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A Supplementary Proofs

A.1 Proof of Lemma 1

Lemma 1. Under Assumptions 1 – 3, there exists positive constants c̃1, c̃2, c̃3 such

that for any episode k with the exploration phase length nk ≥ c̃3(d0 + 1)3, we have with

probability at least 1− 2
nk
− c̃1e

− c̃2
(d0+1)2

nk that

||θ̂k − θ0||1 ≤
8(B + U +W )(d0 + 1)

c0

√
log nk
nk

.

Proof. Denote µ = E(zt) as the expectation of the noise zt ∼ F . By Assumptions 3,

the random valuation vt = x>t θ0 + zt must be bounded in [0, B]. By Assumption 1, we
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have |x>t θ0| ≤ ||xt||∞||θ0||1 ≤ W . Therefore, the noise is bounded as |zt| ≤ U = W +B.

Thus we obtain |µ| = |E(zt)| ≤ U . Remember that the estimated θ̂k in the k-th episode

is derived from the optimization problem

(µ̂k, θ̂k) = arg min
µ,θ

1

|Ek|
∑
t∈Ek

(
Byt − (1, x>t )(µ, θ>)>

)2
.

Denote x̃t = (1, x>t )> and ξ̂k = (µ̂k, θ̂
>
k ). Denote ξ∗ = (µ, θ>0 )> as the true parameter.

Then we have ||ξ∗||1 = |µ| + ||θ0||1 ≤ U + W . Let Lk(ξ) = 1
nk

∑
t∈Ek(Byt − x̃>t ξ)

2.

Then we have ξ̂k = arg minξ Lk(ξ). By applying the Taylor’s theorem with Lagrange

Remainder on the true value ξ∗, we obtain

Lk(ξ̂k)− Lk(ξ∗) = (ξ̂k − ξ∗)>∇Lk(ξ∗) +
1

2
(ξ̂k − ξ∗)>∇2Lk(ξ

∗)(ξ̂k − ξ∗).

As ξ̂k is the minimizer of Lk(ξ), we have

(ξ̂k − ξ∗)>∇Lk(ξ∗) +
1

2
(ξ̂k − ξ∗)>∇2Lk(ξ

∗)(ξ̂k − ξ∗) = Lk(ξ̂k)− Lk(ξ∗) ≤ 0.

Rearranging the terms and applying the Hölder’s inequality yields

(ξ̂k − ξ∗)>∇2Lk(ξ
∗)(ξ̂k − ξ∗) ≤ 2(ξ∗ − ξ̂k)>∇Lk(ξ∗) ≤ 2||ξ∗ − ξ̂k||1||∇Lk(ξ∗)||∞. (1)

In the following, we upper bound ||∇Lk(ξ∗)||∞ and lower bound ∇2Lk(ξ
∗).

We first upper bound ||∇Lk(ξ∗)||∞ with high probability. Simple calculation yields

∇Lk(ξ∗) =
1

nk

∑
t∈Ek

2(x̃>t ξ
∗ −Byt)x̃t.
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A critical observation is that for any t, we have

E(Byt|x̃t) = E
(
E(B1{pt≤x>t θ0+zt}|x̃t, zt)

∣∣x̃t) = BE(
x>t θ0 + zt

B
|x̃t)

= x>t θ0 + E(zt|x̃t) = x>t θ0 + µ = x̃>t ξ
∗.

Let Y
(k)
i,t = 2

nk
(x̃tξ

∗ − Byt)x̃t,i for i ∈ [d0 + 1], t ∈ Ek. Then we have
(
∇Lk(ξ∗)

)
i

=∑
t∈Ek Y

(k)
i,t . Taking expectation of Y

(k)
i,t yields

E(Y
(k)
i,t ) = E

(
E(

2

nk
(x̃tξ

∗ −Byt)x̃t,i|x̃t)
)

= E
( 2

nk
x̃t,i(x̃

>
t ξ
∗ − E(Byt|x̃t))

)
= 0.

Thus for any i ∈ [d0 + 1], we have

E
(
∇Lk(ξ∗)

)
i

= E
(∑
t∈Ek

Y
(k)
i,t

)
=
∑
t∈Ek

E(Y
(k)
i,t ) = 0.

By Assumption 1, ||xt||∞ ≤ 1. Thus we have for any i ∈ [d0 + 1] and t ∈ Ek,

|Y (k)
i,t | = |

2

nk
(x̃tξ

∗ −Byt)x̃t,i| ≤
2

nk
(|x̃>t ξ∗|+ |Byt|)

≤ 2

nk
(B + ||x̃t||∞||ξ∗||1) ≤ 2

nk
(B + U +W ).

Namely, Y
(k)
i,t is bounded as − 2

nk
(B +U +W ) ≤ Y

(k)
i,t ≤ 2

nk
(B +U +W ). Furthermore,

for any i ∈ [d0 + 1], Y
(k)
i,t is independent across t ∈ Ek. Therefore, by applying the

Hoeffding’s inequality for bounded variables, we obtain for any ε > 0,

P(|
(
∇Lk(ξ∗)

)
i
| ≥ ε) = P(|

(
∇Lk(ξ∗)

)
i
− E

(
∇Lk(ξ∗)

)
i
| ≥ ε)

≤ 2 exp
(
− 2ε2∑tk+nk

t=tk+1

(
2
nk

(B + U +W )− (− 2
nk

(B + U +W ))
)2

)
≤ 2 exp

(
− nkε

2

8(B + U +W )2

)
.

3



Thus by applying union bound over i ∈ [d0 + 1], we have for any ε > 0,

P(||∇Lk(ξ∗)||∞ ≥ ε) ≤
∑

i∈[d0+1]

P(|
(
∇Lk(ξ∗)

)
i
| ≥ ε) = 2(d0+1) exp

(
− nkε

2

8(B + U +W )2

)
.

By taking ε = 4(B + U +W )
√

lognk
nk

, we obtain for nk ≥ d0 + 1,

P(||∇Lk(ξ∗)||∞ ≥ 4(B + U +W )

√
log nk
nk

) ≤ 2(d0 + 1)

n2
k

≤ 2

nk
. (2)

Thus we have ||∇Lk(ξ∗)||∞ ≤ 4(B + U +W )
√

lognk
nk

with probability at least 1− 2
nk

.

We then lower bound ∇2Lk(ξ
∗). Simple calculation yields

∇2Lk(ξ
∗) =

2

nk

∑
t∈Ek

x̃tx̃
>
t = 2Σ̂k,

where Σ̂k = 1
nk

∑
t∈Ek x̃tx̃

>
t is indeed an empirical estimate of the population matrix

Σ = E(x̃tx̃
>
t ). Let x̄ = E(x̃t) be the expectation of x̃t. Let ẋt = x̃t− x̄ be the difference

between x̃t and its expectation. Denote Σ∗ = E(ẋtẋ
>
t ) = E((x̃t − x̄)(x̃t − x̄)>) as the

covariance matrix of x̃t. Further denote Σ̇k = 1
nk

∑
t∈Ek ẋtẋ

>
t as the empirical covariance

matrix and ¯̇xk = 1
nk

∑
t∈Ek ẋt,Γk = ¯̇xkx̄

> + x̄¯̇x>k .

