
Supplementary Information : Meta-Reinforcement Learning with
Self-Modifying Networks

9 Optimization

Defining the weight parameters W of MetODS as dynamic variables lifts the optimization problem
(2) into a functional space of control functions parameterized by θ. Hence, meta-optimizing the
control necessitates the estimation of gradients with respect to θ over the space T and for any possible
trajectory πt in Π. Interestingly, previous meta RL approaches have performed policy gradient
optimization by sampling a single policy trajectory πt ∼Mθ(τ) over M multiple tasks, showing that
it is sufficient to obtain correct gradient estimates on θ. We proceed in the same way, by estimating
the gradient policy update integrated over the space of tasks as mini-batches over tasks.

∂

∂θ
Eτ∼µT

[
Eπ∼µθ,τ,t

π

[
R(τ, π)]

]
≈

∑
τ1,...,τn

T∑
t=0

∂ log πt(at|Wt,θ)

∂θ
rτi(at, st) (7)

Additionally, the memory cost of storing synaptic weights trajectories instead of hidden activity in a
network of N neurons is O(N2) instead of O(N). This might lead to prohibitively large memory
requirements for training with BPTT [83] over long episodes. We present in S.I an alternative solution
to train the model through the discrete adjoint sensitivity method, leveraging the work of [84] yielding
a memory cost of O(1). The agent’s log-policy total derivative with respect to θ can be computed as
the solution of an augmented adjoint problem [67].

9.1 Gradient policy update

We define the evolution of the agent policy in task τ up to step T as the stochastic policy process
(πt)t≤T in the space of policy Π with measure µθ,τ,1···T

π and write (Wt)t≤T the trajectory of weights,
such that: (

πt
)
t≤T

=
(
πt(·|Wt, st,θ)

)
t≤T
∼ µθ,τ,1···T

π (8)

We also recall the definition ofR(τ, π) as the average accumulated reward under the realisation of
(πt)t≤T for task τ . Then, The policy gradient update used to train MetODS can be written as the
average gradient of θ with respect to µT and µθ,τ,1···T

π :

∂

∂θ
Eτ∼µT

[
Eπ∼µθ,τ,1···T

π

[
R(τ, π)]

]
= Eτ∼µT

[T∑
t=0

∂

∂θ
Eπt,Pτ

[
rτ (at, st)

]]
(9)

Then for any t ≤ T , we can rewrite the gradient of the average, using the log-policy trick:

∂

∂θ
Eπt,Pτ

[
rτ (at, st)

]
= Eπt,Pτ

[
rτ (at, st)

∂ log πt(a
τ
t |Wt,θ)

∂θ

]
(10)

As specified in section 3.3, we do not sample over the policy distribution πt and probability transition
Pτ to estimate the inner expectation in (11). Instead, we rely on a single evaluation, which yield,
combining (9) with (10):

∂

∂θ
Eτ∼µT

[
Eπ∼µθ,τ,1···T

π

[
R(τ, π)]

]
≈

T∑
t=0

[
rτ (at, st)

∂ log πt(a
τ
t |Wt,θ)

∂θ

]
(11)

By sampling over tasks, this last equation allows us to write the following gradient estimator

∂

∂θ
Eτ∼µT

[
Eπ∼µθ,τ,1···T

π

[
R(τ, π)]

]
≈ 1

M

M∑
i=0

T∑
t=0

∂ log πt(a
τi
t |Wt,θ)

∂θ
r(aτi

t , s
τi
t) (12)

15

9.2 Discrete adjoint system

With the previous notation, let us define the total gradient function ∂J
∂θ as the gradient of our objective

function:
∂J
∂θ

(θ) =
1

M

T∑
t=0

M∑
i=0

∂ log πt(a
τi
t |Wt,θ)

∂θ
r(aτi

t , s
τi
t) (13)

To clarify, we shall introduce the intermediary cost notation:

ct(W ,θ, t) =

M∑
i=0

log πt(a
τi
t |Wt,θ)r(a

τi
t , s

τi
t) (14)

and we note the following update equation

Wt+1 = δ(Wt,θ) (15)

This identify a discrete dynamical system with finite sum and differentiable cost, whose gradient can
be computed mediating the introduction of an adjoint dynamical system presented in section 2 of
[84] . Defining (νt)t≤T the adjoint sequence, the general gradient equation can be computed as:

∂J
∂θ

(θ) =

[
∂c0
∂W0

− ν0 ·
∂δ

∂W0
− ν0

]†
∂W0

∂θ
+

T∑
i=1

[
∂ct
∂θ
− ν†

t ·
∂δ

∂θ

]
(16)

Applying formula (16) to MetODS yields the following gradient formula:

∂J
∂θ

(θ) =

[
∂c0
∂W0

− ν0

]
+

T∑
i=1

[
∂ct
∂θ
− ν†

t ·
∂δ

∂θ

]
(17)

where (νt)t≤T follows the following update rule backwards:{
νT = 0

νt−1 = νt − ∂ct
∂Wt

(18)

