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A Supplementary Proofs

A.1 Proof of Lemma

Lemma 1. Under Assumptions 1 — 3, there exists positive constants ¢q,Co,C3 Such
that for any episode k with the exploration phase length ny > ¢s3(dg + 1), we have with

e
probability at least 1 — % — Gre @02 that

165 — 00l <8(B+U—|—W)(do—l—1) log ny,
k= boll1 < o \/ —

Proof. Denote = E(z;) as the expectation of the noise z; ~ F. By Assumptions 3,

the random valuation v, = :L"tT o + z: must be bounded in [0, B]. By Assumption 1, we
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have |z 0o] < ||z¢||00]|00]]1 < W. Therefore, the noise is bounded as |z < U = W + B.
Thus we obtain || = |E(z)| < U. Remember that the estimated 6, in the k-th episode

is derived from the optimization problem

(fu, O) = arg mln

Z By, — (1,2 )(1,07)7)",

\k|

Denote #; = (1,2])7 and & = (fur, 6] ). Denote &* = (11,0])7 as the true parameter.
Then we have ||¢"[lv = |p| + [[folls < U+ W. Let Lp(§) = ;-2 see, (Bye — 3/ €)*.
Then we have ék = argming Ly (§). By applying the Taylor’s theorem with Lagrange

Remainder on the true value £*, we obtain

Lu(E) —~ Lil€) = (G — €)TVLL(E) + 5 (& — €) VPLlE )& — €°).

As & is the minimizer of L;(€), we have

(6~ €)TVLE) + 5 (6 — )T VPLUENE — €) = Lil&) — Lul€) <0,

Rearranging the terms and applying the Holder’s inequality yields

(6 — &) TVLL(E) (G — &) < 2(& — &) "VLL(E) < 216" = &l IVL(E) oo (1)

In the following, we upper bound ||V L (£*)||s and lower bound V2L (£*).
We first upper bound ||V Lg(£*)||o with high probability. Simple calculation yields

VL(E) = — 323 ¢ — By

n
k te€



A critical observation is that for any ¢, we have

z) 00+ 2 .

E(Byt‘i't) = E(E(Bl{pt§m390+z1&}‘i’t, Zt)|j:t) = B]E( B ’xt)

=20y +E(z|3,) = ] 0+ p = 3] €.

Let Y}f) = 2(,8" — By)iy; for i € [dy+ 1], € &. Then we have (VLx(¢)), =

)

> oee, Vi lt . Taking expectation of v, it ylelds

2

E(Y,) = E(E(%@s* = By)Fil) = B( a7 € — B(Byla) = 0.

Thus for any i € [dy + 1], we have

E(VL«(), =E(D_ YY) = Y E(;
tesy te&y,

By Assumption 1, ||z;||oc < 1. Thus we have for any i € [dy + 1] and t € &,

2 *
mff’\:rn (86" — Byl < (5 €] + |Byd)

ng
2
Z(B+ llll€h) < (B + U+ W),

| /\

Namely, Y;(f) is bounded as —2(B+U +W) < Yz(f) < =(B+U+W). Furthermore,

for any ¢ € [dy + 1], Yl(f ) is independent across ¢t € &,. Therefore, by applying the

Hoeffding’s inequality for bounded variables, we obtain for any € > 0,

P(|(VLi(E),l = €) = P([(VLi(£")), = E(VLi(E"),l = €)

<9 (_ 2¢2 >
= o b (Z(B+U+ W) — (—2(B+U + W)
t=trp+1 N
2
nie€
<2 — .
= eXp( 8(B+U+W)2)



Thus by applying union bound over i € [dy + 1], we have for any € > 0,

PVIE e 2 9 < D0 PUVIE),] 2 ) =2dotD e (~ g1 ym)
i€ldo-+1]

By taking e = 4(B+ U + W) loﬁ%, we obtain for nj, > dy + 1,

logn
P(|[VLi(€) oo = 4(B + U + W)y | —21

)

Ny ng N

IN

Thus we have ||[VLy(6")||oe < 4(B + U + W), /8% with probability at least 1 — n%

ng
We then lower bound V2L, (£*). Simple calculation yields
2 * 2 ~ ~T S
VL&) = — ) T3, = 2%,

n
k teli

where 3, = é D ek, 7,2] is indeed an empirical estimate of the population matrix
¥ = E(2,Z,). Let 2 = E(Z;) be the expectation of ;. Let &, = &; — Z be the difference
between 7; and its expectation. Denote ¥* = E(i,2,;) = E((Z; — 7)(Z; — 7)) as the
covariance matrix of Z;. Further denote Zk = é Do ce, 9'ct5vtT as the empirical covariance
matrix and &5 = n—lk Diee, T, Th = TR+ T

For ¥, we have the decomposation
Y =E(#z ) =E(&-2)@F —2)") +zz’ =X + 2z

For the empirical version ¥j = n—lk Y e & 7,2, , we also have the decomposition

tely tel
1
T T
:_E T, + TT —l——g (¢, 2 + zdy )
n n
k teEy k tely

=S 4+ ZZ' + (T + T2 ) =Xk +IT + T



By using >, we can rewrite S as
Sp=3r42 4T, =% — (2 — %) + [ (3)

Now we tackle the difference ¥, — ¥* = nik > oiee, T —E(&i] ). Since ||zl < 1,
we have [|Z||oe < 1 and ||i¢]lc < 2. Let S® = {v € R%*L | ||v|]|s = 1} be the
Euclidean unit sphere in R%*!. Since E(i,) = 0, for any v € S®, we have E(v'i;) = 0
and [v" @] < ||v]]2]]@¢|]2 < 2¢/dg + 1. Thus by Hoeffding’s lemma, v is sub-gaussian
with variance proxy o2 = 4(dy+1). Since this holds for any v € S% i, is a sub-gaussian
random vector with variance proxy o = 4(dy + 1). Denote |||A|||s = max;j,(,=1 || Av||2
as the ly operator norm for a matrix A. Then by Theorem 6.5 in [Wainwright, (2019),

there are universal positive constants {c;}?_; such that

Y — OF do+1 dy+1
IP’(W k Hbzq( 0 i 0 )

5 +0) < cpem T i >,
o

N N
There exists a positive constant ¢y < ¢ that satisfies ¢g < min{32,64c; }(dy + 1).

g . & 642c2
Let 0 = mgey < 1. Then min{4§, 0%} = §% = T e For ng = égl(do +1)3,

[do+1 & do+1 | do+1 [ dot1 co
we have L < 64cy (do+1) < 1. Thus nk T Nk <2 Mk = 32e1(do+1) and

o2y (y/%tL 4 dotl) 4 §) < S Therefore, we have
nE Nk 4 )

60 c3 5%

P(lek_E*MQZZ) < ¢ge” WP E n

642c2
2
0

for ny > "o (do + 1)°.

Now we proceed to handle another component in the expression of ZA];C, which is
Iy =2z + :Z‘a?; Clearly I'j, is symmetric. Thus the ¢, operator norm for I'; can be
written as |||Tx||]2 = max,cgdo |0 Txv|. We aim for a high probability upper bound for
the ¢y-operator norm |||I'g|||2.

To reduce the supremum to a finite maximum, we apply the discretization argument

introduced in the proof of Theorem 6.5 in Wainwright| (2019). For completeness, we



present the detailed derivations of this discretization method. Let {v!,... vV} be a
%—covering of the sphere S% in the Euclidean norm. From Example 5.8 in Wainwright
(2019), there exists such a covering with N < 17%*! vectors. Thus, for any v € S%,

there exists a v/ in the cover such that v = v/ + A where A is an error vector satisfying

|A]l2 < §. Thus we have

(0, Tu0)] = (07 + A Ty(07 + A))] = (o7, Ty} + 2(A, Teo?) + (A, Ty A))
< 107, %) + 20 ALl Tel a1l + T4l AI2
. . 1 1
< (0, Tpo?)| + =|||T —||IT
< 107, Do) + LITalll2 + = Tl

: : 1
< (0!, Do)+ STl

By taking the maximum of the right-hand side over j € [N], we obtain
J J 1
[(v, Tpo)| < max (0, Tpo?)[ + S[|[Tk][[2-
J€EIN] 2
Further taking the supremum of the left-hand side over v € S, we get
J J 1
[Tkl = max |(v, Tyv)| < max [(v”, Tio”)[ + STk ]2-
veSdo JE[N] 2

Therefore, we have |||Tx|||2 < 2max;eny [(v7, Txv?)|. Consequently, we have

N
E(MITxlllzy < E(exp(Z)\maXva,Fkvj)D) < ZE(ezAIW,FWM)

JEN] =

N
< Z (E(GQ)\(vj,Fkvj)) + E(6_2A<Uj’rkvj>)).
j=1
For any fixed unit vector v € S%, we have v ' Tpv = v (132" +Z1] v = 2(v"7) (v 2p).
We can rewrite v' 2, as 'UT(% D oree, Tt) = D ice, nik(vT:t't). Note that we have proved
before that v'; is sub-gaussian with variance proxy o? = 4(dy + 1). Since @, are

independent of each other across t € &, v'a; are also independent for t € &.