For Σ, we have the decomposation

Σ = E(x̃tx̃
>
t ) = E

(
(x̃t − x̄)(x̃t − x̄)>

)
+ x̄x̄> = Σ∗ + x̄x̄>.

For the empirical version Σ̂k = 1
nk

∑
t∈Ek x̃tx̃

>
t , we also have the decomposition

Σ̂k =
1

nk

∑
t∈Ek

x̃tx̃
>
t =

1

nk

∑
t∈Ek

(ẋt + x̄)(ẋt + x̄)

=
1

nk

∑
t∈Ek

ẋtẋ
>
t + x̄x̄> +

1

nk

∑
t∈Ek

(ẋtx̄
> + x̄ẋ>t )

= Σ̇k + x̄x̄> + (¯̇xkx̄
> + x̄¯̇x>k ) = Σ̇k + x̄x̄> + Γk.
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By using Σ, we can rewrite Σ̂k as

Σ̂k = Σ̇k + x̄x̄> + Γk = Σ− (Σ∗ − Σ̇k) + Γk. (3)

Now we tackle the difference Σ̇k−Σ∗ = 1
nk

∑
t∈Ek ẋtẋ

>
t −E(ẋtẋ

>
t ). Since ||xt||∞ ≤ 1,

we have ||x̄||∞ ≤ 1 and ||ẋt||∞ ≤ 2. Let Sd0 = {v ∈ Rd0+1 | ||v||2 = 1} be the

Euclidean unit sphere in Rd0+1. Since E(ẋt) = 0, for any v ∈ Sd0 , we have E(v>ẋt) = 0

and |v>ẋt| ≤ ||v||2||ẋt||2 ≤ 2
√
d0 + 1. Thus by Hoeffding’s lemma, v>ẋt is sub-gaussian

with variance proxy σ2 = 4(d0+1). Since this holds for any v ∈ Sd0 , ẋt is a sub-gaussian

random vector with variance proxy σ2 = 4(d0 + 1). Denote |||A|||2 = max||v||2=1 ||Av||2
as the `2 operator norm for a matrix A. Then by Theorem 6.5 in Wainwright (2019),

there are universal positive constants {ci}3
i=1 such that

P
( |||Σ̇k − Σ∗|||2

σ2
≥ c1

(√d0 + 1

nk
+
d0 + 1

nk

)
+ δ
)
≤ c2e

−c3nk min{δ,δ2},∀δ > 0.

There exists a positive constant c̃0 ≤ c0 that satisfies c̃0 ≤ min{32, 64c1}(d0 + 1).

Let δ = c̃0
32(d0+1)

≤ 1. Then min{δ, δ2} = δ2 =
c̃20

1024(d0+1)2
. For nk ≥ 642c21

c̃20
(d0 + 1)3,

we have
√

d0+1
nk
≤ c̃0

64c1(d0+1)
≤ 1. Thus

√
d0+1
nk

+ d0+1
nk
≤ 2

√
d0+1
nk
≤ c̃0

32c1(d0+1)
and

σ2
(
c1

(√
d0+1
nk

+ d0+1
nk

)
+ δ
)
≤ c̃0

4
. Therefore, we have

P
(
|||Σ̇k − Σ∗|||2 ≥

c̃0

4

)
≤ c2e

− c3c̃
2
0

1024(d0+1)2
nk , (4)

for nk ≥ 642c21
c̃20

(d0 + 1)3.

Now we proceed to handle another component in the expression (3) of Σ̂k, which is

Γk = ¯̇xkx̄
> + x̄¯̇x>k . Clearly Γk is symmetric. Thus the `2 operator norm for Γk can be

written as |||Γk|||2 = maxv∈Sd0 |v>Γkv|. We aim for a high probability upper bound for

the `2-operator norm |||Γk|||2.

To reduce the supremum to a finite maximum, we apply the discretization argument

introduced in the proof of Theorem 6.5 in Wainwright (2019). For completeness, we
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present the detailed derivations of this discretization method. Let {v1, . . . , vN} be a

1
8
-covering of the sphere Sd0 in the Euclidean norm. From Example 5.8 in Wainwright

(2019), there exists such a covering with N ≤ 17d0+1 vectors. Thus, for any v ∈ Sd0 ,

there exists a vj in the cover such that v = vj +∆ where ∆ is an error vector satisfying

||∆||2 ≤ 1
8
. Thus we have

|〈v,Γkv〉| = |〈vj + ∆,Γk(v
j + ∆)〉| = |〈vj,Γkvj〉+ 2〈∆,Γkvj〉+ 〈∆,Γk∆〉|

≤ |〈vj,Γkvj〉|+ 2||∆||2|||Γk|||2||vj||2 + |||Γk|||2||∆||22

≤ |〈vj,Γkvj〉|+
1

4
|||Γk|||2 +

1

64
|||Γk|||2

≤ |〈vj,Γkvj〉|+
1

2
|||Γk|||2.

By taking the maximum of the right-hand side over j ∈ [N ], we obtain

|〈v,Γkv〉| ≤ max
j∈[N ]
|〈vj,Γkvj〉|+

1

2
|||Γk|||2.

Further taking the supremum of the left-hand side over v ∈ Sd0 , we get

|||Γk|||2 = max
v∈Sd0

|〈v,Γkv〉| ≤ max
j∈[N ]
|〈vj,Γkvj〉|+

1

2
|||Γk|||2.

Therefore, we have |||Γk|||2 ≤ 2 maxj∈[N ] |〈vj,Γkvj〉|. Consequently, we have

E(eλ|||Γk|||2) ≤ E
(

exp(2λmax
j∈[N ]
|〈vj,Γkvj〉|)

)
≤

N∑
j=1

E(e2λ|〈vj ,Γkvj〉|)

≤
N∑
j=1

(
E(e2λ〈vj ,Γkvj〉) + E(e−2λ〈vj ,Γkvj〉)

)
.

(5)

For any fixed unit vector v ∈ Sd0 , we have v>Γkv = v>(¯̇xkx̄
>+x̄¯̇x>k )v = 2(v>x̄)(v> ¯̇xk).