10 Experiment details

General information: As specified in section 3 and 5, we test a single model definition for all
experiments in this work, with one layer of dynamic weights Wt. This layer consists in a dense
matrix of size n ∈ N with learnt or random initialization. Our model lightweight parametrization
of the synaptic update rule makes it a very parameter efficient technique, which can perform batch-
computation and be ported to GPU hardware to accelerate training. We refer readers to table 1 for
specific details of each experiment presented in section 5. In addition to this pdf file, we provide the
code for training METODS agents in experiments presented in section 5 at https:/

FEATURE - EXPERIMENT HARLOW GYM MUJOCO MAZE META-WORLD
DYNAMIC LAYER SIZE n 20 100 200 100
INPUT SIZE i 12 134 (ANT) / 27 (CHEETAH) 15 I
OUTPUT SIZE o 2 8 (ANT)/ 6 (CHEETAH) 4 8
EMBEDDING f [i × 32, σ, 32 × n] [i × 64, σ, 64 × n] [i × 32, σ, 32 × n] [i × 32, σ, 32 × 64, σ, 64 × n]

READ-OUT g [n × 32, σ, 32 × o] [n × 64, σ, 64 × o] [n × 32, σ, 32 × o] [n × 64, σ, 64 × o]

NON-LINEARITIES TANH TANH TANH TANH
INIT. W0 N (0, 1e− 3) LEARNED LEARNED LEARNED
NUM. OF EPISODES 5 (MAX) 1 1 10
LENGHT OF 1 EPISODE 250 (MAX) 200 100 500
META-TRAINING ALG. A2C A2C A2C PPO
LEARNING RATE 5E-4 1E-4 5E-4 5E-4
META-BATCH-SIZE 50 50 20 25
DISCOUNT FACTOR λ 9E-1 9E-1 9.9E-1 9.9E-1
GAE 1. 9.5E-1 9.5E-1 9.5E-1
VALUE FUNCTION COEFF. 4E-1 4E-1 4E-1 -
ENTROPY REG. FACTOR 3E-2 3E-2 1E-2 1E-2

Table 1: Summary of training hyper-parameters for the four experiments presented in this work.

16

Meta-training algorithm: We show in our experiments, that the all meta-parameters θ =
[α,κ,β,f , g,] can be jointly optimized with two policy gradient algortihms. We use policy gradient
methods to meta-train the synaptic parameters: Advantage Actor-critic algorithm (A2C) [85] where
we consider that temporal dependancies are crucial to solve the task, and we use PPO [86] as a
sequential policy optimization over fixed rollouts for the motor control experiment. Additionally,
to reduce noise in policy gradient updates, we further show that it is possible to learn a dynamic
advantage estimate of the Generalized Advantage Estimation (GAE) [87] and that we can meta-learn
it as a second head of the MetODS layer output v(s). This fact confirms that tuned hebbian-updates
are also a sufficient mechanism to keep track of a policy value estimate.

Plasticity parameters: In all our experiments, α consists in a real-valued matrix of Rn×n initialized
with independent normal distribution N (µ = 0, σ = 1e − 3). Similarly, multi-step weighting
parameters (κ(l)

s)l≤s and (β
(l)
s)l≤s can be stored as entries of triangular inferior matrices of RS×S

and are initialized with N (µ = 0, σ = 1e− 2).

Embedding and read-out: At each time-steps, inputs to the feed-forward embedding function f
consist in a concatenation of new observable/state st as well as previous action and reward at−1

and rt−1. After adaptation procedure, policy is read-out from the last activation vector v(S) by a
feed-forward function g which output statistics of a parameterized distribution in the action space
(categorical with Softmax normalization in the discrete case or Gaussian in the continuous case).
Both input and output mappings f and g consist in 2-layer Perceptrons with dense connections
initialized with orthogonal initialization and hyperbolic tangent non-linearities.

10.1 Harlow task

Figure 7: Harlow task: a) An episode of the Harlow task. From left to right: Actions, visual field of the
agent (blue squares:fixation target, red squares: values), Rewards (red;negative,light blue: fixation reward, dark
blue:value reward) and sum of absolute synaptic variation ∥

∑
∆W ∥ per neuron. b) Distribution of weights

before and after adaptation over 5 presentations.c) Three instances of the dynamic weights Wt after adaptation
that solved the Harlow task. Every synaptic configuration presents differences but perform optimally.

This experiment consists in a 1-dimensional simplification of the task presented in [54] and inspired
from https://github.com/bkhmsi/Meta-RL-Harlow. The action space is the discrete set {−1, 1}
moving the agent respectively to the left/right on a discretized line. The state space consist in 17
positions while the agent receptive field is eight dimensional. Values are placed at 3 positions from
the fixation target position. The fixation position yields a reward of 0.2 while the values are drawn
uniformly from [[0, 10]] and randomly associated with a reward of −1 and 1 at the beginning of each
episode. The maximal duration for an episode is 250 steps, although the model solves the 5 trials in
∼ 35 steps on average.