TT o 1 T . . . . .
Thus we conclude that v'a), = >, ¢ n_k(v &) is sub-gaussian with variance proxy

> ree $)202 = Mdg—:l) by the property of sum of independent sub-gaussian variables.

_ - . . . . 42(dp+-1)2 4
Therefore, v Ty = 2(vTZ)(v &) is sub-gaussian with variance proxy “%t- — o

ng ng
as [0Tz] < [|0]l2]|Z]2 < |[v]]av/do T 1||%]|wc = v/do T 1. Thus we obtain

for « € R and any fixed v € S%,

Thus by applying the above result in the inequality , we obtain for any A € R,

4 2A2 4

k - A204
E(MTlllz) < oNe? T < 2. 170+ . 27 < &2

+4 (d0+1)

Then by applying the Chernoff bound, we obtain for any v > 0,

9220 L4 (do+1
CE(MITwlllzy 2Rt
P(ITlz = 7) < in < inf
>0 e/\“/ A>0 eMY
4
. t Ay+4(do+1 29 ”"k 2_ ”W +4(do+1
:1nfe "k Y (O ) 1nfe”k( ) (O )
2>0 >0
— 6_ 80‘4 +4(d0+1)'

By substituting v with o2(4/ %ﬂjl) + d), we obtain for any 6 > 0,

oA [320FD) 52
p(lIlil [32(d + 1) +1) ) ¢ I s ¢ o

Let § = w. Then for n; > %(do—i—l)‘g, we have 02(\/%1“)—1—5) <2+ =1

Therefore, we have

2

P(|[ITk/ll2 > 4) < ¢ Tt “

for Ny Z %(do + 1)3
0
Now we are ready to lower bound V?L;(£*) = 25 By Equation ‘) and Equa-



~|>|o

tion @ we have that for n > max{®5 (do + 1)°, 25 (dy + 1)}, [|[S — =[|]» <

C3C2

< 2 hold simultaneously with probability at least 1 — cye 1024(40+1? g

_in
e 096(do+1?"" Therefore, on this high probability event,
. . C C C
= (5" = ) + Talll2 < | = (57 = Z)lll2 + [[ITkll]2 < ZO + ZO < 50

By Equation (3), we have 3, = ¥ — (3* — ;) + [x. By Assumption 2, ¥ — ¢l is
positive-definite. Thus we have on the high probability event that

G =€) D& —€) = (& —)(E— (2 =) +Tw)(& — &)
= (G —&) DG - )+ G — &) (—(Z = D) + T (& — &)
> collée — €113 — e — €'11F = Sl — €713

Since V2L (&%) = 2f]k, we have on that high probability event,

&'l

(G = €)VALE) & — €) 2 collée ~ €15 > 7

Combined with Equation (1)) and Equation (2 , we have for nj, > max{dy+1, 647 c (do +
1)3, 27 (do + 1)},
0

*\ T 72 *\ (& *
V<L —
Ol €1 < (6 €) VL) — €)
< 21|6" = &l IIVLR(E) oo
logn
< 8(B U+ W)/ =2l — &l
cgc% _ 0[2) -
with probability at least 1 — 2 — cge 10240do 12" _ ¢ 8096(do+1)2
Let ¢ = ¢3 + 1, ¢ = min{ fg;‘i, 8096} ¢3 = max{ 64;1, 2125} Then we obtain that for



ng > C3(do + 1)°,

8B+U+W)(dy+1) [logny
Co N

10k — Bol]1 < ||& — €*[]1 <

___% _
with probability at least 1 — nlk — &e Gorn? "k, O

A.2 Proof of Proposition

Proposition 1. Under Assumptions 1 and 4, there exists positive constants C},C,
and C’é such that with probability at least 1 — Tio, the Inner UCB Algorithm yields a

discrete-part regret
Ry,1 < Cydy/Tylog(CyTy) + CyL| |0 — 6ol To.

Proof. By Lemmas 1 — 2 in [Luo et al.|(2021), the UCB phase pricing problem has an
equivalent Perturbed Linear Bandit (PLB) formulation and the Inner UCB Algorithm
is equivalent to a slightly modified version of the LinUCB Algorithm (Abbasi-Yadkori
et al., 2011) By Theorem 1 in Luo et al| (2021)), with the choice of 5, = B =
p2 . (1V \/_+ \/2 log(To) + (Jllog(d/vr (_UPhax))2) the Inner UCB Algorithm yields

a dlscrete part regret Ry, satisfying

d\ + T0p12nax

N ) + 4T0LH60 - é“lpmax + 2dpmax (7)

Rpq < 2\/2dT06}0 log(

with probability at least 1 — TLO
Denote Ay = pmax, Ao = VAd, Az = pmax\/Q log(Tp) +dlog(%). Then
VB = ALV (As + Ag). Let Cy = max{1 + %= 3} then

P Pr / i '
1 B, < 14 B, < Oy tog + 25573 < og(Ci)



Since C; > 3, log(C,Ty) > 1. Therefore, we have

dX + T 12nax IQnax ’ 4
\/10g(T°p) < \/10g(1 4 pTTO) < \/log(C\Ty) < log(C\Th). (8)

On the other hand, we have

As \/ A\ + (Ty — 1)p2
— 21 T dl max
Pinas og(Zo) + dlog( \ )
X+ (Tp — 1)p?
< \/8\/ 21og(Ty) +1 max
S 0g(To) + log( N ) o)
2 2
< ﬂ\/ 2log(Th) + log(1 + 24Ty < ﬂ\/ 210g(Th) + log(1 + 22Ty

(By @) < Vdd\/2log(Tv) + log(CTo) < Vdy/3log(C}T).

Therefore, we have

dA T 2 / ! / /
Ay \/log(%) < Pmax log(CyTy) < C5 log(C’4To)\/E where C5 = pmax,

dA T 2 ! / ! !
A2\/log(%) < VAdlog(CyTy) < Cy log(C'4T0)\/E where Cy; = \/X,

A\ + Top2,.. d\ + (To — 1)p2 .« d\ + Top2,..
A3\/10g(Top) = pmax\/2 log(Ty) + dlog( ( (c)l/\ )P )\/10g(T0p)

(By and @D) < pmax\/c_i\/S log(CéTo)\/log(CiTo)
= V3PmaxVdlog(CyTy) < Crlog(CyTy)Vd where C; = v/3pmay.

Let Cy = max{Cj, Cs + C-}, then we have

\/BTO 10g<—d/\0 )= (A1 V (A + A3))\/10g(—d; )
o d\ + Tﬂprznax \/ d\ + T0p12nax \/ d\ + T0p12nax
(oD T (4 frog( P T g frog P T

<(C5log(CyTo)Vd) V (Cglog(CyTy)Vd + C; log(CLTy)Vd)
=(C5 V (Cg + C7)) log(CyTo)Vd = Cylog(CyTy) V.

10



Thus we have

A\ + Top2...
2 \/ 2047455, log(d—)\op

< 2V2C4d\/Ty1og(C4To) + 2Pmaxd + ATy L||0o — 0] |1 Pmax
< Cdy/Tylog(CyTy) + C4L[6 — 6o]1 T,

) + 4T0L||‘90 - é| |1pmax + demax

where C) = max{2v/2Cyg, 2pmax}, Cy = C; and Cy = 4ppax. Therefore, by Equation
, the discrete-part regret satisfies

Ry,1 < Cydy/Tylog(CyTy) + C5L| |6 — 6], T

with probability at least 1 — Tio O

A.3 Proof of Theorem [1

Theorem 1. Under Assumptions 1 — 5, by choosing = % and v = L in Algorithm 1,

6
the expected regret satisfies B(Ry) = O(d2T?3) = O(T?/3).

Proof. Note that the last episode can be incomplete. Nevertheless, its regret will
be upper bounded by that of the completed version. Moreover, in Algorithm 1, the
parameters for the last episode are just set as if it would be in its full projected length.
Thus without loss of generality, we can assume a complete last episode.

