| (2019a) propose the g-fair FL algorithm
which minimizes the aggregate reweighted loss. The idea is that the clients with higher loss will be
assigned a higher weight so as to encourage more uniform accuracy across clients. [Li et al.|(2021b)
further extend this by considering robustness and poisoning attacks; here, performance fairness and
robustness are achieved through a personalized FL method. Zhang et al.|(2021) aim to achieve small
disparity in accuracy across the groups of client-wise, attribute-wise, and potential clients with ag-
nostic distribution, simultaneously. Wang et al. (2021) discuss the (performance) unfairness caused
by conflicting gradients. They detect this conflict through the notion of cosine similarity, and itera-
tively eliminate it before aggregation by modifying the direction and magnitude of the gradients.
Good-Intent fairness: The good-intent fairness aims to minimize the maximum loss for the pro-
tected group. Mobhri et al.| (2019) propose a new framework of agnostic FL to mitigate the bias in
the training procedure via minimax optimization. Similarly, Cui et al. (2021) consider a constrained
multi-objective optimization problem to enforce the fairness constraint on all clients. They then
maximize the worst client with fairness constraints through a gradient-based procedure. Papadaki
et al.|(2021) show that a model that is minimax fair w.r.t. clients is equivalent to a relaxed minimax
fair model w.r.t. demographic group. They also show their proposed algorithm leads to the same
minimax group fairness performance guarantee as the centralized approaches.

Other types of fairness: There are also other types of fairness considered in the FL literature. For
instance, Huang et al.| (2020) studied the unfairness caused by the heterogeneous nature of FL,
which leads to the possibility of preference for certain clients in the training process. They propose
an optimization algorithm combined with a double momentum gradient and weighting strategy to
create a fairer and more accurate model. |Chu et al.| (2021) measure fairness as the absolute loss
difference between protected groups and labels, a variant of equality opportunity fairness constraint.
They propose an estimation method to accurately measure fairness without violating data privacy
and incorporate fairness as a constraint to achieve a fairer model with high accuracy performance.
Similarly, Zhang et al.| (2022) study a new notion of fairness, proportional fairness, in FL, which is
based on the relative change of each client’s performance. They connect with the Nash bargaining
solution in the cooperative gaming theory and maximize the product of client utilities, where the
total relative utility cannot be improved. Similarly, [Lyu et al.| (2020) study collaborative fairness,
meaning that a client who has a higher contribution to learning should be rewarded with a better-
performing local model. They introduce a collaborative fair FL framework that incorporates with
reputation mechanism to enforce clients with different contributions converge to different models.
Their approach could also be viewed as a variant of clustering that separates clients based on their
contributions.
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B PERSONALIZATION CAN ALSO IMPROVE FAIRNESS: THEORETICAL
SUPPORT

To support and validate our findings from the numerical experiments in Section |4} in this section,
we analytically show that personalized Federated clustering algorithms (which cluster/group similar
clients to improve their models’ local accuracy) can also lead to better local fairness, when compared
to a (non-personalized) shared global model.

We consider the following additional assumptions in our general model of Section |3} We assume
the n clients can be potentially grouped into two clusters, C,, and Cg, based on similarities in their
data distributions f¢*(x), with a fraction p of clients in cluster C..

We assume features are single dimensional x € R, and that clients can use their local data to learn a
threshold-based, binary classifiers hy(z) : R — {0, 1} under which samples with features « > 0
are classified as label 1 (i.e., §(f) = 1). Clients choose these thresholds to minimize classification
errors. Formally, consider a client ¢ from cluster c; let r;‘ be the fraction of its samples that are from
group g, and o be the fraction of its samples that are from group g and have true label y. The

client chooses its decision threshold 8 to (empirically) solve the following optimization problem:

0 “+o00
0; = argmoin Z g (a;’c [m f;’c(x)dx—kozg’cfg fg’c(ac)dx) . 3)

g€{a,b}

For personalized learning, we consider a cluster-based FL algorithm where each cluster can learn its
own optimal cluster-specific model 67, ¢ € {a, §} (obtained after solving equation E]), and contrast
that with the average optimal model 6. that would be obtained if all n clients collaboratively learn
a shared global model. We then contrast the average local fairness A% (¢) obtained for clients in
cluster C,, under a personalized model 8% vs. a shared model 67,, for two notions of fairness:
f € {EqOp, SP}.

We start with the EqOp (Equality of Opportunity) fairness constraint, which aims to equalize true
positive rates (TPR) between the protected groups a and b. The following proposition shows that if
0r < 9;; (i.e., the data heterogeneity is such that cluster C,, has a lower optimal threshold than C'),
then clients in cluster C', can obtain better local fairness (in addition to better local accuracy) with
their cluster-specific model compared to if they used a global model shared with clients in Cjg.
Proposition 1 (Improved EqOp through clustering). Assume f$“(x),y € {0,1},g € {a,b},c €
{Cu,Cs}, are unimodal distributions, with modes m% such that my’® < m%°,Vi, ¢, and oy® >
ag’c, Vg,c. If 0} < 9;, there exist a cluster size p such that for p > p, we have quop(og) <
AS op(05); that is, the global model is more unfair than the cluster-specific model for C..

The proof is presented in Appendix Intuitively, clients in C, are better off under their per-
sonalized model as, given the proposition’s conditions, an increase in the decision threshold (which
happens when moving from 6 to 67,) will decrease the TPR of the disadvantaged group b (the one
with a lower mode in its feature distribution) faster than that of the advantaged group a, increasing
the fairness gap for clients in C,.