We can rewrite v> ¯̇xk as v>( 1
nk

∑
t∈Ek ẋt) =

∑
t∈Ek

1
nk

(v>ẋt). Note that we have proved

before that v>ẋt is sub-gaussian with variance proxy σ2 = 4(d0 + 1). Since ẋt are

independent of each other across t ∈ Ek, v>ẋt are also independent for t ∈ Ek.
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Thus we conclude that v> ¯̇xk =
∑

t∈Ek
1
nk

(v>ẋt) is sub-gaussian with variance proxy∑
t∈Ek(

1
nk

)2σ2 = 4(d0+1)
nk

by the property of sum of independent sub-gaussian variables.

Therefore, v>Γkv = 2(v>x̄)(v> ¯̇xk) is sub-gaussian with variance proxy 42(d0+1)2

nk
= σ4

nk

as |v>x̄| ≤ ||v||2||x̄||2 ≤ ||v||2
√
d0 + 1||x̄||∞ =

√
d0 + 1. Thus we obtain

E(eα〈v,Γv〉) ≤ e
1
2
α2σ4

nk ,

for α ∈ R and any fixed v ∈ Sd0 .

Thus by applying the above result in the inequality (5), we obtain for any λ ∈ R,

E(eλ|||Γk|||2) ≤ 2Ne
2λ

2σ4

nk ≤ 2 · 17d0+1 · e2λ
2σ4

nk ≤ e
2λ

2σ4

nk
+4(d0+1)

.

Then by applying the Chernoff bound, we obtain for any γ > 0,

P(|||Γk|||2 ≥ γ) ≤ inf
λ≥0

E(eλ|||Γk|||2)

eλγ
≤ inf

λ≥0

e
2λ

2σ4

nk
+4(d0+1)

eλγ

= inf
λ≥0

e
2λ

2σ4

nk
−λγ+4(d0+1)

= inf
λ≥0

e
2σ4

nk
(λ− γnk

4σ4
)2−nkγ

2

8σ4
+4(d0+1)

= e−
nkγ

2

8σ4
+4(d0+1).

By substituting γ with σ2(
√

32(d0+1)
nk

+ δ), we obtain for any δ ≥ 0,

P
( |||Γk|||2

σ2
≥

√
32(d0 + 1)

nk
+ δ
)
≤ e−

nkσ
4(

√
32(d0+1)

nk
+δ)2

8σ4
+4(d0+1) ≤ e−

nkδ
2

8 .

Let δ = c0
32(d0+1)

. Then for nk ≥ 215

c20
(d0 + 1)3, we have σ2

(√32(d0+1)
nk

+ δ
)
≤ c0

8
+ c0

8
= c0

4
.

Therefore, we have

P
(
|||Γk|||2 ≥

c0

4

)
≤ e

− c20
8096(d0+1)2

nk , (6)

for nk ≥ 215

c20
(d0 + 1)3.

Now we are ready to lower bound ∇2Lk(ξ
∗) = 2Σ̂k. By Equation (4) and Equa-
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tion (6), we have that for nk ≥ max{642c21
c̃20

(d0 + 1)3, 215

c20
(d0 + 1)3}, |||Σ̇k − Σ∗|||2 ≤ c̃0

4

and |||Γk|||2 ≤ c0
4

hold simultaneously with probability at least 1 − c2e
− c3c̃

2
0

1024(d0+1)2
nk −

e
− c20

8096(d0+1)2
nk . Therefore, on this high probability event,

||| − (Σ∗ − Σ̇k) + Γk|||2 ≤ ||| − (Σ∗ − Σ̇k)|||2 + |||Γk|||2 ≤
c̃0

4
+
c0

4
≤ c0

2
.

By Equation (3), we have Σ̂k = Σ − (Σ∗ − Σ̇k) + Γk. By Assumption 2, Σ − c0I is

positive-definite. Thus we have on the high probability event that

(ξ̂k − ξ∗)>Σ̂k(ξ̂k − ξ∗) = (ξ̂k − ξ∗)>(Σ− (Σ∗ − Σ̇k) + Γk)(ξ̂k − ξ∗)

= (ξ̂k − ξ∗)>Σ(ξ̂k − ξ∗) + (ξ̂k − ξ∗)>(−(Σ∗ − Σ̇k) + Γk)(ξ̂k − ξ∗)

≥ c0||ξ̂k − ξ∗||22 −
c0

2
||ξ̂k − ξ∗||22 =

c0

2
||ξ̂k − ξ∗||22.

Since ∇2Lk(ξ
∗) = 2Σ̂k, we have on that high probability event,

(ξ̂k − ξ∗)>∇2Lk(ξ
∗)(ξ̂k − ξ∗) ≥ c0||ξ̂k − ξ∗||22 ≥

c0

d0 + 1
||ξ̂k − ξ∗||21.

Combined with Equation (1) and Equation (2), we have for nk ≥ max{d0 +1,
642c21
c̃20

(d0 +

1)3, 215

c20
(d0 + 1)3},

c0

d0 + 1
||ξ̂k − ξ∗||21 ≤ (ξ̂k − ξ∗)>∇2Lk(ξ

∗)(ξ̂k − ξ∗)

≤ 2||ξ∗ − ξ̂k||1||∇Lk(ξ∗)||∞

≤ 8(B + U +W )

√
log nk
nk
||ξ∗ − ξ̂k||1

with probability at least 1− 2
nk
− c2e

− c3c̃
2
0

1024(d0+1)2
nk − e−

c20
8096(d0+1)2

nk .

Let c̃1 = c2 + 1, c̃2 = min{ c3c̃
2
0

1024
,
c20

8096
}, c̃3 = max{642c21

c̃20
, 215

c20
}. Then we obtain that for
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nk ≥ c̃3(d0 + 1)3,

||θ̂k − θ0||1 ≤ ||ξ̂k − ξ∗||1 ≤
8(B + U +W )(d0 + 1)

c0

√
log nk
nk

with probability at least 1− 2
nk
− c̃1e

− c̃2
(d0+1)2

nk .

A.2 Proof of Proposition 1

Proposition 1. Under Assumptions 1 and 4, there exists positive constants C
′
1, C

′
2

and C
′
3 such that with probability at least 1 − 1

T0
, the Inner UCB Algorithm yields a

discrete-part regret

RT0,1 ≤ C
′

1d
√
T0 log(C

′

2T0) + C
′

3L||θ̂ − θ0||1T0.

Proof. By Lemmas 1 – 2 in Luo et al. (2021), the UCB phase pricing problem has an

equivalent Perturbed Linear Bandit (PLB) formulation and the Inner UCB Algorithm

is equivalent to a slightly modified version of the LinUCB Algorithm (Abbasi-Yadkori

et al., 2011). By Theorem 1 in Luo et al. (2021), with the choice of βt = β∗t =

p2
max(1∨( 1

pmax

√
λd+

√
2 log(T0) + d log(dλ+(t−1)p2max

dλ
))2), the Inner UCB Algorithm yields

a discrete part regret RT0,1 satisfying

RT0,1 ≤ 2

√
2dT0β∗T0 log(

dλ+ T0p2
max

dλ
) + 4T0L||θ0 − θ̂||1pmax + 2dpmax (7)

with probability at least 1− 1
T0

.