17

10.2 Gym Mujoco directional robot control

Figure 8: Reward profiles of MAML, RL2 and MetODS over 5 consecutive episodes with randomly varying
rewarded direction. In Cheetah, MetODS slightly overperforms RL2 and in Ant, MetODS is the only approach
able to reach performance comparable to first episode in subsequent episodes.

Setting: We consider the directional rewards task proposed in [61] with the Ant and Cheetah robots,
as a more complex test of rapid adaptation. We apply standard RL practice for continuous control
by parameterizing the stochastic policy as a product of independent normal distributions with fixed
standard deviation σ = 0.1 and mean inferred by the agent network. A training meta-episode consists
in a single rollout of 200 steps with random sampling of the reward direction for each episode.

Robot impairment: We partially impaired the agent motor capabilities by "freezing" one of the
robot actuator. Namely we consistently passed a value of zero to the the right_back_leg in Ant
(coordinate 8 in OpenAI Gym XML asset files) and ffoot in Cheetah (coordinate 6 in OpenAI Gym
XML asset files).

Continual adaptation: Finally, we further investigated whether the adaptation mechanism was also
adjustable after performing initial adaptation by testing trained agents over 5 consecutive episodes
with randomly changing rewarded direction while retaining weight state across episodes. We show
in Fig 10 the average reward profile of the three meta-RL agents over 1000 test episodes, where
MetODS adapt faster and better with respect to reward variations.

10.3 Maze Navigation task

Figure 9: Meta-training rewards curves of the
maze experiment presented in section 5.2

Maze generation: The maze environments are cre-
ated following Prim’s algorithm [80] which randomly
propagates walls on a board of N × N cells. We ad-
ditionally add walls to cell location were no walls has
been created at any of the neighboring 8 cells to avoid
null inputs to the agent. The reward and agent locations
are selected at random at the beginning of an episode.
The reward location does not change during the episode
while the agent is restarting from a uniform random
location after every encounter with reward.

Models capacity: In this experiment, since model
memory capacity seems to directly impact final per-
formance, we specifically control for the number of
learnable parameters in order to compare models and
fix a training budget of 10M env. steps. Since MAML
does not have a continual adaptation mechanism, we
perform gradient adaptation every 20 time-steps during
an episode, in order to balance noisiness of the gradient and rapidity of exploration. We show in
Table 2 the mean over 1000 episodes of the accumulated reward of agents trained on 8× 8 mazes
and tested on different maze sizes N ∈ (4, 6, 8, 10, 12). Agents performances are highly varying
within a size setting due to differences in maze configurations and across maze sizes due to increas-
ing complexity. However, MetODS and RL2 are able to generalize at least partially to these new
settings (see table 2). MetODS outperforms RL2 in every setting, and generalizes better, retaining an
advantage of up to 25% in accumulated reward in the biggest maze.

18

MAZE SIZE MAML RL2 METODS REL IMP. TO RL2

6 21.0± 18.4 149.3± 66.7 169.1 ± 66.1 13%
8 14.9± 4.5 72.1± 45.6 87.3 ± 48.3 20%
10 5.7± 7.9 28.1± 29.7 34.9 ± 34.9 21%
12 3.9± 6.9 11.1± 15.8 13.9 ± 19.8 25%

Table 2: Average accumulated reward over 1000 episodes for different maze sizes for agents trained for N=8.

Additionally, we investigated the selectivity of neurons of MetODS plastic weight layer with respect
to spatial location, to investigate whether there could be emergence of activation patterns resembling
those of grid cells found in the mammalian entorhinal cortex. We measured the selectivity of each
neuron for specific agent locations by measuring the average activation rate normalized by the number
of agent passages in different maze configurations. Interestingly, we found that without any explicit
regularization, some neurons displayed sparse activation and consistent remapping between maps.

Figure 10: Heatmap of activation rate of three neurons of a trained model across 10 different maze maps
normalized by agent passage. Activation patterns show selectivity to particular positions within an episode and
strong remapping across maze configurations.

10.4 Meta-world

Experiments: In order to run experiments and baseline of MetaWorld [81], we used the training
routines and functions offered in the python library GARAGE [82]. We ran two different types of
experiments:

1. ML1: In this setting, we restrict the task distribution to a single type of robotic manipulation
while varying the goal location. The meta-training “tasks” corresponds to 50 random initial
agent and goal positions, and meta-testing to 50 heldout positions. We tested our model on
the reach-v2 and push-v2 tasks.

2. ML10: This set-up tests generalization to new manipulation tasks, the benchmark provides
10 training tasks and holds out 5 meta-testing tasks.

Training details: We used PPO [86] for training our model, with clip range r = 0.2 and 10 inner
optimization steps maximum, for its good empirical performance and in order to compare with other
methods with recurrent computation scheme. We kept the experimental settings from the original
paper with N=10 episodes of 500 time-steps and sampled proximal gradient update in a meta-batch
size of 25 trajectories. To estimate value function, we both tested a feedforward neural network
trained at each iteration of the meta-training or an additional MetODS network, which resulted in
similar training results.

19