We next consider SP (Statistical Parity) fairness,
which assesses to disparity in the selection (posi-

Local loss (Dot)
EqOp fairness gap (Solid)

tive classification) rate between the two protected ]
groups. This is impacted by both the group a vs.  £” \ -3
b feature distributions as well as the label rates, ren- % ) (\ j j/\ .
dering it more stringent than EqOp fairness. Fig- % lu o deian e Bl o cacilon treshola

ure [9] illustrates this by plotting the fairness gap vs.
the decision threshold 6 for SP vs. EqOp, showing
that SP exhibits less structured changes as the deci-
sion threshold moves (e.g., due to the use of a global model). Therefore, to facilitate theoretical

(a) sp (b) EqOp
Figure 9: Fairness gap vs 6.

'Our analysis assumes one-dimensional features and threshold classifiers. The former can be viewed as the
one-dimensional representation of multi-dimensional features obtained from the last layer outputs of a neural
network. For the latter, existing works (Corbett-Davies et al., [2017; |Raab & Liul [2021) show that threshold
classifiers are optimal when multi-dimensional features can be properly mapped into a one-dimensional space.
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analysis, we further assume that f¢(x) follows Gaussian distributions with equal variance o? but

different means p2°°, such that ug’c < pde < ,ué’c < ule; the ordering is chosen so that label

0 samples have lower features than label 1 samples, and that for the same label, group a samples
have higher features than group b samples (making group a advantaged). We again find that then
clients in cluster C,, can obtain better local SP-fairness (in addition to better local accuracy) with
their cluster-specific model compared to if they joined in on a global model shared with clients in

Cpg.

Proposition 2 (Improved SP through clustering). Assume fJ°(x),y € {0,1},9 € {a,b},c €
{Ca, Cs}, are Gaussian distributions with means /Lg’c < pde < u;’c < uk* and equal variance
o?. Assume further that utc — p9¢ = u;’c - ,ug’c, 0% < 0%, and that either ap© > ade, vy,

5 0,en2 _

or i > r¢.¥e and okt > o) > ap© > a%C Then, lfagﬁexp(%)(e — pule) —
0— 1,cy\2 _ 0— 0,c\2 _ o— 1,c\2 —

oy exp( ) (8 — 1y©) > ol exp(Uae ) (0 — pp) — abeexp(UA ) (0 — pbe)

— 1,c 0,c
holds, where 0 := % there exist a p such that for p > p, AS,(0%) < AS(65).

A detailed proof is presented in Appendix Proposition 2] assumes an equal distance between
mean estimates (reflecting a uniform, systematic underestimation of group b features); we relax this
in Appendix Intuitively, the proposition states the following: when a;’c > ag’c, there are
more label 1 data in both groups, and 67, will pull 87, up to account for the label imbalance, resulting
in a deterioration in both fairness and accuracy. Similarly, the other condition means that group a’s
clients are majority label 1, while group b’s clients are majority label 0; then, 6% < 6 if r, > r,,
resulting in a higher fairness gap for clients in C,, under 8¢, for the same reason as the first condition.

B.1 ADDITIONAL DISCUSSION ON THE ASSUMPTIONS USED IN THE ANALYTICAL RESULTS
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Figure 10: Fairness under different values of decision threshold

In Fig[T0] both cluster-wise SP and EqOp fairness and loss are assessed under the different values
of decision threshold 6 on local data, depicted in red and green colors. The solid lines denote the
corresponding fairness performance, while the dotted lines illustrate the corresponding loss under the
corresponding decision threshold. The vertical red/green lines show the optimal decision threshold
determined by solving Eq. 3] with the blue vertical line indicating the FedAvg solution with the
parameter p = 0.5.

For a more insightful comparison, we assume that in the cluster C (green), the data distribution
exhibits an equalized distance between distributions, equalized group rate, and equalized label
rate (e.g., (ug, fhy, o, pg) = (10,9,7,6),0% = 0.5,r, = 0.5). Meanwhile, in the cluster C,
(red), we relax all of these assumptions (e.g., (1l pup, pS, 1) = (7,6,4,2), (al,a},al,af) =
(0.6,0.3,0.4,0.7), (4, r5) = (0.65,0.35)). The comparison depicted in Fig. reveals that the SP
fairness exhibits less structured changes as the decision moves (e.g., due to the used of a global
model). This is because EqOp fairness solely considers the true positive rates across two protected
groups. The observation also underscores the necessity for more restrictive assumptions in our ana-
lytical support for SP fairness (Proposition 2).
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B.2 PROOFS

B.2.1 PROOF OF PROPOSITION(I]

For simplicity, we assume that clients within the same cluster are identical. Before we show the
impact of the global model 6, on the fairness performance, we first prove that the global model will
lie between two clusters” models 67, and 0.

Lemma 1. Under the assumptions of our problem setup, the optimal solution 0f, for the FedAvg
algorithm will lie between 87, and 0.

Proof. We prove this by contradiction. By deﬁnition, let 0, := argminp * 3o L;(0) + (1 —
P)*> jec, £4(0) and 07 :=argmin ) . L;(0) are the optimal solutions for the FedAvg and the

clustered FL algorithms, respectively, where L is the objective function in Eq. 3| Without loss of
generality, we assume ¢, < ¢5. The following proof considers the scenario with 0¢; > 03 the other
case can be shown similarly.