Denote A1 = pmax, A2 =
√
λd,A3 = pmax

√
2 log(T0) + d log(dλ+(T0−1)p2max

dλ
). Then√

β∗T0 = A1 ∨ (A2 + A3). Let C
′
4 = max{1 + p2max

λ
, 3}, then

1 +
p2

max

λ
T0 ≤ (1 +

p2
max

λ
)T0 ≤ C

′

4T0 ⇒ log(1 +
p2

max

λ
T0) ≤ log(C

′

4T0).
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Since C
′
4 ≥ 3, log(C

′
4T0) ≥ 1. Therefore, we have

√
log(

dλ+ T0p2
max

dλ
) ≤

√
log(1 +

p2
max

λ
T0) ≤

√
log(C

′
4T0) ≤ log(C

′

4T0). (8)

On the other hand, we have

A3

pmax

=

√
2 log(T0) + d log(

dλ+ (T0 − 1)p2
max

dλ
)

≤
√
d

√
2 log(T0) + log(

dλ+ (T0 − 1)p2
max

dλ
)

≤
√
d

√
2 log(T0) + log(1 +

p2
max

dλ
T0) ≤

√
d

√
2 log(T0) + log(1 +

p2
max

λ
T0)

(By (8)) ≤
√
d
√

2 log(T0) + log(C
′
4T0) ≤

√
d
√

3 log(C
′
4T0).

(9)

Therefore, we have

A1

√
log(

dλ+ T0p2
max

dλ
) ≤ pmax log(C

′

4T0) ≤ C
′

5 log(C
′

4T0)
√
d where C

′

5 = pmax,

A2

√
log(

dλ+ T0p2
max

dλ
) ≤
√
λd log(C

′

4T0) ≤ C
′

6 log(C
′

4T0)
√
d where C

′

6 =
√
λ,

A3

√
log(

dλ+ T0p2
max

dλ
) = pmax

√
2 log(T0) + d log(

dλ+ (T0 − 1)p2
max

dλ
)

√
log(

dλ+ T0p2
max

dλ
)

(By (8) and (9)) ≤ pmax

√
d
√

3 log(C
′
4T0)

√
log(C

′
4T0)

=
√

3pmax

√
d log(C

′

4T0) ≤ C
′

7 log(C
′

4T0)
√
d where C

′

7 =
√

3pmax.

Let C
′
8 = max{C ′5, C

′
6 + C

′
7}, then we have

√
β∗T0 log(

dλ+ T0p2
max

dλ
) = (A1 ∨ (A2 + A3))

√
log(

dλ+ T0p2
max

dλ
)

=(A1

√
log(

dλ+ T0p2
max

dλ
)) ∨ (A2

√
log(

dλ+ T0p2
max

dλ
) + A3

√
log(

dλ+ T0p2
max

dλ
))

≤(C
′

5 log(C
′

4T0)
√
d) ∨ (C

′

6 log(C
′

4T0)
√
d+ C

′

7 log(C
′

4T0)
√
d)

=(C
′

5 ∨ (C
′

6 + C
′

7)) log(C
′

4T0)
√
d = C

′

8 log(C
′

4T0)
√
d.

10



Thus we have

2

√
2dT0β∗T0 log(

dλ+ T0p2
max

dλ
) + 4T0L||θ0 − θ̂||1pmax + 2dpmax

≤ 2
√

2C
′

8d
√
T0 log(C

′

4T0) + 2pmaxd+ 4T0L||θ0 − θ̂||1pmax

≤ C
′

1d
√
T0 log(C

′

2T0) + C
′

3L||θ̂ − θ0||1T0,

where C
′
1 = max{2

√
2C

′
8, 2pmax}, C

′
2 = C

′
4 and C

′
3 = 4pmax. Therefore, by Equation

(7), the discrete-part regret satisfies

RT0,1 ≤ C
′

1d
√
T0 log(C

′

2T0) + C
′

3L||θ̂ − θ0||1T0

with probability at least 1− 1
T0

.

A.3 Proof of Theorem 1

Theorem 1. Under Assumptions 1 – 5, by choosing β = 2
3

and γ = 1
6

in Algorithm 1,

the expected regret satisfies E(RT ) = Õ(d2
0T

2/3) = Õ(T 2/3).

Proof. Note that the last episode can be incomplete. Nevertheless, its regret will

be upper bounded by that of the completed version. Moreover, in Algorithm 1, the

parameters for the last episode are just set as if it would be in its full projected length.

Thus without loss of generality, we can assume a complete last episode.

Denote `k,e = dC1`
2/3
k e and `k,u = `k−dC1`

2/3
k e as the exploration phase length and

the UCB phase length in episode k. Denote R
(k)
e as the exploration phase regret and

R
(k)
u as the UCB phase regret in episode k. Denote R(k) as the overall regret in episode

k and we have R(k) = R
(k)
e + R

(k)
u . Further denote R

(k)
u,1, R

(k)
u,2 as the discrete-part and

continuous-part regret in the UCB phase of episode k. Then we have R
(k)
u = R

(k)
u,1+R

(k)
u,2.

By Lemma 1, we have for nk = `k,e ≥ c̃3(d0 + 1)3,

||θ̂k − θ0||1 ≤
8(B + U +W )(d0 + 1)

c0

√
log nk
nk

11



with probability at least 1 − 2
nk
− c̃1e

− c̃2
(d0+1)2

nk . Denote this high probability event as

Pk. Then on Pk, we have

||θ̂k − θ0||1 ≤ C3

√
log nk
nk

, ||θ̂k||1 ≤ ||θ̂k − θ0||1 + ||θ0||1 ≤ C3,

where C3 = W + 8(B+U+W )(d0+1)
c0

is a constant. Moreover, there exists C4 = c̃4(d0 +

1)3 ≥ c̃3(d0 + 1)3 for some constant c̃4 such that for any nk = `k,e ≥ C4, we have

c̃1e
− c̃2

(d0+1)2
nk ≤ 1

nk
. Then the event Pk happens with probability at least 1− 3

nk
for the

episodes with nk = `k,e ≥ C4.

We first bound the continuous-part regret at each time period t in the UCB phase

of episode k. It admits the form

p∗t (1− F (p∗t − x>t θ0))− p̃∗t (1− F (p̃∗t − x>t θ0)) = fx>t θ0(p
∗
t )− fx>t θ0(p̃

∗
t ),

where fq(p) = p(1− F (p− q)) as defined in Assumption 5.