Denote ;. = [Cléz/?’} and y,, = 0 — fC’lﬂz/?’l as the exploration phase length and
the UCB phase length in episode k. Denote R as the exploration phase regret and
Rq(f) as the UCB phase regret in episode k. Denote R*) as the overall regret in episode
k and we have R®) = R% 4+ R®. Further denote R")

u,17

ng; as the discrete-part and
continuous-part regret in the UCB phase of episode k. Then we have R = R&Q—I—Rfﬁ%
By Lemma , we have for ny, = (. > ¢3(dy + 1)3,

8B+U+W)(dy+1) [logng

10k — 6ol1 <
Co ny

11



___C
with probability at least 1 — nlk — &e @t?™ Denote this high probability event as

Pi. Then on Py, we have

log ny,

||ék —Ool|1 < Cs Hészl < Hék —ollx + ||6o]1 < Cs,

N

where C3 = W + B+U+CW)(d°H) is a constant. Moreover, there exists Cy = ¢4(dy +

13 > 53(d0 + 1)3 for some constant ¢4 such that for any ny = ¢, > C,, we have
cre T < 1 . Then the event P, happens with probability at least 1 — = for the
episodes with n, = ¢, . > Cy.

We first bound the continuous-part regret at each time period ¢ in the UCB phase
of episode k. It admits the form

pi(1 = F(p; — a7 00)) — 5;(1 = F(5; — 2, 00)) = furo,(07) — furo, (7)),

where f,(p) = p(1 — F(p — q)) as defined in Assumption 5.
By our discretization approach, {m; + z, é}ie[dk] are a sequence of points with a

special pattern that any two consecutive points have a difference |(m;; 1+, é) —(m; +

2] 0)] = lG(ek)' Moreover, the left-most point satisfies m, + 2, 0 <1 |G 9’“ while the

right-most pomt satisfies mq + x, o > Pmax — 5 ° %i’“)'

2 . Since S, = {mj + z, 9k|j €

di], m; + , 7o, (0, pmax) } and p} € (0, pmax), there must be some price p; € S; whose

\G(9k) < |G 9k

e [pr— il . Thus by Assumption 5, there

exists a constant C' > 0 such that fa700(P}) = fay 0, (pt) < C(p; — p¢)®. Then on the

distance with p; is less than

. 1. * . 7] 2 2
high probability event Py, we have f,rq, (py) — fa7 0, (pr) < C‘G(dLg)l < Cd—% where the
constant Cg = pmax + 203 > Pmax + 2|\ék\|1 = |G(ék)] Since p; yields the maximum

reward for prices in &, we have f 14 (5}) > f,7g,(P:). Thus we have

cc? s

Faroo W) = fora,(P) < fozay(01) = fayoo(00) < —57 = 5
k k

where the constant C5 = CCZ. Therefore, the continous-part regret Rfﬁ% in the UCB

12



phase of episode k£ can be bounded as Rfﬁ% < %i’“’“ on the high probability event Py,

8(B+U+W)(do+1) /[logny
¢

i.e., when 6 satisfies ||0), — 0o||, < - Bk

On the other hand, by Proposition [1} the discrete-part regret in the UCB phase of
episode k satisfies Ri’? < O/l 10g(Colir) + C5L| |0 — Oo||14r. with probability

at least 1 — ﬁ conditional on ék Thus we have

E(RU)|61) < Crdi/Tru10g(Coli) + CoL||6k — 8ol 1l + ZZ— -

< Cydir/Cin 108(Cols) + C5 L) |0 — Ool|1 0k + Pmax.

Combined with our previously derived continuous-part regret result, we have for 0,
such that Hé — b1 < 8(B+U+W)(do+1) [logny
k olL = C ng 9

0

E(RP|6,) = E(RY)|6,) + E(R)|6x)
C5£k,u

dz

< Crdp /0 108(Col) + C3L110k — Golli fau + Pras +
- 1/6 : 1/6 1/6 .
As we choose dj, = [Cﬂk?u] that satisfies Cof/, < dp < Cof)/, + 1, we obtain

E(R®|0;) < C16/2 1og(Coli) + C5 LI |0s, — 00| |1 b,

where the constant C’; = 0102 + Ch + % + Pmax- Since Py is in the o-field generated
2

13



by ék, we obtain

E(RY)) = E(RP1p,) + E(RP1p) < E(E(RP12 10k)) + P(Pf) - Praclivu

3
< E(1p,E(RP1p,10})) + 7 Pmaxli
k.e
! ! 3
< E(lpk(04 10g<c2€k,u>€2/3 + C L||9k - 90|| ek u)) 2/3 ’ pmaxgk
[C6, 7]
, ’ ’ 1 E max
< O, log(Coly )% + CLL(Cyy | 2850y, 4 FPmax g1/
’ ’ ‘gk,e ’ Cl
< CLlon(Coti) 2+ GOy | B0y, o s s
[C16,] Gy
/ ’ Ol 03[/ 3pmax 2/3 N p2/3
< (Clog(CHe 3 log ¢ G =06,
—(40g(2k)+\/71 0g £y + Cl)kz (k)

On the other hand, the expected regret in the exploration phase satisfies ]E(ng)) <
Pmaxlie < Pmax (Cléi/ 3} < C’%i/ 3 = O(@i/ 3) where C7 = praxC1 + Pmax. Therefore the
overall expected regret in episode k satisfies E(R®) = E(RY) + E(R™) = O(ﬁi/?’).
Note that this only happens for n, = (. = [Cléi/ﬂ > (. For the episode
such that its length ¢, does not satisfy [C’lfi/:ﬂ > Cy, we have E(R®) < pracle <

1/2 / . .
%62/3(010 +1)3/2 < CLdY*62" where Cf is a constant. Thus for any episode k, we

have E(R®)) < (Cidy* + Cylog(Cyly) + o 2L flog b + Cg)6° = O(6°) where the
constant Cy = ?’plﬂ -+ C';. Here some constants contain the dimensionality dy. We have
Cy=W + BW*QT”O*” O(dy), Cs = Pmax + 2C5 = O(dy), Cs = CC2 = O(d2) and

Cy = C1Ca+ C1+ G + Puax = O(dp).
Denote K = n(T, ay) as the number of episodes. Note that {x = 20k 1 < 2T. Now

14



we bound the expected regret for the entire horizon as

K K
03 RO = 3B
k=1

=1

k
= 3/2 C, Cs 213
Z( Cd +C'4log(C U) + \/logﬁk—l—C) )
k=1

/

< (Codd” + Cylog(2C,T) + 3 \/10g2 +C 252/3

(L 1 O 3 CsL log 2T + C!. 2/3(22/3)K—1

22/3 3 9 C 03 floaaT 2/3
24/3 3/2
< o (Gs dy/* + Clog(205T) + log 2T + Cy)T*/*

= O(d2T?3) = O(T*?).

A.4 Proof of Theorem [2I

Theorem 2. Under Assumptions 1 — 4, by choosing [ = % and v = %1 in Algorithm 1,

the expected regret satisfies B(Ry) = O(dgT?*) = O(T%/*).

Proof. We use the same notation of R(’“),Rék),ng),Rgf},Rgf% and l., 0, as in the
proof for Theorem [1] Note that now €, = [C1£2/*] and £y, = € — [C16¥/*]. Similar
to the proof of Theorem [T, we assume a complete last episode without loss of generality.

Similar to the proof of Theorem |1} we obtain that for any n, = ¢ > Cy = ¢4(dp +

1)2, the event Py, that ||0), — fo||; < SEHAEN) o) ke = happens with probability at

co

least 1 — =. Furthermore, on this event, we have

A logn N -
10k — Ool[s < sy ikk’ 0kl < [0k — Ool|1 + [|6o]]x < Cs.

15




We first bound the continuous-part regret at each time period ¢ in the UCB phase

of episode k. It admits the form
pi(1 = F(p; — /. 60)) — p;(1 = F(5; — 2 6)),

where p; is the overall best price and pj is the discrete best price among the candidate
set St = {mj =+ .CC;l—ekU € [dk],mj + SL’;I—Q]C € (O,pmax)}.
Let the maximum value in an empty set be —oo. Denote the price p; =

N ) T)
max{0, MAX ¢ (4] o O <p? {m; + x, 0, }}. Then there are several cases.

1 {m; + 2] 04lj € [di],m; + 276 < p;} = 0. Then maxje[dk],mﬁxjéksp;{mj +

x, Qk} = —oo and p; = 0. Moreover, we have p; < minje[dk}(mj + x:ék) =
my+ 2 0 < ~[10cll0 + S9L 4 1|10l = S92 Thus pp -, € [0, 160).

2. {my + @[ Oklj € [di],my + 20k < pi} # 0 and maxj ) g e {my +
x} 0x} < mg, + 2/ 0. Then we have MAX (] T Gp<pr VT4 T z) 0} < pr <

A G(6 . « . G
maxje[dk],mﬁm]ékgp;‘{mj + ) 0} + %, Thus we have p; < p; < py + %.