First, it is easy to verify that the objective function is convex in 6. Then, if 6, > 6}, it should be that

>jec, L£i(08) > ZjEC5 L;(0%) because 0 can yield a smaller loss compared to the 6¢;. Similarly,

wehave > ..o L5(05) > cc. £i(05) > 2 cc, L£i(07) due to convexity. Therefore, 0, is not

the optimal solution, contradicting the assumption. Hence, the FedAvg solution would lie between

0% and 67. O
a B

Now, we are ready to prove the Proposition [T] that global model is more unfair than the cluster-
specific model (i.e., AZ o (05) < Af,o, (05))-

Proof. We start with the scenario where r, = r, balanced label participation rates, and equalized
distance between peaks. As the following analysis focuses on the cluster C,, we drop the cluster
notation from the derivation for notation simplicity. Let Azq0,(6) be the cluster-wise EqOp fairness
gap at the given decision threshold . Based on the definition, it could be written as

Besen®) = [ it~ [ fiaas

According to the Leibniz integral rule (Weisstein, 2003), we can find the derivative of Aggo,(0)
w.r.t. 6 as following:

/

Aggop(0) = £5(6) = f2(0)

Let the intersection point of the feature-label distribution f¥ and f Y be | gu.gv' - 118 easy to verify
that the optimal decision threshold 6% obtained from [3] lcould be written in the closed form such that
9*

o = datpo = Ibl,ao

When Aqup( ) = 0,0 = 00, —00 or I,1 ;1. Furthermore, at extreme cases where § — 0o or —oo
we can find that the value of EqOp fairness gap Agqop(00) = Aggop(—00) = 0. Therefore, to
investigate the impact of FedAvg solution 0, on the EqOp fairness gap, it is equivalent to check the

sign of AEqu(O) at the optimal decision threshold 7, obtained by solving

To relax the equalized distance assumption, we could treat the location of modes of f}, f0, fl as
fixed, and vary the mode of fb , and there are two cases we can discuss:

1. Ial’bl — Ia",bl < Ia())bl — Iao)bo
Under this condition, we could consider a smaller value of the mode of f. As a result, the
optimal decision threshold 67, will shift to the left, resulting in a smaller value compared to

the equalized distance case. In other words, it means 8}, < I,1 1, indicating Aqup(H*) >
0.
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2. I bl — I,0 bl > To bl — I0 b0
Under this condition, we could consider a larger value of the mode of fb , but it is still less
than that of f? according to our assumption. At the extreme case when they are equal, the
optimal decision threshold determined from E]would be smaller than [0 ,1 because of the
mode of f; is less than that of f!, which is also smaller than I ot pt- Therefore, we can still

conclude A___(6%) > 0.

EqOp
For the scenario of r, # 3, we can find that the change of 7, does not affect the value of Agyo,(6),
but the location of 8. According to our distribution assumption, when r, > (resp. <)r}, the optimal
solution 07 will be in favor of the group a (resp. b) distributions, leading to a right (resp. left) shift
compared to the optimal solution when r, = r,. However, when 7, — 1 (resp. 0), 0, — Iq0 41

(resp. Ipo 1), which is still less than I,1 51, indicating AEqu(HZ) >0

With the assumption that the majority of samples are labeled as 1 (i.e., oz_}] > 042), the decision

threshold 67 will shift towards the left to account for label imbalance. In other words, the sign of
Aqup(H ) remains positive. Since 0, < 63, there exist a cluster size weight p such that the FedAvg
solution 0, will make the cluster C,, unfairer. O

B.2.2 PROOF OF PROPOSITION[2]

Proof. For simplicity, we assume that clients within the same cluster are identical. We start with the
scenario where r, = 1, and balanced label participation rate. As the following analysis focuses on
the cluster C,, we drop the cluster notation from the derivation for notation simplicity. Let Agp(6)
be the cluster-wise SP fairness gap at the given decision threshold 6. According to its definition, it
could be written as

Bex(0) =al [ " @)+ a / " @) — o} / " @)de — of / " o (a)da

According to the Leibniz integral rule (Weisstein, [2003), we can find the derivative of Agp(6) w.r.t.
0 as following:

A (0) = oy £ (0) + £ (0) — g fa () — aq f3(6)
According to our distribution assumptions, we can write the above expression in the following closed
form with o« = o Vy, g

’

ALy (6) = (-Ctu)

552 )+exp(—

)—exp(—

0 — 0)2
V2ro 202 202
Furthermore, it is easy to verify that the optimal decision threshold 67, obtained by solving could
be written in the closed form such that

G g — Moty _ ot

a9 2

At the optimal solution 67, A/SP(QZ) = 0. Similar to the proof of Proposition |1| to investigate the
impact of FedAvg solution 0¢, on the SP fairness gap, it is equivalent to check how the A/SP(Q;)
change in the neighborhood of the optimal solution 6%. Also, at extreme cases, we can easily
find that the value of SP fairness gap Agp(c0) = Agp(—00) = 0. Therefore, if A, (6%) > 0
then we can conclude that the FedAvg solution 6¢, would lead to a worse fairness performance

- con 0% _ _(0—m)?y _ (0—pg)* —
compared to the optimal solution 6% . Let 11 (0) = exp( ) — exp(—-5=5—) and ¥ (0) =

202

(Q*PJ}IV (O*NS)Q H * *) __ *\
exp(—-"54—) — exp(—-——5-+—). At the solution 6}, we can find that 1, (0},) = 12(0},) =

Hence, to investigate how the A;P(Qg) change, we can find the rate of change for both 1) (#) and
12(0) in the neighborhood of 6% such that

" 07 —pd)> N 05 —pd 05 —pg)?\ 05— 0 —pp)?
V1602 = exp(Pgft) s — exp((ag ) B2 = Lol () — )

’ " * 0r — = y2 gx 1 0r 2
U (02) = exp( Cagh) ot — oxp(Caglhy) s = Loxp(\gl) (u) — i)
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By setting 1 (0%) > ty(67%), it means the increment of 1)1 is larger than the decrement of .
Therefore, with Lemma|l] there exists a cluster size weight p such that the FedAvg solution 6, will
make the cluster C,, unfairer. The inequality is obtained by considering unequalized o).