By our discretization approach, {mi + x>t θ̂}i∈[dk] are a sequence of points with a

special pattern that any two consecutive points have a difference |(mi+1 +x>t θ̂)− (mi+

x>t θ̂)| =
|G(θ̂k)|
dk

. Moreover, the left-most point satisfies m1 + x>t θ̂ ≤ 1
2
· |G(θ̂k)|

dk
while the

right-most point satisfies md + x>t θ̂ ≥ pmax − 1
2
· |G(θ̂k)|

dk
. Since St = {mj + x>t θ̂k|j ∈

[dk],mj + x>t θ̂k ∈ (0, pmax)} and p∗t ∈ (0, pmax), there must be some price ṗt ∈ St whose

distance with p∗t is less than |G(θ̂k)|
dk

, i.e., |p∗t − ṗt| ≤
|G(θ̂k)|
dk

. Thus by Assumption 5, there

exists a constant C > 0 such that fx>t θ0(p
∗
t ) − fx>t θ0(ṗt) ≤ C(p∗t − ṗt)2. Then on the

high probability event Pk, we have fx>t θ0(p
∗
t ) − fx>t θ0(ṗt) ≤ C |G(θ̂k)|2

d2k
≤ CC2

6

d2k
where the

constant C6 = pmax + 2C3 ≥ pmax + 2||θ̂k||1 = |G(θ̂k)|. Since p̃∗t yields the maximum

reward for prices in St, we have fx>t θ0(p̃
∗
t ) ≥ fx>t θ0(ṗt). Thus we have

fx>t θ0(p
∗
t )− fx>t θ0(p̃

∗
t ) ≤ fx>t θ0(p

∗
t )− fx>t θ0(ṗt) ≤

CC2
6

d2
k

=
C5

d2
k

,

where the constant C5 = CC2
6 . Therefore, the continous-part regret R

(k)
u,2 in the UCB

12



phase of episode k can be bounded as R
(k)
u,2 ≤

C5`k,u
d2k

on the high probability event Pk,

i.e., when θ̂k satisfies ||θ̂k − θ0||1 ≤ 8(B+U+W )(d0+1)
c0

√
lognk
nk

.

On the other hand, by Proposition 1, the discrete-part regret in the UCB phase of

episode k satisfies R
(k)
u,1 ≤ C

′
1dk
√
`k,u log(C

′
2`k,u) + C

′
3L||θ̂k − θ0||1`k,u with probability

at least 1− 1
`k,u

conditional on θ̂k. Thus we have

E(R
(k)
u,1|θ̂k) ≤ C

′

1dk
√
`k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u +
pmax

`k,u
· `k,u

≤ C
′

1dk
√
`k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u + pmax.

Combined with our previously derived continuous-part regret result, we have for θ̂k

such that ||θ̂k − θ0||1 ≤ 8(B+U+W )(d0+1)
c0

√
lognk
nk

,

E(R(k)
u |θ̂k) = E(R

(k)
u,1|θ̂k) + E(R

(k)
u,2|θ̂k)

≤ C
′

1dk
√
`k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u + pmax +
C5`k,u
d2
k

.

As we choose dk = dC2`
1/6
k,ue that satisfies C2`

1/6
k,u ≤ dk ≤ C2`

1/6
k,u + 1, we obtain

E(R(k)
u |θ̂k) ≤ C

′

4`
2/3
k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u,

where the constant C
′
4 = C

′
1C2 + C1 + C5

C2
2

+ pmax. Since Pk is in the σ-field generated

13



by θ̂k, we obtain

E(R(k)
u ) = E(R(k)

u 1Pk) + E(R(k)
u 1Pck) ≤ E

(
E(R(k)

u 12
Pk |θ̂k)

)
+ P(Pck) · pmax`k,u

≤ E
(
1PkE(R(k)

u 1Pk |θ̂k)
)

+
3

`k,e
· pmax`k,u

≤ E
(
1Pk(C

′

4 log(C
′

2`k,u)`
2/3
k,u + C

′

3L||θ̂k − θ0||1`k,u)
)

+
3

dC1`
2/3
k e
· pmax`k

≤ C
′

4 log(C
′

2`k,u)`
2/3
k,u + C

′

3L(C3

√
log `k,e
`k,e

)`k,u +
3pmax

C1

`
1/3
k

≤ C
′

4 log(C
′

2`k)`
2/3
k + C

′

3L(C3

√
log `k

dC1`
2/3
k e

)`k +
3pmax

C1

`
1/3
k

≤
(
C
′

4 log(C
′

2`k) +
C
′
3C3L√
C1

√
log `k +

3pmax

C1

)
`

2/3
k = Õ(`

2/3
k ).

On the other hand, the expected regret in the exploration phase satisfies E(R
(k)
e ) ≤

pmax`k,e ≤ pmaxdC1`
2/3
k e ≤ C7`

2/3
k = Õ(`

2/3
k ) where C7 = pmaxC1 + pmax. Therefore the

overall expected regret in episode k satisfies E(R(k)) = E(R
(k)
u ) + E(R

(k)
e ) = Õ(`

2/3
k ).

Note that this only happens for nk = `k,e = dC1`
2/3
k e ≥ C4. For the episode

such that its length `k does not satisfy dC1`
2/3
k e ≥ C4, we have E(R(k)) ≤ pmax`k ≤

c̃
1/2
4 pmax

C
1/2
1

`
2/3
k (d0 + 1)3/2 ≤ C

′
5d

3/2
0 `

2/3
k where C

′
5 is a constant. Thus for any episode k, we

have E(R(k)) ≤
(
C
′
5d

3/2
0 + C

′
4 log(C

′
2`k) +

C
′
3C3L√
C1

√
log `k + C

′
6

)
`

2/3
k = Õ(`

2/3
k ) where the

constant C
′
6 = 3pmax

C1
+C7. Here some constants contain the dimensionality d0. We have

C3 = W + 8(B+U+W )(d0+1)
c0

= O(d0), C6 = pmax + 2C3 = O(d0), C5 = CC2
6 = O(d2

0) and

C
′
4 = C

′
1C2 + C1 + C5

C2
2

+ pmax = O(d2
0).

Denote K = n(T, α1) as the number of episodes. Note that `K = 2`K−1 ≤ 2T . Now

14



we bound the expected regret for the entire horizon as

E(RT ) = E(
K∑
k=1

R(k)) =
K∑
k=1

E(R(k))

≤
K∑
k=1

((
C
′

5d
3/2
0 + C

′

4 log(C
′

2`k) +
C
′
3C3L√
C1

√
log `k + C

′

6

)
`

2/3
k

)
≤
(
C
′

5d
3/2
0 + C

′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

) K∑
k=1

`
2/3
k

=
(
C
′

5d
3/2
0 + C

′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

)
α

2/3
1

(22/3)K − 1

22/3 − 1

=
22/3

22/3 − 1

(
C
′

5d
3/2
0 + C

′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

)
`

2/3
K

≤ 24/3

22/3 − 1

(
C
′

5d
3/2
0 + C

′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

)
T 2/3

= Õ(d2
0T

2/3) = Õ(T 2/3).