* G(d
Namely, p; — p; € [0, %]

3. {m;+2[0klj € [di],m;+al 0 <pi} #0and max; ) 0oog o Amy ] 0} =

5 : 5 5 G(b
ma, + x; 0x. Now since mg, + 2, 0r > pmax + [0kl — | Q(dzf) ||a:t\|oo\|9k||1 >
Pmax — %9:”, we have ppax — |G2(3’“)‘ < mg, + x, Qk < Py < Pmax. Thus we have

pf— (mg, + 7 0)) < |G(9’“)| < ‘G(Z’“ Therefore, we have p; —p; € [0, %] since

[ MAX e (d]mj+a] b, <p: {m; + gk} = Ma, + T4 ! O

Namely, we will always have pf — p; € [0, %i’“)']. Thus we have

pI(l F(p; — z, 90)) (1 — F(p: — 1‘2—80))
< p,’f(l — F(py — l’tT@o)) _pt(l F(p; — x, 90)) = (p; pt)(l — F(p — ﬂ%Teo))
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Now we compare the revenue of p; and the discrete best price p;. If p, = 0, then 0 =
Pr(1=F(pe—a{ 00)) < p; (1-F(p;—x/ 0)). I p, # 0, then p, = maxje[dk],mjﬂjékgp;{mj"‘
x) ék} € (0,p;) C (0, pmax)- Thus p; € S; and its revenue is not greater than the discrete
best price p; € S;. Thus it always holds that p, (1—F(p,—z/ 00)) < p; (1—F(p;—x/ 6,)).

Thus we can bound the continuous-part regret at time period ¢ as

pi(1— F(p; _IZQO)) (1= F(p; — =z, 00))
< pi(1 = F(p; — 2/ 60)) = pe(1 = F(p — 2 60))

< |G(0k)| < Pmax + 2C’3 _ %
- d, T dy, dy,

on the high probability event Py, where the constant Cg = ppax + 2C5. Thus the

overall continuous-part regret REB in the UCB phase of episode k can be bounded as
Ri% < Cﬁj’“ = when 6y, satisfies ||6 — ||, < 3EFTEWN o) loi:k.

€0

On the other hand, by Proposition 1], the discrete-part regret in the UCB phase of
episode k satisfies R(k) < Cydir/Cra 10g(Colyn) + C’éL||ék — 6o|10k, with probability

at least 1 — condltlonal on Gk Thus we have

E(RY)|04) < Crdir/Tru 10g(Calin) + CyLI |0 — Ool |1 £i + ZZ Ay

< Cdin/ T 108(Colie) + C3L) |01 — ol Lk + Prmax-

Combined with our previously derived continuous-part regret result, we have for
such that ||0 — b1 < 8(B+U+W)(do+1) [logny
k 0 o ng

E(RP|6,) = E(R")|6,) + E(RY)|60,)

1di/ / 'TId Coliu
< O/ B 108(Cht) + L0k = Boll b + P + =~

17



As we choose dj, = [026,17/3] that satisfies 02611,/3 <d; < ngli{: + 1, we obtain
E(RP10,) < Oy log(Chly) + C5L|0 — Oo]]1hu,

where the constant C; = Cng + Ch + %‘; + Pmax. Since Py, is in the o-field generated

by ék, we obtain

E(RP) = E(RP1p,) + E(RP1pe) < E(E(RP13 104)) + P(PE) - Praxlivu

~ 3
< E(lpkE(Rq(ﬁ) 1Pk|0k)) + E ’ pmaxék,u

! / ! N 3
< E(Lp, (Cilog(Cola) 6, + CoLllfk = Ooll16k)) + — 57 - Pl
[t
/ / 3/4 4 10g ek,e 3pmax 1/4
k.e 1

’ / / logfk 3pmax 1/4
< O log(Col )t + CLL(Cy | —22F )y /Y
< Cylog(Cyly) p 03 (Cs fclfz/ﬁ) Kt C; k

3 max ~
log 05, + pC )Ei/A‘ = 0(62/4).
1

C3C3L
VCi

< (Cylog(Coty) +

On the other hand, the expected regret in the exploration phase satisfies E( Sf“’) <
Pmaxli.e < Pmax [6’162/41 < C5€i/4 = O(sz) where C5 = praxC1 + Pmax. Therefore the
overall expected regret in episode k satisfies E(R*)) = ]E(Rq(f)) + ]E(ng)) = O(ﬁi/ Y.

Note that this only happens for ny = (. = [C’léi/ﬁ > (C,. For the episode
such that its length ¢, does not satisfy fC’lfi/ﬁ > Cy, we have E(R®) < pracle <

~1/3 , ;. .
%62/4(% +1) < C5d0€2/4 where C is a constant. Thus for any episode £, we
1

have E(RW) < (Cydy + Cylog(Cyly) + Cé/cc—?’f\/log Op + C’é)ﬁi/z)’ = 0(62/4) where the

constant C’é = 3%% + C5. Here some constants contain the dimensionality dy. We

have Cy = W + SEEHEWED — O(dy), Cg = punax + 2C5 = O(dy) and C} = C1Cy +

Ch + & 4 Pmax = O(do).
Denote K = n(T, ;) as the number of episodes. Note that £ = 20, 1 < 2T. Now
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we bound the expected regret for the entire horizon as

iR i (R(k))

=1

k
K
Z( Cd0+C log(C’ O) + 003 \/logﬁk—kC') 3/4>

k=1

/

< (Cidy + Clog(2C5T) + 3 «/log2T+C 253/4

3 3 , 3/4 (23/4)1( -1
= (Cido + Cylog(2C5T) + \/ 22T + C)a; AT

23/4 C, 03 Al
=51 (C’ dy + C log(2C,T) + \/10g2T—I—C)

23/2

log 2T )T?’/4

= O(d0T3/4) = O(T%/%).

A.5 Proof of Theorem [3

Theorem 3. For any § > 0, no policy can achieve an O(T?/°7°%) regret for the dynamic

pricing problem under Assumptions 1 — 5.

Proof. We first provide a brief outline of our proof. The proof can be decomposed into

two steps.

Step 1. We introduce a general procedure to generate the noise CDF F. We then
prove desired properties of such F' that is generated from this procedure. These

F will be used to construct instances in Step 2.

Step 2. We construct problem instances by using a bunch of F' generated from the
procedure introduced in Step 1. We then validate the assumptions for our
constructed instances. Finally, we prove that no policy can perform well on all

these instances.
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Now we start to prove the theorem.

Step 1. Firstly, we define the basic bump function B(v) as

;

0, for v € (—o0, 0],
1802, for v € (0,1/6],
1—18(1/3 —wv)?, forwv e (1/6,1/3),
B(v) =41, for v € [1/3,2/3),
1—18(v—2/3)?, forwve (2/3,5/6),

18(1 — v)?, for v € [5/6, 1),

0, for v € [1, +00).

\

We also define the rescaled bump function for any —oco < a < b < 400 as By (v) =

B(3=%). Now we prove that B(v) is Lipschitz continuous.

Lemma 2. |B'(v)| <6 for any v € R and B(v) is 6-Lipschitz.

Proof. Tt is obvious that B'(v) = 0 for v € (—o0,0) U (1/3,2/3) U (1, +00). Note that

B(v) is symmetric over v = 1/2. We consider these following cases for v.

(v)=B(0)

e For v = 0, we have lim, ,o- 2 5 B()-5(0)

= 0. We also have lim, ,o+ = —— =

lim,_,o+ 18v = 0. Thus |B'(0)| = 0 < 6. By symmetry, we have |B'(1)| = 0 < 6.

e For v € (0,1/6), we have |B'(v)| = |36v| < 6. By symmetry, we have |B'(v)| < 6
for v e (5/6,1).

e For v = 1/6, let ¢;(v) = 18v% and ¢2(v) = 1 — 18(1/3 — v)%. Then ¢ (v) =
B(v) for v € (0,1/6] and ¢2(v) = B(v) for v € [1/6,1/3). Thus we have

lim - B@=BW6) _ y;, . a@-a1/6) _ q1(1/6) — 6 and hmv%%Jr B(w)—-B(1/6) _

v v—1/6 v v—1/6 v—1/6
lim, s+ L-el/® — ¢,(1/6) = 6. Thus [B'(1/6)] = 6 < 6. By symmetry, we

have |B'(5/6)| = 6 < 6.
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e For v € (1/6,1/3), we have |B'(v)| = |36(1/3 — v)| < 6. By symmetry, we have
|B'(v)] < 6 for v e (2/3,5/6).

e For v = 1/3, let q1(v) = 1 — 18(1/3 — v)? and ¢o(v) = 1. Then ¢ (v) =
B(v) for v € (1/6,1/3] and ¢2(v) = B(v) for v € [1/3,1/2). Thus we have

lim, - BOPU — iy, 0005 gi(1/3) = 0 and lim, - BO=EA5)

v—=3 v—1/3 —3 v—1/3 v—1/3
limvﬁg %‘fjgm = q,(1/3) = 0. Thus |B'(1/3)] = 0 < 6. By symmetry, we

have |B'(2/3)| = 0 < 6.