In addition, for the scenario of r, # 7, similar to the proof of Proposition m we can find that
the change of 7, does not affect the expression of Agy(6), but it will affect the location of 6%.
According to our distribution assumption, when r, > (resp. <)ry, the optimal solution 6 will be
in favor of the group a (resp. b) distributions, leading to a right (resp. left) shift compared to the

0 1 0 1
optimal solution when r, = ry,. However, when 7, — 1 (resp. 0), 0 — Lol (resp. “eliv)

0 0 1 1 1 1
which is limited within the range of (Xef%e “aFre) When § = “afM: we can easily find that

Ay (0) = 0 especially when o is small. In other words, we can conclude that Agp(0) > Agp(67)

for any 07, € (%, %) Therefore, the claim still holds.

Furthermore, when the equalized label participation rate assumption is relaxed, the above proof strat-
egy still holds by considering different o} into the expression. It is worth noting that when the label
participation rates are balanced, the fairness Agp () has two equal-height peaks (e.g., AL, (6) = 0)
by symmetricity of the Gaussian distribution when 6 = @ and “2% However, when the ma-
jority of samples are labeled as 1, we observe a shift in the decision threshold 67, < 6§ towards the left
to account for label imbalance. In this case, since 87, > 0, the FedAvg solution pulls 8}, upwards,
favoring label 1, which results in both accuracy and fairness deteriorating. Moreover, when r, > 7,
and the majority of samples are labeled 1 in one group where the other group has a better balance
in the label (i.e., 04(11 > ag > a; > ozg), 0% < 0 holds. Therefore, Asp(6) will increase initially
and then decrease, and there still exist a cluster size weight p such that the FedAvg solution §¢, will
make the cluster C,, unfairer. O

C EXPERIMENT DETAILS AND ADDITIONAL NUMERICAL EXPERIMENTS

C.1 DATASET AND MODELS

In this section, we detail the data and model used in our experiments.

Retiring Adult dataset. We use the pre-processed dataset provided by the folktables Python pack-
age (Ding et al., |2021), which provides access to datasets derived from the US Census. In this
package, there are three tasks: ACSEmployment, ACSIncome, and ACSHealth. For the ACSEm-
ployemnt task, the goal is to predict whether the person is employed based on its multi-dimensional
features; for the ACSIncome task, the goal is to predict whether the person earns more than $50,000
annually; and for the ACSHealth task, the goal is to predict whether the person is covered by insur-
ance.

Model. We train a fully connected two-layer neural network model for both tasks, where the hid-
den layer has 32 neurons for the ACSIncome task, and 64 neurons for the ACSEmployment and
ACSHealth tasks. For all tasks, we use the RELU activation function and a batch size of 32. Fur-
thermore, we utilize the SGD optimizer for training, with a learning rate of 0.001 for both FedAvg
and MAML algorithms and 0.05 for the clustered FL algorithm. In FL, each client updates the global
model for 10 epochs in the FedAvg and MAML algorithms and sends it back to the server, while the
clustered FL algorithm that has a larger learning rate updates the global model for 1 epoch. We also
follow the encoding procedure for categorical features provided by the folktables Python package.
The input feature size is 54, 109 and 154 for the ACSIncome, ACSEmployment and ACSHealth
tasks, respectively. In the experiments, we consider either sex (e.g., male and female) or race (e.g.,
White and Non-White) as the protected attribute.

ACSEmployment task with different protected attributes.

As shown in Figure [11{ and within the same ACSEmployment task, the data distributions for
race (left) and sex (right) are significantly different. For the protected attribute of sex, the number
of samples is nearly even across groups and labels. However, for the protected attribute of race, the
White group has significantly more samples compared to Non-White groups for both labels 0, 1.

ACSIncome and ACSHealth tasks with protected attribute of sex.
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Figure 11: Fraction of samples over all states for ACSEmployment

We can see from FigurdI3] [T4]and [T3]that the fraction of samples in the ACSIncome task is similar
across groups for label 0 data but differs significantly for label 1 data. Additionally, we can observe
that the ACSHealth task has similar fractions of samples from each group, akin to the ACSEmploy-
ment task, in contrast to the ACSIncome task.

C.2 ADDITIONAL EXPERIMENTS ON OTHER TYPES OF FAIRNESS NOTIONS

In addition to the SP fairness investigated in Sectiond] we also study the impact of personalization
techniques on other types of fairness notions such as EO and EqOp. From Fig. [T6] we find that
the introduction of personalization techniques can enhance other types of fairness due to the com-
putational advantages of collaboration. However, compared to the improvement of SP and EqOp
fairness, the local EO fairness improvement is less significant because the EO matches both the true
and false positive rates across two protected groups, rendering it a more stringent criterion.

C.3 ADDITIONAL EXPERIMENTS ON OTHER DATASET AND TASKS

In addition to the ACSEmployment (sex, race) and ACSIncome (sex) experimental results presented
in Section ] we conducted additional experiments to explore the impact of SP fairness using new
datasets, as illustrated in Fig. Examining the ACSHealth data with sex as the protected attribute,
we can see from Fig. [I3] that the fractions of samples from each group across all states are similar
to that of the ACSEmployment dataset shown in Fig. [T} resulting in a similar performance. From
Fig. we can see that personalization techniques can improve local fairness as an unintended
benefit, similar to the observations from Section 4]
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Figure 12: Normalized frequency of fraction of samples for ACSEmployment
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Figure 13: Normalized frequency of fraction of samples for ACSIncome

In the Adult dataset, where we randomly and evenly sample data into 5 clients. We could observe
that the results are consistent with our findings in Section[d That is, when groups are balanced (with
sex as the protected attribute), the personalization could also improve the fairness as unintended ben-
efit. However, when groups are unbalanced due to more White samples, the clustered FL algorithms
have worse local fairness performance compared to FedAvg, but the MAML-FL algorithm could
have a better performance.