A.4 Proof of Theorem 2

Theorem 2. Under Assumptions 1 – 4, by choosing β = 3
4

and γ = 1
4

in Algorithm 1,

the expected regret satisfies E(RT ) = Õ(d0T
3/4) = Õ(T 3/4).

Proof. We use the same notation of R(k), R
(k)
e , R

(k)
u , R

(k)
u,1, R

(k)
u,2 and `k,e, `k,u as in the

proof for Theorem 1. Note that now `k,e = dC1`
3/4
k e and `k,u = `k − dC1`

3/4
k e. Similar

to the proof of Theorem 1, we assume a complete last episode without loss of generality.

Similar to the proof of Theorem 1, we obtain that for any nk = `k,e ≥ C4 = c̃4(d0 +

1)2, the event Pk that ||θ̂k− θ0||1 ≤ 8(B+U+W )(d0+1)
c0

√
lognk
nk

happens with probability at

least 1− 3
nk

. Furthermore, on this event, we have

||θ̂k − θ0||1 ≤ C3

√
log nk
nk

, ||θ̂k||1 ≤ ||θ̂k − θ0||1 + ||θ0||1 ≤ C3.
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We first bound the continuous-part regret at each time period t in the UCB phase

of episode k. It admits the form

p∗t (1− F (p∗t − x>t θ0))− p̃∗t (1− F (p̃∗t − x>t θ0)),

where p∗t is the overall best price and p̃∗t is the discrete best price among the candidate

set St = {mj + x>t θ̂k|j ∈ [dk],mj + x>t θ̂k ∈ (0, pmax)}.

Let the maximum value in an empty set be −∞. Denote the price ṗt =

max{0,maxj∈[dk],mj+x>t θ̂k≤p∗t
{mj + x>t θ̂k}}. Then there are several cases.

1. {mj + x>t θ̂k|j ∈ [dk],mj + x>t θ̂k ≤ p∗t} = ∅. Then maxj∈[dk],mj+x>t θ̂k≤p∗t
{mj +

x>t θ̂k} = −∞ and ṗt = 0. Moreover, we have p∗t ≤ minj∈[dk](mj + x>t θ̂k) =

m1 + x>t θ̂k ≤ −||θ̂k||1 + |G(θ̂k)|
2dk

+ ||xt||∞||θ̂k||1 = |G(θ̂k)|
2dk

. Thus p∗t − ṗt ∈ [0, |G(θ̂k)|
dk

].

2. {mj + x>t θ̂k|j ∈ [dk],mj + x>t θ̂k ≤ p∗t} 6= ∅ and maxj∈[dk],mj+x>t θ̂k≤p∗t
{mj +

x>t θ̂k} < mdk + x>t θ̂k. Then we have maxj∈[dk],mj+x>t θ̂k≤p∗t
{mj + x>t θ̂k} ≤ p∗t ≤

maxj∈[dk],mj+x>t θ̂k≤p∗t
{mj + x>t θ̂k} + |G(θ̂k)|

dk
. Thus we have ṗt ≤ p∗t ≤ ṗt + |G(θ̂k)|

dk
.

Namely, p∗t − ṗt ∈ [0, |G(θ̂k)|
dk

].

3. {mj +x>t θ̂k|j ∈ [dk],mj +x>t θ̂k ≤ p∗t} 6= ∅ and maxj∈[dk],mj+x>t θ̂k≤p∗t
{mj +x>t θ̂k} =

mdk + x>t θ̂k. Now since mdk + x>t θ̂k ≥ pmax + ||θ̂k||1 − |G(θ̂k)|
2dk

− ||xt||∞||θ̂k||1 ≥

pmax − |G(θ̂k)|
2dk

, we have pmax − |G(θ̂k)|
2dk

≤ mdk + x>t θ̂k ≤ p∗t ≤ pmax. Thus we have

p∗t − (mdk +x>t θ̂k) ≤
|G(θ̂k)|

2dk
≤ |G(θ̂k)|

dk
. Therefore, we have p∗t − ṗt ∈ [0, |G(θ̂k)|

dk
] since

p∗t ≥ ṗt ≥ maxj∈[dk],mj+x>t θ̂k≤p∗t
{mj + x>t θ̂k} = mdk + x>t θ̂k.

Namely, we will always have p∗t − ṗt ∈ [0, |G(θ̂k)|
dk

]. Thus we have

p∗t
(
1− F (p∗t − x>t θ0)

)
− ṗt

(
1− F (ṗt − x>t θ0)

)
≤ p∗t

(
1− F (ṗt − x>t θ0)

)
− ṗt

(
1− F (ṗt − x>t θ0)

)
= (p∗t − ṗt)

(
1− F (ṗt − x>t θ0)

)
≤ p∗t − ṗt ≤

|G(θ̂k)|
dk

.
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Now we compare the revenue of ṗt and the discrete best price p̃∗t . If ṗt = 0, then 0 =

ṗt
(
1−F (ṗt−x>t θ0)

)
≤ p̃∗t

(
1−F (p̃∗t−x>t θ0)

)
. If ṗt 6= 0, then ṗt = maxj∈[dk],mj+x>t θ̂k≤p∗t

{mj+

x>t θ̂k} ∈ (0, p∗t ) ⊆ (0, pmax). Thus ṗt ∈ St and its revenue is not greater than the discrete

best price p̃∗t ∈ St. Thus it always holds that ṗt
(
1−F (ṗt−x>t θ0)

)
≤ p̃∗t

(
1−F (p̃∗t−x>t θ0)

)
.

Thus we can bound the continuous-part regret at time period t as

p∗t (1− F (p∗t − x>t θ0))− p̃∗t (1− F (p̃∗t − x>t θ0))

≤ p∗t (1− F (p∗t − x>t θ0))− ṗt(1− F (ṗt − x>t θ0))

≤ |G(θ̂k)|
dk

≤ pmax + 2C3

dk
=
C6

dk

on the high probability event Pk, where the constant C6 = pmax + 2C3. Thus the

overall continuous-part regret R
(k)
u,2 in the UCB phase of episode k can be bounded as

R
(k)
u,2 ≤

C6`k,u
dk

when θ̂k satisfies ||θ̂k − θ0||1 ≤ 8(B+U+W )(d0+1)
c0

√
lognk
nk

.

On the other hand, by Proposition 1, the discrete-part regret in the UCB phase of

episode k satisfies R
(k)
u,1 ≤ C

′
1dk
√
`k,u log(C

′
2`k,u) + C

′
3L||θ̂k − θ0||1`k,u with probability

at least 1− 1
`k,u

conditional on θ̂k. Thus we have

E(R
(k)
u,1|θ̂k) ≤ C

′

1dk
√
`k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u +
pmax

`k,u
· `k,u

≤ C
′

1dk
√
`k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u + pmax.

