A CALCULATION OF THE EXPECTATION ON THE STYLE INFORMATION

We provide details of calculating B )-ar(u(%),.021)CE (9 (3 (X) ;W,),Y). We assume a normal
distribution for the styles, i.e.,  (X) ~ A" (1 (X),0°T). According to the definition of the cross-
entropy loss, for a input pair (z, y) we have:
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where the inequality follows from the Jensen’s inequality: Elog(X) < log EX, the expectation is
calculated by leveraging the moment-generating function:
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Note that, we define the function g (3 (x) ; W,,) for simplicity:
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B RELATIONSHIP BETWEEN ORTHOGONALITY AND STATISTICAL
INDEPENDENCE

We give the proof for the following lemma in Sec. 3.3. Note that, we use R to present the learned
representation of X, and replace X with R for simplicity.

Lemma 1. R € R is the learned representation, where d is the number of dimension of R. Assume
that R is a normal distribution with mean m and covariance matrix M. The content used for pre-
dicting labels, i.e., logits, is obtained by applying a linear functions to R, i.e., ¢ (R) = W_R, where
W, are parameters used for mapping R to logits. The style is modeled by a normal distribution, i.e.,

1
3(R) = p(R;Wy) + X (Y)?2 n, where W, presents parameters for modeling the mean of styles,
and n is sampled from a standard normal distribution. Assume that ;i (R; W) is a linear function,

1
ie., $(R) = WyR+ X (Y)? n. Then, setting W, as an instantiate of the orthogonal complement
of W, leads to statistical independence, i.e., ¢ (R) 1L §(R). Here, 1L denotes the statistical inde-
pendence, and we define {a,b); = {a, Mb) for a given semi-definite matrix M. The orthogonality
A L B oftwo subspaces A and B is defined likewise.



Proof. Under the assumption in Lemma 1, setting W as an instantiate of the orthogonal comple-
ment of W, we have:
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C MORE DETAILS ABOUT EVALUATION METRICS AND TRAINING DETAILS

Evaluation metrics. For MNIST dataset, we set the maximum perturbation bound e = 0.3, pertur-
bation step size n = 0.01, and the number of iterations K = 40 for PGD and C&W attacks, which
keeps the same as (Zhang et al., 2019). Following (Rice et al., 2020), we set perturbation bound
€ = 8/255, perturbation step size = ¢/10, and the number of iterations K = 20 for CIFAR10
dataset.

training details. For MNIST, we use the same CNN architecture as (Carlini & Wagner, 2017; Zhang
et al., 2019). Following (Zhang et al., 2019), the network is trained using SGD with 0.9 momentum
for 50 epochs with an initial learning rate 0.01, and the batch size is set to 128. Hyper-parameters
used to craft adversarial examples for training are the same as those used for evaluation. These
two networks share the same hyper-parameters: we use SGD with 0.9 momentum, weight decay
2 X 10_4, batch size 128, and an initial learning rate of 0.1. The maximum epoch is 120, and the
learning rate is divided by 10 at epoch 60 and 90, respectively. To generate adversarial examples for
training, we set the maximal perturbation ¢ = 8/255, the perturbation step size n = 2/255, and the
number of iterations K = 10, which is the same as (Rice et al., 2020).

D EXPERIMENTS OF WRN-34-10 oN CIFAR10

Table 1: Classification accuracy (%) of WRN-34-10 on CIFAR-10 under the white-box threat model.
The best-performance model and the corresponding accuracy are highlighted.

Method Best checkpoint Last checkpoint
Natural FGSM PGD-20 CW-20 | Natural FGSM PGD-20 CW-20
Mardry | 86.63 59.48  53.65 53.58 86.60 57.07  49.23 49.46
ADA-M | 85.24 61.22 55.17 55.68 85.61 60.08 51.76 52.59
TRADES | 84.32 60.94  56.69 54.87 84.86 59.94  52.04 52.39
ADA-T | 84.19 61.62 57.36 55.75 84.35 61.57 55.15 55.23

In Table 1, we report the accuracy of WRN-34-10 (Zagoruyko & Komodakis, 2016) of Madry,
TRADES, and the proposed method on CIFAR10 against various attacks, i.e., FGSM, PGD, and
C&W attacks, which are widely used in the literature. Here, “Natural” denotes the accuracy of nat-
ural test images. We denote by PGD-20 the PGD attack with 20 iterations for generating adversarial
examples, which also applies to the C&W attack. We can see that the proposed method achieves the
best robustness against all three types of attacks, demonstrating that taking into account the spurious
correlation can significantly improve the adversarial robustness. Note that the standard deviations
of 5 runs are omitted, because they hardly affect the results.