C.4 ADDITIONAL EXPERIMENTS ON EoOpr AND EO FAIRNESS

In Section [5] we compare SP fairness between two algorithms: ICFA and Fair-FCA. Here, we
also compare the EqOp and EO fairness between them. The observations from Table |I| are also
consistent with those from Fig[8] meaning that the Fair—FCA algorithm enables us to establish a
better fairness-accuracy tradeoff (a drop in accuracy in return for improved fairness) compared to
the IFCA algorithm.
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Figure 15: Fraction of samples over all states for ACSIncome and ACSHealth

C.5 DETAILS OF SETUP ON SYNTHETIC EXPERIMENT

According to the data distribution information, we can see that clients 2,4,5,6,7,8 have similar data
distributions compared to clients 1,3. Also, we can find that clients 1,3,4,6,7,8 share identical data
distribution across the two groups. We generate 1200 samples from each distribution and apply
a logistic regression classifier for binary classification tasks. We report our experiment results for
an average of 5 runs. When v = 1, Fair-FCA prioritizes accuracy; by design, this is attained by
grouping the 6 clients having similar data distributions together ({1,3} and {2,4,5,6,7,8}). Similarly,
when v = 0, Fair—FCA focuses only on SP fairness, this time clustering clients that have identical
distributions on the two protected groups together ({2,5} and {1,3,4,6,7,8}). Lastly, by setting
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Figure 17: Additional experiments on other datasets with different protected attributes

~v € (0,1), we can effectively account for both accuracy and SP fairness when clustering: when
v = 0.3, the clusters are {2,4,5} and {1,3,6,7,8}; when v = 0.5, the clusters are {2,4,5,6} and
{1,3,7,8}; and when y = 0.8, the clusters are {2,4,5,6,7} and {1,3,8}.

C.6 ADDITIONAL EXPERIMENTS USING ORIGINAL RETIRING ADULT DATASET WITHOUT
FEATURE SCALING

We can see from Table 3] that compared to the IFCA algorithm, our Fair-FCA algorithm is expe-
riencing a degradation in accuracy but an improved fairness, meaning an accuracy-fairness tradeoff.
These observations are also consistent with our findings when using the Retiring Adult dataset with
feature scaling in Section 3]

D EXPERIMENTS ON SYNTHETIC DATA

To further validate our propositions, we conduct the following numerical experiments. In the ex-
periments detailed in[D.T] the setup is the most restrictive, with equalized distance, balanced group
rates, and equalized label rates. In subsequent experiments, we relax one factor at a time. Finally, in
the experiments described in[D.4] all these assumptions are removed.

D.1 EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED DISTANCE,
BALANCED GROUP RATE, AND EQUALIZED LABEL RATE

Numerical illustration. We now conduct numerical experiments to illustrate the findings in Prop. |1}
[2l We drop the cluster notation ¢ whenever it is clear from the context. The results are presented
in Tables ] and [5] We proceed as follows: 10000 random samples in cluster C, are drawn from
Gaussian distribution for each group g € {a,b} with mean ,ug’ca and standard deviation o. The
number of qualified (y = 1) and unqualified (y = 0) samples in each group is proportional to the
label participation rate ozg’ca. Since samples were generated in a consistent manner across different
parameter settings, we assumed an optimal decision threshold 65 = 8 for cluster Cg, obtained

according to the distribution information: (f{, f{, fd, f3,0) = (10,7,9, 6, 1) with equalized group
rate 7y = 0.5, Vg and label participation rate ag’CB = 0.5,Vg, y. In Table|4} we consider the scenario
where ag’cw = 0.5 Vg, y. In contrast, different values of azvca are applied in Table Both results
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Figure 18: Additional experiments on Adult datasets with samples randomly and evenly distributed

Table 1: Fair—-FCA with different datasets and protected attributes
Dataset Algorithm EqOp Acc. (EqOp) EO Acc. (EO)

Emolovment-Race TFCA 0.07764 0.8188 0.09319  0.8188
ploy Fair-FCA | 0.07029 0.8151 0.08946  0.8151

Emol S IFCA 0.04521 0.8188 0.05808  0.8188
MPIOYMENTSEX | ¢ o5 r—Fca | 0.04183 0.8157 0.05655  0.8151

IFCA 0.05029 0.7511 0.05231 0.7511

Income-Sex Fair-FCA | 0.04932  0.7491 0.05161  0.7489

in Table [ and [5] consider an equalized group rate such that r, = 7, and an equalized distance
between mean estimates.

From Table 4] we can find that it offers crucial insights into the conditions required for Proposi-
tion 2| (SP) to hold. For fixed mean estimates p (rows 1-2), we observe that smaller values of o
are preferable to satisfy the specified conditions. Similarly, for fixed o (row 1, 3 and row 2, 4),
larger differences between u; and ug are advantageous in fulfilling the conditions. This observation
becomes intuitive at the extreme cases where samples are linearly separable with small o or large
distance between u; and ug. Therefore, the optimal decision threshold 67, could achieve a perfect
classification as well as perfect fairness. Hence, the FedAvg solution 0, deviated from the optimal
solution will lead to worse performance in both accuracy and fairness. We could also observe that
for the EqOp fairness, under an equalized label rate, the FedAvg solutions consistently make the

cluster C,, unfairer, which is consistent with our findings in Prop.