Thus we have |B’(v)| < 6 for v € R and B(v) is 6-Lipschitz by Lagrange’s Mean Value
Theorem. [

Then we prove another critical property of the bump function B(v).
Lemma 3. Forv € [0,1/3), B(1/3) — B(v) < 18(1/3 — v)%.
Proof. For v € (1/6,1/3), we have B(1/3) — B(v) = 18(1/3 — v)* < 18(1/3 — v)?. For

v € [0,1/6], we have B(1/3) — B(v) =1 — 18v? < 18(1/3 — v)? since it is equivalent to
3602 — 120 + 1 = (60 — 1) > 0. O

For rescaled bump functions, Lemmatranslates t0 Biap(a+%5%) = Blay (v) = B(1/3)—

B(2) < 18(1/3 — #=2)* = (bii)Q((a + 222) —v)? for v € [a,a + 52).

We then define a bunch of interval series [0, 1] = [ag, bo] D [a1,b1] D -+ D [ax, br] D
..., where the interval lengths satisfy wy, = by—ay = 37 for k > 1 and wy = by—ay = 1.

WEg—1 k—1 WEg—1

To select [ay, by], we first divide the range [ax_; + =5+, b1 — 5] into Qp = —

sub-intervals of the same length wj, and then pick one of these sub-intervals as [ag, bg].
Note that there are infinite such series of intervals. For each of these interval series,

we are able to define the function

f(’U) = Of Zwl%B[ak,bk](v)

k=0
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where C/ is a constant remained to be determined later. Denote fx(v) = Cy ZkK:o Wi Biay by (V)

We then show a few critical properties of f(v).

Lemma 4. 1. f(v) € [0,3Cy] for any v € R.
2. f(v) is Lipschitz continuous.

3. There exists a unique v* € [0,1] such that f(v*) = maxyep,1) f(v). Specifically,

{v"} = M2y law, bx].
4. f(v) is unimodal around the unique maximizer v*.
5. For any v € [0,1], f(v*) — f(v) < 18C;(v* — v)?.

Proof. 1. For any v € R, B, ,(v) > 0. Thus fg(v) is non-decreasing and
f(v) = limg_,00 fr(v) > 0. On the other hand, B, ,j(v) < 1. Thus fx(v) <
ZkK:[) Crwi and f(v) = lmg oo fre(v) < limpg oo Zi{:o Crwi = > 10, Crwi <
CrYkln 3™ < 50y < oo

!

/ K K 'y v—a K ' v—a
2. fx(v)=Ct Dk sz[ak,bk](U) =Cr o wiﬁB (bk_akk) =Cy > o wkB (bk_akk)-

Denote f(v) = limg_ s fr(v). Then we have |f(v)] = |limg s fr(v)] <
Cr N, wk|Bl(g;:Z’“k)| < 9C;. Namely, f(v) exists and is finite-valued. More-

over, we have for any v € R,

) =fe@] =10y 30 wB (=5 <Cp D wilB(—

)| < 37 9Cy)

E— Ak

SInCe Y0 gt W = D ope i1 377 S Wih1 Y opey 378 < 237HHDL Since 37D (9C) —

0 with K — oo, we have fy(v) converges to f(v) uniformly in R. We also have

each component ka'(%) in f(v) is continuous. Thus by the property of the

. . ! .
function series, we have f (v) exists and

/

f(v) = lim fi(v) = f(v).

K—o0
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Thus |f'(v)] = |f(v)] < 9C; for any v € R and f(v) is 9C,-Lipschitz by the

Lagrange’s Mean Value Theorem.

. Since f(v) is Lipschitz continuous, there exists the maximum for f(v) in [0, 1].
Let v* be some maximizer of f(v) in [0,1]. Then it is obvious that v* € [ay, by]
for any k € N. Since b, — a, = wy = 37 — 0, ay, is increasing with a; < 1 for
any k > 1 and b, is decreasing with by > 0 for any k > 1, we have limy_, ap =

limy 00 b = v* and {v*} = N2, [ag, bkl.

. For any k > 0, By, 4,)(v) is non-decreasing in [0, v*| and non-increasing in [v*, 1]

since v* € [api1,bpq1] C [ap + 5,0 — ). Thus f(v), as the sum of these

functions, is non-decreasing in [0, v*] and non-increasing in [v*, 1].

. For any k > 0, we have By, 3,)(v*) = 1 since v* € [apq1, bpy1] C [ar + 5, by — .
Thus we are able to calculate f(v*) = Cp > pe  WiBap (V) = Cp Y ey wi.
Note that it is enough to consider v € [0,v*] since the reasoning is exactly the
same for v € [v*,1]. For v = v* we have any C' > 0, f*(v) — f(v) = 0 <
C(v* —v)? = 0. Now we consider any fixed v € [0,v*). Since ag = 0, ay, is
increasing and ay — v*, there exists an ¢ > 0 such that v € [a;, a;41). Now there

are two further cases.

(a) v € [a; + %, a;11). In this case, we have f(v) = C; > 0" wiBig, b, (v) =
Cy ZZ:O wi. Thus f*(v) — f(v) = Cp 3572, wi < Crwd (307 37%0)

2Cyw?, . On the other hand, we have v* > ;10 > ;1 + <52 > v + “552

IN

Thus v* — v > “£. Therefore, we have
. 9 81 .
f) = f(v) < gcfwirl < gcf(v — v)2.

(b) v € [a;a; + %). In this case, we have f(v) = Cp 3 2 wiBla, (V) =

Cp Sy wi + Cypw?Bg,p(v). On the other hand, let v; = a; + % and

we have f(v;) = Cp 330 wiBiagp(v) = C; 34 ow}. By Lemma , we
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have f(v;) — f(v) = Cywi(1 = Bia,,)(v)) = Cpwi(Bia, (Vi) = Bia,(v)) <
C}w?ﬁ(vi —v)? = 18Cy(v; — v)*. In addition, as v; = a; + 5 € [a; +

Y a;11), the just-derived result in (a) yields f(v*) — f(v) < £Cp(v* —v)? <
18C(v* — v)?. Thus we have

fW) = fv) = (f0") = fvi)) + (f (vi) = f(v))
< 18C;(v* — v;)? + 18C(v; — v)?

<180 ((v" — 1) + (v — v))* = 18C(v* — v)?.

Thus we have f(v*) — f(v) < 18C¢(v* — v)? for v € [0,v*). The derivation
is exactly the same for v € (v*,1] and thus we conclude that f(v*) — f(v) <
18C(v* — v)? for v € [0, 1].

[l

From f(v), we define another function g(v) = 1 — ﬁ(v) Then we have |¢'(v)| =

|%| < 6Cf. Thus g(v) is 6C-Lipschitz by Lagrange’s Mean Value Theorem.

Moreover, we have |g(v1) — g(v2)| = |1+f1(uQ) - 1+fl(q;1)| < |f(v1) = f(v2)]. In addition,

g(v) is unimodal with the same unique maximizer v; = v} of f(v).

Let Cy € (0,1/6) and b = 1+§Cf € (0,1) be a constant. We further define the

function F(v) as

0, for v € (—o0,b],

1—b gty for v e (b, 1),
pg o 1D 0.1)

2 — Lt for v € [1,1+b),

1, for v € [1 + b, +00).

Then we have the following properties for F'(v).

Lemma 5. 1. F(v) is a Cumulative Distribution Function (CDF) of some R-valued

random variable.

24



2. F(v) is Lipschitz continuous on R.

3. There is a unique minimizer v: > 0 for the function r(v) = v(1 — F(v)) on

RTU{0}.

4. For any v > 0, we have r(v}) — r(v) < %(v: —v)2.

Proof. 1. It is easy to see that lim, ,_ . F'(v) = 0 and lim,_,, F(v) = 1. It is
Yy +

also easy to see that F(v) is continuous on (—o0,b), (1,1 +b) and (1 + b, +00).

Since g(v) is continuous on (0,1), g(*=2) is continous on v € (b,1). Thus F(v)

is continous on v € (b,1). Moreover, we have lim, ,,+ F'(v) = lim, ,+ (1 — % —

Llge=b)) =1 -1 - 2g(0) = 0 = lim,p- F(v) = F(b) and thus F(v) is
continuous on v = b. Also, we have lim, ;- F(v) = lim, ;- (1 — 2 —1=bg(2=0)) =
1-b—(1-0)g(0) =1—b=lim, 1+ F(v) = F(1) and thus F(v) is continuous on
v = 1. In addition, we have lim, 4y~ F(v) = 1 = lim,_,q44)+ F(v) = F(1 +b)
and thus F'(v) is continuous on v = 1+ b. Thus F(v) is continous on R.