E ABLATION STUDY

We implicitly conducted ablation studies when designing Table 1, Table 2, and Table 3. To further
understand the comparative effects of different terms of the proposed method, we reorganize the
robust accuracy of the best checkpoint trained on CIFAR-10 and CIFAR-100 in Table 2. Comparing
Madry, TRADES, and ADA-M, we find that introducing the second (¢5) and the third term (¢3)



Table 2: Robust accuracy (%) of ResNet-18 on CIFAR-10 and CIFAR-100 under the white-box
threat model. For simplicity, we use 1, to, and t3 to represent the first, second, and third terms in
Eq. 11, respectively. The best-performance model and the corresponding accuracy are highlighted.

Method | £ £ ¢ CIFAR-10 CIFAR-100
"2 " | FGSM PGD-20 CW-20 | FGSM PGD-20 CW-20
Madry v 56.69 51.92 51.00 | 56.69 51.92 51.00
ADA-M | vV v | 5798 54.44 52.51 57.98 54.44 52.51
TRADES | vV 57.25 53.64 51.39 | 57.25 53.64 51.39
ADA-T |V v V| 5897 54.55 5295 | 58.97 54.55 52.95

can improve the robustness and that the effect of these two terms is close. Similarly, comparing
TRADES and ADA-T, we see that introducing the third term (¢3) can further improve the robustness.

F MORE DETAILS ABOUT ADVERSARIAL LEARNING

Recent work on improving adversarial robustness mainly falls into two categories: certified defense
and empirical methods.

Certified defense (Raghunathan et al., 2018; Wong & Kolter, 2018; Singla & Feizi, 2020) aims to
endow the model with provably adversarial robustness against norm-bounded perturbations. Al-
though the certified defense strategy is promising, the empirical defense (Goodfellow et al., 2014;
Madry et al., 2017; Zhang et al., 2019; Wang et al., 2019; Pang et al., 2020; Wong & Kolter, 2018;
Xie et al., 2019; Yang et al., 2019), especially the adversarial training method (Goodfellow et al.,
2014; Madry et al., 2017; Zhang et al., 2019), is currently the most effective strategy. Empirical
defense firstly generates adversarial examples using a certain adversarial attack, then incorporates
the generated adversarial examples into the training process.

Recently, various efforts (Najafi et al., 2019; Carmon et al., 2019; Shafahi et al., 2019; Wong et al.,
2020; Wang et al., 2019; Pang et al., 2020; Zhang et al., 2020b; Rice et al., 2020) have been devoted
to improving adversarial training. One line of work focuses on accelerating the training procedure
(Shafahi et al., 2019; Wong et al., 2020). Another line of research (Najafi et al., 2019; Carmon
et al., 2019) shows a promising direction that unlabeled training data can significantly mitigate the
adversarial vulnerability. Lastly, recent work (Wang et al., 2019; Pang et al., 2020; Zhang et al.,
2020b; Rice et al., 2020) provides an interesting direction where these methods rethink the adver-
sarial training from different aspects, containing rethinking the misclassified examples (Wang et al.,
2019), rethinking the importance weight of each example (Zhang et al., 2020b) and rethinking the
role of normalization (Pang et al., 2020) and basic training strategies (Rice et al., 2020). However,
all these methods overlook the spurious correlation between labels and the style information.

Another related work is (Ilyas et al., 2019), which provides an interesting viewpoint, i.e., adversarial
examples can be viewed as a human phenomenon because the model’s reliance on useful but not
robust features leads to adversarial vulnerability. Our work gives a new causal perspective of ad-
versarial vulnerability. Specifically, a) (Ilyas et al., 2019) found some features were useful but not
robust, while our work explores the phenomenon’s fundamental cause and provides a clear explana-
tion of why some features are useful but not robust: Given X, labels Y are spuriously correlated with
the style variables, so fitting the spurious correlation can predict labels. Thus, the style variables can
be viewed as ‘features’; b) (Ilyas et al., 2019) claimed that adversarial examples could be viewed as
a human phenomenon, while our work shows that adversarial examples can be viewed as a model
phenomenon rather than merely a human phenomenon. Specifically, the adversarial vulnerability
results from fitting the correlation between labels and style variables and failing to fit the causal
relations, i.e., DNNs fail to extract content variables.

G MORE DETAILS ABOUT CAUSAL REASONING

The most relevant work is CAMA (Zhang et al., 2020a) that aims to improve the robustness of
DNNs on unseen perturbation via explicitly modeling the perturbation from a causal view. The
main difference between our method and CAMA is that we focus on the adversarial vulnerability



while CAMA aims to improve the robustness of unseen perturbations. In addition, CAMA assumes
a hard intervention on a latent variable. It promotes robustness via modeling the perturbation in the
latent space. In this paper, we employ a soft intervention and propose to penalize DNNs when the
adversarial distribution is different from the natural distribution. Another related work is RELIC
(Mitrovic et al., 2020), a regularizer used in self-supervised learning that uses the independence of
mechanisms (Peters et al., 2017) and encourages DNNs to be invariant to different augmentations
of the same instance. The self-supervised learning method (Mitrovic et al., 2020) also constructs a
causal graph to model the data generation process, but the focus of RELIC is on the content invariant
property, overlooking the importance of style information.
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