Table [5| reveals insights regarding the influence of label distribution o on SP and EqOp fairness
performance. Specifically, when the majority of samples in both groups are labeled as 1 (rows 1-2),
the optimal decision threshold (87 shifts leftward compared to the balanced scenario. However,
with Lemma |1} the FedAvg solution §¢, will be greater than §},. Therefore, we can find that 0
will have even larger fairness gap when it is shifted to the right. Another intriguing observation is
that in cases where the majority of samples have different labels (row 3), the FedAvg solution (6,)
yields worse fairness performance when p = 2/3 or 1/2 but not when p = 1/3 (0.1720 }) or 1/4
(0.1391 |). This indicates the weight p plays a significant role in shaping the overall cluster-wise
average fairness performance, especially when assessing the overall cluster-wise average fairness
performance.

Since we assume clients within the same cluster are identical, and the local fairness performance
for an algorithm can be computed as a weighted sum of the local fairness performance from each
cluster, the cluster-wise average local fairness gap under different models’ optimal solution € could

be calculated as A (0) = pAG + (1 —p)A?; f € {sP,EqOp, EO}, where p is the fraction of clients
belonging to cluster C,,.

In Table [6] and we delve into different notions of cluster-wise average fairness gap achieved
with different decision thresholds (optimal clustered FL solutions 6¢, and FedAvg solutions 6¢.). In
the following experiment, we keep the parameters in cluster Cg as constants while varying those in
cluster C, to assess its impact on the corresponding fairness. From the results in Table[6]and [7] we
can find that when both conditions are not satisfied (rows 5-6), there is a cluster size weight p such
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Table 2: Data distributions over 8 clients

ClientID  f] £ /i £
1 N(8,1) | N(6,1) | N(8,1) | N(6,1)
2 N(12,1) | N(8,1) | N(11,1) | N(7,1)
3 N(7.5,1) | N(5.5,1) | N(7.5,1) | N(5.5,1)
4 N(12,1) | N(9,1) | N(12,1) | N(9,1)
5 N(12,1) | N(8,1) | N(11,1) | N(7,1)
6 N(11.5,1) | N(8.5,1) | N(11.5,1) | N(8.5,1)
7 N(11,1) | N(8,1) | N(11,1) | N(8,1)
8 N(10.5,1) | N(7.5,1) | N(10.5,1) | N(7.5,1)

Table 3: Algorithm performance comparisons using original Retiring adult dataset
Dataset Algorithm Sp Acc. (SP) EqOp Acc. (EqOp)

IFCA 0.03667 0.8229 0.04698 0.8229

Employment-Sex | 1\ “rea | 003594 08223 ] | 004633  0.8224 |

IFCA 0.07257 0.8229 0.07315 0.8229

Employment-Race | ;' “ron | 007219 082241 | 0065271  0.8226 |

IFCA 0.08355 0.7481 0.04773 0.7481

Income-Sex | & i pea | 0082271 07469 | | 0.04767 ]  0.7469 |

IFCA 0.1012 0.7481 0.1100 0.7481

Income-Race | o+ “rea | 01011, 07468 | 0.1086,  0.7466 |

that the FedAvg solutions would lead to better fairness performance for each cluster, consequently
yielding a lower cluster-wise average fairness gap. However, when only one cluster satisfies the
condition, meaning that there is a p such that the FedAvg solutions would only make one cluster
unfairer (rows 1-2 in Table @), we could see that a relatively small p would let the clustered FL
solutions yield a better fairness performance because 67, will move to the cluster with a smaller value
of p to account for the cluster size imbalance. Nevertheless, when p is large, the FedAvg solutions
will again have superior fairness performance than the clustered FL solutions, similar to the results
in rows 3-4 in Table|6|and [7| Essentially, for each cluster c, there exists a range (pf,,,; Pf,;45) Such
that, within this range, FedAvg solutions result in worse fairness performance compared to clustered
FL solutions. Consequently, for any p € N¢(pf,,, Phi 9 1)» clustered FL solutions yield a superior
cluster-wise average fairness performance relative to FedAvg solutions.

D.2 EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED DISTANCE AND
BALANCED LABEL RATE

Compared to the experiments focused on an all balanced setting in Table [4] the following exper-
iments relax the group rates setting in the cluster C,, while we keep other settings (i.e., balanced
label rate and equalized distance) and data information for Cg unchanged.
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Table ﬁls&}l,uﬁrﬁf Co f@gmﬁ&perforr(nar)lce w1th§:%kw41)zed dlstance ggroup ratgfanqelapel rate

(o 10, pps 115, 0) (sp) P = 2
(7,4,6,3,1) Yes 0.1359 01814T 01945T 0.1359 03413¢ 03829T
(7,4,6,3,2) No 0.1499 0.1417)  0.1315]) 0.1499 0.19151  0.1974 1
(7,5,6,4,1) No 0.2417 02297  0.2046 | 0.2417 037811 037211
(8,3,6,1,2) Yes 0.1866 0.1968 1 0.2033 1 0.1866 031211 0.3590 1

Table 5: Cluster C, fairness performance with equalized distance and group rate

Distribution Label rate Condition AL (0%) Ag(0)
(B> s by 11, 0)  (rg, 0, g, 0p) (SP) seie p=3% p=3
(0.7,0.3,0.6,0.4) Yes 0.2062 0.2146 1 0.2463 T
(7.4.6.3,1) 0.6,0.4,0.7,0.3) Yes 0.0453 0.05141 0.0813 1
P (0.7,0.3,0.4,0.6) Yes 0.3797 0.3858 17 0.3926 1
0.6,0.4,0.3,0.7) No 0.3797 0.3748 |  0.2804 |
(qup) quOp (QZ ) quOp (O*G)

(0.7,0.3,0.6,0.4) Yes 0.0998 0.1807 1 0.1923 1
(7.4,6,3,2) 0.6,0.4,0.7,0.3) Yes 0.0975 0.1198 1 0.1796 ©
P (0.1,0.9,0.5,0.5) No 0.1965 0.1650 ) 0.1574 |
(0.3,0.7,0.2,0.8) No 0.1974 0.1645] 0.1574 |

From Table [8] we can see that the changes in the group rate do not affect the fairness performance
comparison. There exists a cluster size weight p such that the FedAvg solutions would lead to worse
SP and EqOp fairness performance compared to the clustered FL solutions. This observation is also
consistent with our findings in the Proposition[T]and

D.3 EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION WITH EQUALIZED DISTANCE

Similar to experiments in we further relax balanced label rate setting in the following experi-
ments, while we keep other settings (i.e., equalized distance) and data information for Cg unchanged.

