# **DualBind: A Dual-Loss Framework for Protein-Ligand Binding Affinity Prediction**

Meng Liu, Saee Gopal Paliwal



# **TLDR**

We present DualBind, a simple and effective dual-loss framework that integrates supervised mean squared error (MSE) with unsupervised denoising score matching (DSM) for accurate binding affinity prediction.

# INTRODUCTION

Binding affinity prediction is fundament for drug discovery.



**DualBind** is a dual-loss framework combines the DSM loss  $\mathcal{L}_{DSM}$ , which learns the energy landscape by shaping the gradient of the energy function, with the MSE loss  $\mathcal{L}_{MSE}$ , which directly ties the predictions to known binding affinity values.



An illustration of the binding affinity prediction task

### Supervised approaches

- Require reliable binding affinity labels
- Easy to overfit on limited data

**DSMBind** [1] adopts a generative modeling strategy by training an energy-based model (EBM) with a denoising score matching (DSM) objective.

- Maximize the likelihood of training structures, without requiring binding affinity labels
- Cannot produce absolute affinities, but the learned energy function **correlates** with binding energies

# **METHODOLOGY**

**Boltzmann distribution assumption** in DSM models: The effectiveness of the DSM objective, which aims to precisely learn the energy function by maximizing data likelihood, depends on the assumption that training samples follow a Boltzmann distribution,  $P(C) \propto e^{-E(C)}$ .

An illustration of the DualBind methodology

 $\mathcal{L}_{DSM}$  shapes the gradient of the energy landscape such that the energy valleys (local minima) align with the unperturbed crystal structures.

$$\mathcal{L}_{\text{DSM}} = \mathbb{E}_{q(\tilde{\boldsymbol{X}}|\boldsymbol{X})p_{\text{data}}(\boldsymbol{X})} \left[ \left\| \nabla_{\tilde{\boldsymbol{X}}} E_{\theta}(\boldsymbol{A}, \tilde{\boldsymbol{X}}) - \frac{(\tilde{\boldsymbol{X}} - \boldsymbol{X})}{\sigma^2} \right\|^2 \right]$$

#### **Advantages**

- Produce more accurate **absolute** affinity predictions, rather than merely **comparative** values provided by DSM-only models
- Exhibit better generalization capability compared to MSE-only models because of the denoising technique.
- Has the unique capability to harness the full potential of **both labeled and unlabeled data**. The dual-loss framework allows to utilize both labeled and unlabeled data for training by calculating their corresponding loss values.

The actual distribution of complexes in experimental datasets often diverges from this assumption due to experimental biases, selective data reporting, etc.

Thus, although the DSM objective can effectively assign local minima (gradient is zero) to observed protein-ligand complexes, we conjecture the learned function struggles to accurately rank their **relative binding affinities**.



(a) Distribution of binding affinity in the PDBbind v2020 refined dataset. (b) Rank fit of a DSM-only model on training complexes.

#### **EXPERIMENTS**

#### Benchmark results demonstrate the above advantages.

| Method             | Affinity labels | $R_p^{\uparrow}$                | RMSE↓                           | $ ho^{\uparrow}$                | - Spearman: 0.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|-----------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Glide-XP           | ×               | 0.467                           | 1.95                            | -                               | 4000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Glide-SP           | ×               | 0.513                           | 1.89                            | -                               | S 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Autodock Vina      | ×               | 0.604                           | 1.73                            | -                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DSMBind (Gaussian) | ×               | 0.638                           | N/A                             | -                               | Designed by the second |
| DSMBind (SE(3))    | ×               | 0.656                           | N/A                             | -                               | <u>U</u> 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| K <sub>DEEP</sub>  | 1               | 0.738                           | 1.462                           | -                               | Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PIGNet             | 1               | 0.749                           | -                               | -                               | 1000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DualBind           | 1               | <b>0.757</b> ±0.006             | <b>1.461</b> ±0.013             | <b>0.742</b> ±0.008             | la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MSE-only           | 1               | $0.749{\scriptstyle\pm0.008}$   | $1.491{\scriptstyle \pm 0.017}$ | $0.736{\scriptstyle \pm 0.006}$ | 0 1000 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DSM-only           | ×               | $0.646{\scriptstyle \pm 0.005}$ | N/A                             | $0.652{\scriptstyle \pm 0.007}$ | Ground trut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                 |                                 |                                 |                                 | - Donk fit of Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



Performance comparison on the CASF-2016 benchmark

training complexes

Preliminary experiment shows unique ability of DualBind to utilize both labeled data and unlabeled data.

| Method               | #Labeled     | #Unlabeled       | $R_p^{\uparrow}$                                                               | RMSE↓                                                                          | $ ho^{\uparrow}$                                                               |
|----------------------|--------------|------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| MSE-only<br>DualBind | 2321<br>2321 | <b>×</b><br>2321 | $\begin{array}{c} 0.664 {\pm} 0.037 \\ \textbf{0.731} {\pm} 0.007 \end{array}$ | $\begin{array}{c} 1.694 {\pm} 0.086 \\ \textbf{1.684} {\pm} 0.087 \end{array}$ | $\begin{array}{c} 0.666 {\pm} 0.028 \\ \textbf{0.732} {\pm} 0.006 \end{array}$ |
| MSE-only             | 4643         | ×                | $0.749{\scriptstyle \pm 0.008}$                                                | $1.491{\scriptstyle \pm 0.017}$                                                | $0.736{\scriptstyle \pm 0.006}$                                                |

Experimental results on DualBind's flexible data use strategy

[1] Wengong Jin, Siranush Sarkizova, Xun Chen, Nir Hacohen, and Caroline Uhler. "Unsupervised protein-ligand binding energy prediction via neural euler's rotation equation." Advances in Neural Information Processing Systems 36 (2024).