On the other hand, it is easy to see that F'(v) is non-decreasing on (—oo,b] U

b—vg (U=2)+(1-b)g(¥=2)
'U2

uby > g ()] > b — 60y = YU 60, = 5% > 0. Thus we

[1,+00). For any v € (b, 1), we have F'(v) = . Then we have

)-
(

b—vg
have F'(v) is non-decreasing on (b, 1) and F\(b) < F(v) < F(1) for v € (b,1).
Thus F'(v) is non-decreasing on R. Therefore, F'(v) is a CDF for some R-valued

random variable.

2. Tt is easy to see that F(v) is 1-Lipschitz on (—o0,b] or [1 4+ b,+00). Since
|F'(v)] = || < 2 for v € (1,14 b) and F(v) is continuous on [1,1 + b], we

have F'(v) is 2-Lipschitz on [1 1 + b] by Lagrange’s Mean Value Theorem. Since

vg (¥=2 _
|F'(v)| = |b o3 b);(l Be(i=) | < b+60fbj(l DR, 12C¢ < 14 for v € (b,1) and

F(v) is continuous on [b, 1], we have F'(v) is 14-Lipschitz on [b, 1] by Lagrange’s
Mean Value Theorem. Therefore, by triangular inequalities, we have F'(v) is

14-Lipschitz on R.
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3. For v > 0, simple calculation yields

(

b+ (1—1b)g(3=p),

r(v) =v(l = F(v)) =

1+b—w,

\

v, for v € [0,b),
for v € [b, 1],
for v € (1,1 + b,

0, for v € (1+b,+00).

Since g(v) > 0, we have r(v) > b > r(v') for any v € [b,1] and v € (RT U {0}) \

[0, 1]. Since g(v) has the same unique maximizer v; = v} for f(v), we obtain that

vy = b+ (1 —=0b)v; € [b,1] is the unique maximizer for 7(v) on R* U {0}.

4. For any v € [b, 1], we have

r(v?) —r(v) = (1 - b)(g(vf__bb) - g(z{ — z)) = (1="b)lg(vy) — g(qu — z)\
< (U= B) )~ T < (- 018wy — V07
18C o 36Cy . o
= (@ —bpj+b—v)? = 1_68f(vr—v> :

For any v € (RTU{0})\[1,d], we have r(v¥) —r(v) < r(v¥) < b+ (1—b) = 1 since

g(v) < 1for any v € [0,1]. On the other hand, since v; = v} € [1/3,2/3], we have

v =b+ (1 —bv; € [b+ 521 — 12 and thus |v; —v| > 152 for any v € (RT U

{0})\ [1,b]. Thus we have r(v¥) —r(v) <1< ﬁ(v:

—v)? = ey (vr — )%

Since (1—26@)2 > =g¢;» we have for any v > 0, r(vy) —r(v) < %(vr —v)%
m
Step 2. Now we specify the problem setting and validate the assumptions. Let
0y = (0,0,...,0)" be the dy-dimensional zero vector. Let x; bei.i.d. samples from a dis-

tribution PP, such that each component of x; are independent identically distributed as

Unif(—1,1). Let the noise CDF be any F'(v) generated from the procedure introduced

in Step 1. Then the support of x; is X = (—1,1)%. Then ||z¢||sc < 1,[|0|l1 <1 and
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thus Assumption 1 is satisfied with the constant W = 1. Also, & = E((1,z,)(1,z/)) is
a diagonal matrix Diag(1,1/3,...,1/3) and thus Assumption 2 is satisfied with the con-
stant co = 1/4. Let F'(v) be the CDF for the market noise z;. Then by the construction
of F(v), the noise is bounded in [b,1+b] C (0, 2) since b € (0, 1). In addition, any real-
ized valuations vy satisfies v; = /0y +2; = 2; € [b,1+b] C [0,2] and thus Assumption 3
is satisfied with B = 2. By Lemmal5| F'(v) is 14-Lipschitz and thus Assumption 4 is sat-
isfied with L = 14. Now we prove that Assumption 5 is also satisfied. For any x € X, we
have ¢ = 276y = 0. Thus f,(p) = p(1—F(p—x"6y)) = p(1—F(p)) = r(p). Namely, r(v)
is just the revenue function. Thus by Lemma [5 the optimal price p*(z) = v} € [b,1].

In addition, we have for any p € [0, pmax] and z € X,

0 0) 1) = 7(65) = 10) € =gt~ = g @) - )

Therefore, Assumption 5 is satisfied. Thus under any noise CDF F(v) that is con-
structed through our introduced procedure, all Assumptions 1 — 5 are satisfied.

Now we construct instances to prove the main theorem. Note that each interval se-
ries {[ax, bg] }x>0 that is introduced in Step 1 corresponds to a triplet (f(v), g(v), F'(v)).
Thus each interval series corresponds to a noise CDF F'(v) and thus a problem instance
constructed as above. We will construct an infinite sequence of well-formulated groups
of such instances. For each of these instance group, we will prove that no policy can
perform well on all the instances in this group. Specifically, let n, = [w:}—;} for k > 1.
For each k, we first define fo(v) = C; Z;:é w3 B, ,)(v), which corresponds to the
finite series of intervals {[a;, b;]}o<j<k—1 and no choice of [ay,bx]. We further define

go(v) and Fy(v) based on fy(v) through the previously introduced procedure in Step

W
3wy

as I;,7=1,2,...,Qy and the corresponding triplet (f(v), g(v), F'(v)) for [ax, by] = I; as

1. Then we consider the possible Q) = L choices of [ay, b;]. Denote these intervals

(fj(v),gj(v), F;(v)). These noise CDF {F}(v)}ciq,) form the k-th group of instances.
Now consider any policy 7. For simplicity, we denote n; as n. The policy =

would interact with the noise distribution Fj(v) and generate the price and response
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sequence U, = (P1, Y1, P2, Y2, - - -, Pn, Yn). Denote the distribution of w,, under Fj(v) as
P, for j € {0,1,...,Qx}. We may assume p, € [b, 1] as any price p' € [0, pmax] \ [b, 1]
is suboptimal and dominated by any price p € [b, 1] by the property of the revenue
function r(v).

Now we derive the KL-divergence KL(IPo||P;) for any j € [Qx]. For j € [Qx] U {0},
denote P;(y|p) as the Bernoulli distribution of the binary response y given the price
p under the noise distribution Fj. In particular, P;(y|p) = Ber(1 — Fj(p)). Then we
have Po(u,) = Iy (7(pelp1, y1, - - - Pe—1, Ye—1) Po(ye|pe)) . Similarly, we have P;(u,) =
I, (7r(pt|p1, Yty De—1, Y1) P (ye ]pt)). Thus we obtain

KL(P|[P;) = EPo(log

]P)O(un)> — Ep (1 N (W(pt|p1, Yi, - -5 Pt—1, yt—l)Po(yt|pt))>
Pj(un) ’ I3 ( (pt’pla Yis -+ -5 Pt—1, ytfl)Pj(yt‘pt»

Iy Po(yt|pt Z/t |Pt
= Ep, (log ==2=-2) =E log
rol H?zlP(yt\pt v Z yt\pt

_ ZE (r, (1o T2 ) — ZEPO (KL(BClp0lIP 1) )

P;(y:|pe)

= > Ep, (KL(Ber(1 = Folpe)|[Bex(1 — Fy(py))))

= > ey (Tt KL(Ber(1 = Fo(p))|[Ber(1 = Fy(p0))
1y, KL(Ber(1 — Fy(p,))||Ber(1 — Fj(pt)))>.
(10)

Now we present a lemma on the KL-divergence of two Bernoulli distributions.

Lemma 6. For Bernoulli distributions Ber(p) and Ber(p +¢€) with 1/2 <p <p+e <
1/2+ C, we have

4
KL(Ber(p)||Ber(p+¢€)) < Te: €
Proof. For v > 0, we have - < In(1 4 v) < v since (#)' = (1+lv) < (In(1+ v)) =
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< (v ) =1and (1+v)| = (In(1+v)) |v:0 = (v)|U:0 = 0. Direct calculation yields
KL (Ber(p) [Ber(p -+ €)) = plog(=2) + (1 = p) log(;—2—)
p+e€ l—p—ce
€ €
— (= ¢ —p)In(l 4 —
p( ln(1+p>)+(1 p) In( +1_p_6)

€

< p(— 15; )+(1—P)m
pe(l —p—€)+ (1 —ple(p +¢)
( e)(1—p—e)

(p+e)l—p—e)
€ 4 9
T+ro)E-0) 1-4C°

2

<

O

For simplicity, denote ¢, = £=7. Then for p, such that &= b o & I;, we have Fy(p;) =
F;(p;) by their constructions and thus KL (Ber(1 — Fo(pt))||Ber(1 — Fj(p))) = 0.