From Table 0] we can observe that for the SP fairness, when the majority of samples are labeled 1
(rows 1-6), the changes in the group rate do not affect the fairness performance comparison in the
cluster C,. There exists a cluster size weight p such that the FedAvg solution would lead to a worse
fairness performance compared to the clustered FL solutions. From Table [T0] when the condition
al > oY holds, there exists a combination of group rates (rows 1-6) such that the FedAvg solution
would lead to a worse EqOp fairness performance. These observations from Table[9]and [I0]are also
consistent with our findings in the Proposition [[]and [2]

D.4 ADDITIONAL EXPERIMENTS UNDER GAUSSIAN DISTRIBUTION

Similar to experiments in and we now release all settings we imposed before, while we
data information for Cs unchanged.

From Table [TT} we can observe that when the majority of samples are labeled 1 (rows 1-3 and 7-
9), there exists a cluster size weight p such that the FedAvg solution would lead to a worse SP
fairness performance compared to the clustered FL solutions, which also experimentally extends
our findings in the Proposition [2]to the case of an unequalized gap. However, when the majorlty of
samples are labeled differently (rows 4-6 and 10-12), we could find that when p} — p > i — pf,
there exists a p such that the FedAvg solution would lead to a worse SP fairness performance, and a
distinct outcome occurs when p! — p9 < pl — 1. One reason for the distinct behaviors is that the
corresponding condition is not satisfied for the experiments in rows 4-6. Additionally, we find that
as p enlarges in row 11, the fairness gap decreases, and it could have better fairness performance
than using the clustered FL solution. This observation is also consistent with the previous finding
that the fairness gap would increase initially and then decrease in the proof of Proposmon 2l As we
described earlier, it is clearly that for row 11, p = 1/2 is not in the range of (plow,phlgh)

From Table , we could observe that when the condition o} g 2> ag holds (rows 1-3 and 7-9), the
changes in the group rates, label rates, and distribution distance do not affect the EqOp fairness
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Table 6: Cluster-wise average SP fairness performance with equalized distance

Distribution Label rate Condition
Co (Ha» Ha» B 1> 0) (A Olg, Qtp, ) P As(00) Ase(05)
Cp (jun, o, piy, 19, o) (ah, @, ap, ) satisfied
(7,4,6,3,2) (0.5,0.5,0.5,0.5) No 4/5 0.147 0.145 |
(10,7,9,6,1) (0.5,0.5,0.5,0.5) Yes 1/3 0.141 0.160 T
(7,4,6,3,2) (0.8,0.2,0.7,0.3) Yes 3/4 0.139 0.107 |
(10,7,9,6, 1) (0.5,0.5,0.5,0.5) Yes 172 0.138 0.178
(7,4,6,3,2) (0.5,0.5,0.5,0.5) No 1/3 0.303 0.283 |
(10,7,9,6, 1) (0.7,0.3,0.4, 0.6) No 2/3 0.227 0.200 |

Table 7: Cluster-wise average EqOp fairness performance with equalized distance

Distribution Label rate Condition
Co (Ha» Ha» iy 1> 0) (O Olg, Qtp, ) P Deqop(00)  Arqop(0)
Cs :(ttas fas s 15> 0) (g, g, o, o) satisfied
(7,4,6,3,2) (0.3,0.7,0.2,0.8) No 1/3 0.156 0.133 ]
(10,7,9,6,1) (0.5,0.5,0.5,0.5) No 2/3 0.177 0.139 |
(7,4,6,3,2) (0.8,0.2,0.7,0.3) Yes 3/4 0.082 0.050 |
(10,7,9,6, 1) (0.5,0.5,0.5,0.5) No 172 0.100 0.109
(7,4,6,3,2) (0.3,0.7,0.2,0.8) No 1/3 0.224 0.187 |
(10,7,9,6, 1) (0.3,0.7,0.2,0.8) No 2/3 0.211 0.149 |

performance in the cluster C,. There exists a cluster size weight p such that the FedAvg solution
would lead to a worse fairness performance. However, when the condition is not met (rows 4-6 and
10-12), the FedAvg solution would have a better EqOp fairness performance.
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Table 8: Cluster C,, fairness performance under Gaussian distribution with equalized distance and
label rate, but not group rate

Distribution Group rate a (g* Ag (0F) « * Agaop(05)
G s b1l 0)  (rarry) ), 2 G y Bewp(0a) ) 2 p=3
(0.5,0.5) 01359  0.18141  0.19451 0.1359 034137 038294
(0.7,0.3) 0.1388 0.1558 T 0.1941 1 0.1780 025941 0.3828 1
(7,4,6,3, 1) (0.9,0.1) 0.1465 0.1702 1+ 0.1941 1 0.2217 0.3076 T 0.3828 1
(0.3,0.7) 0.1388 0.1359 1  0.1558 1 0.0996 0.1359 1 0.2594 1
(0.4, 0.6) 01367  0.13721  0.1931 % 0.1161 016341 037591