Combined with our previously derived continuous-part regret result, we have for θ̂k

such that ||θ̂k − θ0||1 ≤ 8(B+U+W )(d0+1)
c0

√
lognk
nk

,

E(R(k)
u |θ̂k) = E(R

(k)
u,1|θ̂k) + E(R

(k)
u,2|θ̂k)

≤ C
′

1dk
√
`k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u + pmax +
C6`k,u
dk

.
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As we choose dk = dC2`
1/4
k,ue that satisfies C2`

1/4
k,u ≤ dk ≤ C2`

1/4
k,u + 1, we obtain

E(R(k)
u |θ̂k) ≤ C

′

4`
3/4
k,u log(C

′

2`k,u) + C
′

3L||θ̂k − θ0||1`k,u,

where the constant C
′
4 = C

′
1C2 + C1 + C6

C2
+ pmax. Since Pk is in the σ-field generated

by θ̂k, we obtain

E(R(k)
u ) = E(R(k)

u 1Pk) + E(R(k)
u 1Pck) ≤ E

(
E(R(k)

u 12
Pk |θ̂k)

)
+ P(Pck) · pmax`k,u

≤ E
(
1PkE(R(k)

u 1Pk |θ̂k)
)

+
3

`k,e
· pmax`k,u

≤ E
(
1Pk(C

′

4 log(C
′

2`k,u)`
3/4
k,u + C

′

3L||θ̂k − θ0||1`k,u)
)

+
3

dC1`
3/4
k e
· pmax`k

≤ C
′

4 log(C
′

2`k,u)`
3/4
k,u + C

′

3L(C3

√
log `k,e
`k,e

)`k,u +
3pmax

C1

`
1/4
k

≤ C
′

4 log(C
′

2`k)`
3/4
k + C

′

3L(C3

√
log `k

dC1`
3/4
k e

)`k +
3pmax

C1

`
1/4
k

≤
(
C
′

4 log(C
′

2`k) +
C
′
3C3L√
C1

√
log `k +

3pmax

C1

)
`

3/4
k = Õ(`

3/4
k ).

On the other hand, the expected regret in the exploration phase satisfies E(R
(k)
e ) ≤

pmax`k,e ≤ pmaxdC1`
3/4
k e ≤ C5`

3/4
k = Õ(`

3/4
k ) where C5 = pmaxC1 + pmax. Therefore the

overall expected regret in episode k satisfies E(R(k)) = E(R
(k)
u ) + E(R

(k)
e ) = Õ(`

3/4
k ).

Note that this only happens for nk = `k,e = dC1`
3/4
k e ≥ C4. For the episode

such that its length `k does not satisfy dC1`
3/4
k e ≥ C4, we have E(R(k)) ≤ pmax`k ≤

c̃
1/3
4 pmax

C
1/3
1

`
3/4
k (d0 + 1) ≤ C

′
5d0`

3/4
k where C

′
5 is a constant. Thus for any episode k, we

have E(R(k)) ≤
(
C
′
5d0 + C

′
4 log(C

′
2`k) +

C
′
3C3L√
C1

√
log `k + C

′
6

)
`

2/3
k = Õ(`

3/4
k ) where the

constant C
′
6 = 3pmax

C1
+ C5. Here some constants contain the dimensionality d0. We

have C3 = W + 8(B+U+W )(d0+1)
c0

= O(d0), C6 = pmax + 2C3 = O(d0) and C
′
4 = C

′
1C2 +

C1 + C6

C2
+ pmax = O(d0).

Denote K = n(T, α1) as the number of episodes. Note that `K = 2`K−1 ≤ 2T . Now
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we bound the expected regret for the entire horizon as

E(RT ) = E(
K∑
k=1

R(k)) =
K∑
k=1

E(R(k))

≤
K∑
k=1

((
C
′

5d0 + C
′

4 log(C
′

2`k) +
C
′
3C3L√
C1

√
log `k + C

′

6

)
`

3/4
k

)
≤
(
C
′

5d0 + C
′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

) K∑
k=1

`
3/4
k

=
(
C
′

5d0 + C
′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

)
α

3/4
1

(23/4)K − 1

23/4 − 1

=
23/4

23/4 − 1

(
C
′

5d0 + C
′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

)
`

3/4
K

≤ 23/2

23/4 − 1

(
C
′

5d0 + C
′

4 log(2C
′

2T ) +
C
′
3C3L√
C1

√
log 2T + C

′

6

)
T 3/4

= Õ(d0T
3/4) = Õ(T 3/4).

A.5 Proof of Theorem 3

Theorem 3. For any δ > 0, no policy can achieve an O(T 3/5−δ) regret for the dynamic

pricing problem under Assumptions 1 – 5.

Proof. We first provide a brief outline of our proof. The proof can be decomposed into

two steps.

Step 1. We introduce a general procedure to generate the noise CDF F . We then

prove desired properties of such F that is generated from this procedure. These

F will be used to construct instances in Step 2.

Step 2. We construct problem instances by using a bunch of F generated from the

procedure introduced in Step 1. We then validate the assumptions for our

constructed instances. Finally, we prove that no policy can perform well on all

these instances.
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Now we start to prove the theorem.

Step 1. Firstly, we define the basic bump function B(v) as

B(v) =



0, for v ∈ (−∞, 0],

18v2, for v ∈ (0, 1/6],

1− 18(1/3− v)2, for v ∈ (1/6, 1/3),

1, for v ∈ [1/3, 2/3],

1− 18(v − 2/3)2, for v ∈ (2/3, 5/6),

18(1− v)2, for v ∈ [5/6, 1),

0, for v ∈ [1,+∞).

We also define the rescaled bump function for any −∞ < a < b < +∞ as B[a,b](v) =

B(v−a
b−a ). Now we prove that B(v) is Lipschitz continuous.

Lemma 2. |B′(v)| ≤ 6 for any v ∈ R and B(v) is 6-Lipschitz.

Proof. It is obvious that B
′
(v) = 0 for v ∈ (−∞, 0) ∪ (1/3, 2/3) ∪ (1,+∞). Note that

B(v) is symmetric over v = 1/2. We consider these following cases for v.

• For v = 0, we have limv→0−
B(v)−B(0)

v−0
= 0. We also have limv→0+

B(v)−B(0)
v−0

=

limv→0+ 18v = 0. Thus |B′(0)| = 0 ≤ 6. By symmetry, we have |B′(1)| = 0 ≤ 6.

• For v ∈ (0, 1/6), we have |B′(v)| = |36v| ≤ 6. By symmetry, we have |B′(v)| ≤ 6

for v ∈ (5/6, 1).