_ptb

Then we focus on the p; such that ¢; € I;, we have

b+ (1—b)gj(B=2) b+ (1—b)go(B=2
(- B0~ (1~ Ry = ) PO Il
1-b

= s (gj(Qt>_90(Qt>>

1—b< 1 1 )

pe 1+ fola) 1+ fila)

_ 1_b< Cr Do w; me]( 1) )
Dt (1+f0(Qt))(1+fJ( 1)

1= b O (S, 37%)

— b 1><1
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Note that from the above derivation, we also have

(1= F(p) — (1 = Fp)) = L0 (£t et

yg;

Moreover, we have 1—Fy(p;) = b+(1— b)go ) > b= 14605 > 1

T+ fola) A+ fla) =

1

5 5 since go(q) = 1‘% =

0. Note that by Lemma F;(v)isa CDF and thus is non-decreasing. Since k > 1, we
have ¢, = 2= € I; C [ag + 1/3,by — 1/3] = [1/3,2/3]. Thus p, > b+ 1=, Therefore,

we obtain

1—b, b+ (1—-0b)g;(1/3)

L= F) S 1 R0+ S =
B COF 17 B St bt L
N 20+ 1 N 2b+ 1 427
. . 1+6Cy 11
with the choice of Cy = @ and b = 5 = 55 Thus we have
1 1 1
531—F0<Pt) <1-Fj(pe) §§+§'

Thus by Lemma [0, we obtain

Ber(1 Flpo) [Ber(t = () < 15 (1=
36 9, 1., ., 1 ,
Sg'(g) (@) W S 350k

30

5

< =
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Then we can further bound KL(PPy||P;) through the Equation (10]) as

KL(Po|[P;) = Y Ee, (1ot o KL(Ber(1 = Folpy)|[Ber(1 = Fy(p.)

Lo o, KL (Ber(1 = Fy(p)|[Ber(1 = Fy(p,))) )

; - (11)
< ZEIP’o(lplii:bb%Ij 0+ 1p1t:bb€11 . %wk)
t=1

1 pr— b 1
= — § Py(tt—el)= — § P I).

Now, consider any function h on the price and response sequence u, = (p1, Y1, - - -, Pn, Yn)
that has a bounded value range [0, M]. Define the reference measure Q; = £ (P; + Po).
Then both P; and Py are absolute continuous with respect to ;. Thus the Radon-
Nikodym derivatives % = m; and %‘; = m;p exist. Denote the set O; = {u :
m;(u) —mjo(u) > 0}. Then we have

]Epj(h(un)) —]E]po(h(un>> = /hd]P)J —/hd]P)o = /hm]d(@j —/thOdQJ
= /h(mj — my)dQ; < / h(m; —m;o)dQ;
—mj 0>0

/M — my0)dQ; = M / /dIP’O (12)

— M(B,(0) ~ Po(0y) < Msup[B5(0) ~ Bo(O)
= MI[B; — Bolls < My S KL(B, |[By).

We use the Pinsker’s inequality for the last step, which demonstrates the relationship
between the total variantion distance between two probability measures and their KL-
divergence.

Now, for each j € [Qy], denote N; = |{t|¢; = plt__;’ € I;,t € [ng]}|. Then Nj; is

a function of the price and response sequence u,, and is bounded in the range [0, n].
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Thus by combining the Equation - , we obtain

1 11 -
Ep, (N;) — Epo(N;) < 1y [ SKL(Py{[Po) < 5@“’% ;PO(% € I;)
< inkwi zn:IP’O(qt €l;)= insz,\/]E]p (N;).
~ 20 — 720 o

Thus Ep, (N;) < Ep,(N;) 4+ g5ruwi/Ep,(N;). For k > 3, we sum over j € [Q;] and

take the average to obtain

1 11
— 3 B (V) € o> Epo(Nj) + = =mwp > /B, (N)
Qr = Qr = Qx 20 p=
Qk
T 11 2
= —— 4+ ——nw Ep, (N
(Cauchy-Schwarz) < & 4 L1, 2 Q%E (V)
auchy-Schwarz — 4+ ——w ;
y = Qk 20Qk k kj:1 Po J
_e I s
= k+20Q wi/ Qrng
3wk 1 3U)k Wp—1 - Wk—1

- k(2_7 20wy, \/ 3w, wz)
(1+3) 1
N\ — — —Ni.
= Rlo7 Top/ =5k

Therefore, there exists some j € [Q] such that Ep, (N;) < $ny. Define the correspond-
ing expected revenue function under the noise distribution F; as r;(p) = p(1 — F;(p)).

Recall that f;(v) = O SV w? By, 5 (v) + wiBr, (v) + 321 Wi B, 5 (v). Then the

. : . . “p . .
unique optimal price p; satisfies that ¢; = pf,b is the unique maximum for both f; and

g;j- Thus ¢j = I% € I; = [ay, by]. For any price p € [b, 1] such that ¢ = ’1'%2 ¢ I, we
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have f;(q;) — fij(q) > wj. Thus we have

P AR 10 1 Lz
gJ(Qj) g9;(q) = (1_|_fj(q;.‘))(1+fj(Q>) - (1—}—%6}) > 2 o

Thus we have
1—60f 1 2

0 = 13(p) = (1= 0)(05(a)) — (@) = — LS > Zui

For k > 2, we have n, = [“51] = [(L)E)f%} < 2(&)5 k. Thus we have
k

3_ 1L 1 3-1_3 1 1 .31
55k<2_ k 5k 5k2<2_ k-
Ty, = (wk) = (wk>
Therefore, for k > 2, we obtain
Nk
Regret = Ep, <Z (rj (p;) —1j (pt))>
t=1
—ZEH» (Lo, (159 = 74(p0)) + Tama gy (ri(03) = 75(00)) )
ng
2 Y B, (Lo, (3 55) - w<pt>>>
t=1
>ZI[-<:IP Loy 5wk = —wiEg, ( 21? g,
t=1
= 1uP(nk —EP,(nZkb " )) = L (e — B, (V)
5k J — Bl 5k A
1 ,4 4 Wy 4 L wp_
> = 2= _ .2 k—1 o Wk—1
4 1.3 4,1 3.1 4 1 s_1
= —wk Y > __ . _p5 5k
A O M L
2 é_ik
= %ng Sk

Now we claim that for any § > 0, no policy can achieve the regret of O(T %_5). We

prove by contradiction. Suppose that there is some § > 0 and a policy 7 such that its
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T-period regret Regy(m) < C1T379 for any noise distribution and 7" € Nt where C}
is a constant. Since ny, = [“551] = [3¥M-(*=DI > 34K “there exists some sufficiently
k
1
large k > % such that n2F > 3*(-1' > % Then we obtain
2 1

3
< 2—5n,2 * < Reg, (7).

==
2=

- 2
—n
25

T alw

3 3
Reg,, (7) < Cin} ’ < Cing

This forms a contradiction.

Therefore, for any 6 > 0, no policy can achieve the regret of O(T g_‘s). Namely, the
lowest rate of any regret upper bound we could prove for this dynamic pricing problem
is O(T3/%). In this work, we use Q(7%/%) to refer to this lower bound on any valid
regret upper bound rates. In two previous works (Kleinberg, 2004; Xu and Wang;,
2022)) with the same type of proved lower bound results (no policy can achieve the
regret of O(T*%) for any & > 0), Kleinberg (2004) used Q(T%) while Xu and Wang
(2022) used Q(T*). As Q(T*) sometimes refers to a stronger lower bound claim that
Regy(m) > CT*, VT € N*, we choose the notation Q(-) as paralleled with Xu and
Wang (2022)). O

B Assumption Verifications for Simulation Settings

B.1 Simulation Setting for Case (A)
For Case (A), we constructed a simulation setting with 6, = 30, z, £ Unif(1/2,1),
and a uniform mixture noise distribution 2Unif(—15, 0) 4+ 2Unif(0, 15). Thus the noise

CDF F has the form

(

0, for z € (—o0, 15],
3/4+x/20, forz e (—15,0],

3/4+x/60, forz € (0,15],

1, for x € [15, 4+00).

\
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Now we verify the seven assumptions.

Assumption 1. It is easy to see that Assumption 1 is satisfied with a constant W =

30 > |[6ol]1.