Table 9: Cluster C, SP fairness performance under Gaussian distribution with equalized distance,
but not label rate and group rate

0

Distribution Label rate Group rate A (9" Ag(05)
10,1 0 1 10 e (02) _ 2 _
(Has fas Hbs Hbs O) (g, Ot s ) (Tmrb) P=3 p=3

=

(0.5,0.5) 02062 021461 0.2463 1
(0.7,0.3, 0.6, 0.4) (0.3,0.7) 0.2024  0.2056 17 0.2167 T
(0.7,0.3) 02136 023091 0.2793 |

(0.5,0.5) 0.0453  0.05141 0.0813 1
(0.6,0.4,0.7,0.3) (0.3,0.7) 0.0460  0.0446] 0.0482 1
(0.7,0.3) 0.0535  0.07511 0.1467 1

(7.4,6,3, 1) (0.5,0.5) 0.3797  0.38581 0.3926 1

(0.7,0.3, 0.4, 0.6) (0.3,0.7) 0.3780  0.38191 0.3451 )
(0.7,0.3) 0.3821 0.3899 1  0.3936 1

(0.7,0.3) 0.1005  0.0662 ] 0.0766 |
(0.9,0.1) 0.0725  0.0078 ] 0.0868 T
(0.3,0.7) 0.1013  0.1084 1  0.1090 |
(0.1,0.9) 0.0767  0.0860 1 0.0972 1

(0.4,0.6,0.7,0.3)

Table 10: Cluster C, EgOp fairness performance under Gaussian distribution with equalized dis-
tance, but not label rate and group rate

Distribution Label rate Group rate o (p Agaop(05)
AEqu (ea )

1 0 1 0 1 0 1 0 2 1
(;U/n.v Has Hys N‘b’a) (Oéa,Oéa,Olb,Otb) (Ta,’f’b) P=3 P=3

(0.5,0.5) 0.0998 0.12221  0.1807 1
(0.7,0.3, 0.6, 0.4) (0.3,0.7) 0.0952 0.11091 0.1784 1
(0.7,0.3) 0.1044 0.1386 1 0.1825 71

(0.5,0.5) 0.0975 0.1198 1t 0.1796
(0.6,0.4,0.7, 0.3) (0.3,0.7) 0.0798 0.0874 1  0.1799
(0.7,0.3) 0.1180 0.19571 0.1792 1

(7.4,6,3,2) (0.5, 0.5) 0.1965  0.1650 | 0.1574 |

(0.1,0.9,0.5,0.5) (0.3,0.7) 0.1751 0.1742 L  0.1620 |
(0.7,0.3) 0.1869 0.1569 |  0.1537 |

(0.5,0.5) 0.1974 0.1645 | 0.1574 |
(0.3,0.7,0.2, 0.8) (0.3,0.7) 0.1974 0.1630 L  0.1569 |
(0.7,0.3) 0.1973 0.1660 |  0.1585 )
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Table 11: Cluster C,, SP fairness performance under Gaussian distribution without equalized dis-
tance, label rate and group rate
Distribution Label rate Group rate o (% Ag(65)
ASI-’ (90 ) 2

1 0 1 0 1 0 1 0 1
(Has fas Hbs Hbs O) (g, Ol s p) (Tmrb) pP=3 pP=3

(0.5,0.5) 0.2598  0.26491  0.2902 1
(0.7,0.3, 0.6, 0.4) (0.3,0.7) 0.2589  0.2593 1 0.2655 71
(0.7, 0.3) 02646 027811 0.30741

(7,45,6,3,1)
(0.5,0.5) 04263  0.4220] 03917
(0.7,0.3, 0.4, 0.6) (0.3,0.7) 04288 04248 | 03222
(0.7, 0.3) 04240  0.4198] 0.3971]
(0.5,0.5) 0.1871 0.2046 1 0.2483 1
(0.7,0.3, 0.6, 0.4) (0.3,0.7) 0.1785  0.19101 0.2167 T
(7.4.6.3.5.1) (0.7,0.3) 0.1984  0.2236 1 0.2784 1

(0.5,0.5) 03576 037521 0.38821
(0.7,0.3, 0.4, 0.6) (0.3,0.7) 0.3538 036971 0.3335]
(0.7,0.3) 0.3620  0.3798 1t  0.3903 1

Table 12: Cluster C, EqOp fairness performance under Gaussian distribution without equalized
distance, label rate and group rate

Distribution Label rate Group rate o X Agqop(05)
AEq’\‘)p (eoc )

1 0 1 0 1 0 1 0 2 1
(,uw Has Hys lu‘byo—) (aavaa’ab7ab) (Ta,Tb) pP=3 pP=3

(0.5,0.5) 0.0993 0.1251 1  0.1796 +
(0.7,0.3, 0.6, 0.4) (0.3,0.7) 0.0947 0.11151 0.1780
(0.7,0.3) 0.1045 0.16351 0.1814 1

(7,45,6,3,2)
(0.5,0.5) 0.1948 0.1610} 0.1558 |
(0.3,0.7,0.2, 0.8) (0.3,0.7) 0.1967 0.16104 0.1558 |
(0.7,0.3) 0.1924 0.1615] 0.1558 )
(0.5,0.5) 0.1051 0.1409 1t  0.1799 t
(0.7,0.3, 0.6, 0.4) (0.3,0.7) 0.1016 0.1293 1 0.1776
(7.4,6,35,2) (0.7,0.3) 0.1080 0.1564 1 0.1822 1

(0.5,0.5) 0.1959 0.1625 | 0.1569 |
(0.3,0.7,0.2, 0.8) (0.3,0.7) 0.1950 0.1605 1 0.1553 |
(0.7,0.3) 0.1964 0.1650 |  0.1579 |
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