1 3/4
Assumption 2. The matrix ¥ =E((1,z])"(1,z/])) = . Thus
3/4 (3/4)2 +1/48

> has two eigenvalues 192@, 19_2\1@ and both of them is larger than 1/100.

Thus ¥ — 1(1)—0}1 is positive-definite and Assumption 2 is satisfied with a positive

constant ¢y = 1/100.

Assumption 3. The noise z; € (—15,15) and z,; 0y € (15,30). Thus z; 60y + 2 €
(0,45) C [0,50]. Thus Assumption 3 is satisfied with a constant B = 50.

Assumption 4. It is easy to see that F'is 1-Lipschitz. Thus Assumption 4 is satisfied
with the constant L = 1.

Assumption 5. For any r € X, denote ¢ = "6, € (15,30). Then the expected
revenue function f;(p) = p(1 — F(p — q)) has the form

(

P, for p € [0,q — 15],

p(1/4— (p—q)/20) = — & (p — 20)2 4 GLZ - for p € (¢ — 15, 4],
2

p(1/4 — (p— q)/60) = —&(p — 1549)2 4 LB for p € (g, q + 15],

0, for p € (¢ + 15, +00).

\

Therefore, for p € [0, — 15], the optimal price is p; = ¢ — 15 with the maximal
expected revenue f,(pj) = ¢ — 15. For p € [¢ — 15,q], the optimal price is

*

Py = E’Qﬂ € (¢ — 15,q) since g € (15,30). The corresponding maximal expected

revenue is f,(p5) = %. For p € [q,q + 15], the optimal price is pi = ¢

since % < q for ¢ € (15,30). The corresponding maximal expected revenue is

fa(p3) = 4. Note that pj is at the right boundary of the left range [0,q — 15]

35



and p} is at the left boundary of the right range [¢, ¢ + 15]. Thus (p7, f,(p}))

and (p3, f,(p3)) are both on the middle quadratic function —QLO(p— 52ﬂ)2 + %.

Let r = 3. Then we have min{pj — p},p; — p3} = min{2%, <2} > r. Thus

the maximum of the middle quadratic function f,(p3) > max{f,(p}), f,(p3)}.

5+q

Therefore, p*(r) = p; = *3%. Actually, by the property of quadratic functions,

f4(p) is non-decreasing on [0,p*(x)] and non-increasing on [p*(z), pmax] Where

Pmax = 50.

For any p € [p*(z) — r,p*(z) + r], we have p € [¢ — 15, q] and thus

1

Jo0™(2)) = folp) = 55 (0" () — p)*. (13)

On the other hand, for p € [0, pmax| \ (p*(x) — 7, p*(2) + 7), we have

) oo (BFg)?
f0* () = Fa(p) < folp" (@) = g < 20 (14)

<472 <A(p*(z) —p)?

Combining Equation and Equation , we obtain for any x and p €

[0, Prmax)
fo@* (@) = fo(p) < Cp*(z) — p)?

where C' = 4. Thus Assumption 5 is satisfied with constant C' = 4.

Therefore, our simulation setting for Case (A) satisfy Assumptions 1 — 5, which include

the Lipschitz and 2nd-order smoothness assumptions.

B.2 Simulation Setting for Case (B)

For Case (B), we constructed a simulation setting with 6y = 30, x; BV Unif(1/2,1),

and a uniform mixture noise distribution +Unif(—15,0) 4+ 2Unif(0, 15). Thus the noise
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CDF F has the form

0, for z € (—o0, 15],
1/4+4 2/60, for x € (—15,0],

1/4 + /20, for x € (0,15],

1, for x € [15,400).

Similar to the simulation setting for Case (A), we can verify Assumptions 1 — 4.

Now we prove that Assumption 5 is not satisfied. Namely, there exists a covariate
r € X = (1/2,1), such that for any constant C, f,(p*(z)) — f,(p) < C(p*(x) —p)* does
not hold for some p € [0, pmax]. Here we use the notation ¢ = x"6. Actually, we will
prove that for any covariate x € X = (1/2,1) and any constant C, f,(p*(z)) — f,(p) <

C(p*(x) — p)? does not hold for some p € [0, Pmax]-
Consider any # € X = (1/2,1). Denote ¢ = 26, € (15,30). Then we have

;

P, for p € [0,q — 15],
2

p(3/4— (p— q)/60) = —&(p — F0)2 4 WHal - for ) € (g — 15, 4],

p(3/4 — (p—q)/20) = — & (p — 1Bk9)2 L Wl - g6y € (q,q + 15],

0, for p € (¢ + 15, +00).

\

fq(p) = 9

Therefore, for p € [0, g—15], the optimal price is pj = ¢—15 with the maximal expected
revenue f,(p}) = ¢ — 15. For p € [¢ — 15, g|, the optimal price is pj = ¢ since @ > q
for ¢ € (15,30). The corresponding maximal expected revenue is f,(p5) = 2. For
p € [q,q + 15], the optimal price is p§ = ¢ = p} since % < q for ¢ € (15,30). The
corresponding maximal expected revenue is f,(p}) = %. Note that pj is at the right
boundary of the left range [0,q — 15], p} is at the right boundary of the middle range
l[¢g—15, q] and p} is at the left boundary of the right range [¢, ¢+ 15]. Thus (p}, f,(p})) is
1

on the middle quadratic function — & (p— 229)? + (452151)2 and f,(p}) < f,(p5) = f,(p}).

37



*

Therefore, the optimal price p*(z) = p; = p5 = q.
The left derivative of f,(p) at the optimal price p*(z) = ¢ is

D p(z)  q 45—q
for W' (@)) =3/4 ===+ o5 = —5

>

A

Denote C} = f;7_(p*(x)) > 1, then we have

lim fq(p*(l‘)) - fq(p)
P4 pr(z) —p

Thus there exists a constant Cy < 1 such that for any p € (p*(x) — Cy,p*(x)),
W > €1 > 1 Thus for any constant C' > 0, we can select p € (max{p*(z) —

Co, p*(2) = 561, 1" (%)) € [0, pmax] and obtain

(p*(x) —p) > C(p*(x) — p)*.

0|

fo0" () — fo(p) >

Therefore, for any covariate z € X = (1/2,1) and any constant C, f,(p*(z)) — fy(p) <
C(p*(z) — p)* does not hold for some p € [0, pmax). Thus, the 2nd-order smoothness

Assumption 5 is not satisfied under the simulation setting designed for Case (B).

B.3 Expected Revenue Function Plots

In Figure 7 we plot the expected revenue function f,(p) = p(1 — F(p — q)) for ¢ =
x70y = 25 under the two simulation settings with different noise distributions. It
matches our theoretical verifications that the simulation setting for Case (A) satisfies
the 2nd-order smoothness assumption, while the simulation setting for Case (B) does

not.
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(a) Simulation setting for Case (A). (b) Simulation setting for Case (B).

Figure 1: Expected revenue functions for ¢ = 26, = 25 under the two simulation
settings for Case (A) and Case (B).

C Background Review: Perturbed Linear Bandit

The Perturbed Linear Bandit (PLB) is introduced in (Luo et al. 2021). Here we

present the formal definition of PLB.

Definition 1. The rewards Z;, parameters & and action sets A; form a perturbed

linear bandit with a perturbation constant C,, if
Zy = (&, Ag) +my

for any selected action Ay € Ay, and any two parameters are close to each other, i.e.,

1€ — &tlloo < Cp, Vs, t € Nt Here n; is o-sub-Gaussian conditional on the filtration

ft—l - 0-(5171417 Zl7 s 7§t7At)‘

The “all-close-to-each-other” condition on the linear parameters &’s implies the
existence of a “central” parameter £* such that || — || < % for any ¢. Thus
the reward structure at time ¢ regulated by & can be viewed as a perturbation from
that regulated by &*. The linear bandit (Abbasi-Yadkori et al., 2011; |Chu et al.; 2011}
Agrawal and Goyal, 2013) is a zero-perturbation PLB with & = &* for any t¢.
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D Ethic Issues

In this work, we considered a dynamic pricing problem where some sales-relevant con-
textual information, such as product features and market environments, are available
at each selling period. In practical settings of dynamic pricing, the available contextual
information may contain customer characteristics. Recently, the study of personalized
pricing has garnered some research interest (Ban and Keskin| [2021; |EImachtoub et al.,
2021; |Chen and Gallego, 2022)). In some cases, it would be embarassing if the seller
could make use of the customers’ personal information and set different prices for the
same product towards different customers. However, the customized pricing approaches
are common and widely accepted by consumers in insurance and lending industries.
Such first-degree price discriminations are also practiced on many popular e-commerce
platforms. In fact, the classical sales measure of tailor-made discount coupons also

results in different prices for different cunsumers.
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