• For v = 1/6, let q1(v) = 18v2 and q2(v) = 1 − 18(1/3 − v)2. Then q1(v) =

B(v) for v ∈ (0, 1/6] and q2(v) = B(v) for v ∈ [1/6, 1/3). Thus we have

lim
v→ 1

6

−
B(v)−B(1/6)

v−1/6
= lim

v→ 1
6

−
q1(v)−q1(1/6)

v−1/6
= q

′
1(1/6) = 6 and lim

v→ 1
6

+
B(v)−B(1/6)

v−1/6
=

lim
v→ 1

6

+
q2(v)−q2(1/6)

v−1/6
= q

′
2(1/6) = 6. Thus |B′(1/6)| = 6 ≤ 6. By symmetry, we

have |B′(5/6)| = 6 ≤ 6.
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• For v ∈ (1/6, 1/3), we have |B′(v)| = |36(1/3 − v)| ≤ 6. By symmetry, we have

|B′(v)| ≤ 6 for v ∈ (2/3, 5/6).

• For v = 1/3, let q1(v) = 1 − 18(1/3 − v)2 and q2(v) = 1. Then q1(v) =

B(v) for v ∈ (1/6, 1/3] and q2(v) = B(v) for v ∈ [1/3, 1/2). Thus we have

lim
v→ 1

3

−
B(v)−B(1/3)

v−1/3
= lim

v→ 1
3

−
q1(v)−q1(1/3)

v−1/3
= q

′
1(1/3) = 0 and lim

v→ 1
3

+
B(v)−B(1/3)

v−1/3
=

lim
v→ 1

3

+
q2(v)−q2(1/3)

v−1/3
= q

′
2(1/3) = 0. Thus |B′(1/3)| = 0 ≤ 6. By symmetry, we

have |B′(2/3)| = 0 ≤ 6.

Thus we have |B′(v)| ≤ 6 for v ∈ R and B(v) is 6-Lipschitz by Lagrange’s Mean Value

Theorem.

Then we prove another critical property of the bump function B(v).

Lemma 3. For v ∈ [0, 1/3), B(1/3)−B(v) ≤ 18(1/3− v)2.

Proof. For v ∈ (1/6, 1/3), we have B(1/3)−B(v) = 18(1/3− v)2 ≤ 18(1/3− v)2. For

v ∈ [0, 1/6], we have B(1/3)−B(v) = 1− 18v2 ≤ 18(1/3− v)2 since it is equivalent to

36v2 − 12v + 1 = (6v − 1)2 ≥ 0.

For rescaled bump functions, Lemma 3 translates to B[a,b](a+ b−a
3

)−B[a,b](v) = B(1/3)−

B(v−a
b−a ) ≤ 18(1/3− v−a

b−a )2 = 18
(b−a)2

((a+ b−a
3

)− v)2 for v ∈ [a, a+ b−a
3

).

We then define a bunch of interval series [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃ · · · ⊃ [ak, bk] ⊃

. . . , where the interval lengths satisfy wk = bk−ak = 3−k! for k ≥ 1 and w0 = b0−a0 = 1.

To select [ak, bk], we first divide the range [ak−1 + wk−1

3
, bk−1 − wk−1

3
] into Qk = wk−1

3wk

sub-intervals of the same length wk and then pick one of these sub-intervals as [ak, bk].

Note that there are infinite such series of intervals. For each of these interval series,

we are able to define the function

f(v) = Cf

∞∑
k=0

w2
kB[ak,bk](v)
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where Cf is a constant remained to be determined later. Denote fK(v) = Cf
∑K

k=0 w
2
kB[ak,bk](v).

We then show a few critical properties of f(v).

Lemma 4. 1. f(v) ∈ [0, 9
8
Cf ] for any v ∈ R.

2. f(v) is Lipschitz continuous.

3. There exists a unique v∗ ∈ [0, 1] such that f(v∗) = maxv∈[0,1] f(v). Specifically,

{v∗} = ∩∞k=1[ak, bk].

4. f(v) is unimodal around the unique maximizer v∗.

5. For any v ∈ [0, 1], f(v∗)− f(v) ≤ 18Cf (v
∗ − v)2.

Proof. 1. For any v ∈ R, B[ak,bk](v) ≥ 0. Thus fK(v) is non-decreasing and

f(v) = limK→∞ fK(v) ≥ 0. On the other hand, B[ak,bk](v) ≤ 1. Thus fK(v) ≤∑K
k=0Cfw

2
k and f(v) = limK→∞ fK(v) ≤ limK→∞

∑K
k=0 Cfw

2
k =

∑∞
k=0Cfw

2
k ≤

Cf
∑∞

k=0 3−2k ≤ 9
8
Cf <∞.

2. f
′
K(v) = Cf

∑K
k=0 w

2
kB

′

[ak,bk](v) = Cf
∑K

k=0w
2
k

1
bk−ak

B
′
( v−ak
bk−ak

) = Cf
∑K

k=0 wkB
′
( v−ak
bk−ak

).

Denote ḟ(v) = limK→∞ f
′
K(v). Then we have |ḟ(v)| = | limK→∞ f

′
K(v)| ≤

Cf
∑K

k=0 wk|B
′
( v−ak
bk−ak

)| ≤ 9Cf . Namely, ḟ(v) exists and is finite-valued. More-

over, we have for any v ∈ R,

|ḟ(v)−f ′K(v)| = |Cf
∞∑

k=K+1

wkB
′
(
v − ak
bk − ak

)| ≤ Cf

∞∑
k=K+1

wk|B
′
(
v − ak
bk − ak

)| ≤ 3−(K+1)!(9Cf )

since
∑∞

k=K+1wk =
∑∞

k=K+1 3−k! ≤ wK+1

∑∞
k=0 3−k ≤ 3

2
3−(K+1)!. Since 3−(K+1)!(9Cf )→

0 with K → ∞, we have f
′
K(v) converges to ḟ(v) uniformly in R. We also have

each component wkB
′
( v−ak
bk−ak

) in ḟ(v) is continuous. Thus by the property of the

function series, we have f
′
(v) exists and

f
′
(v) = lim

K→∞
f
′

K(v) = ḟ(v).
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Thus |f ′(v)| = |ḟ(v)| ≤ 9Cf for any v ∈ R and f(v) is 9Cf -Lipschitz by the

Lagrange’s Mean Value Theorem.

3. Since f(v) is Lipschitz continuous, there exists the maximum for f(v) in [0, 1].

Let v∗ be some maximizer of f(v) in [0, 1]. Then it is obvious that v∗ ∈ [ak, bk]

for any k ∈ N. Since bk − ak = wk = 3−k! → 0, ak is increasing with ak ≤ 1 for

any k ≥ 1 and bk is decreasing with bk ≥ 0 for any k ≥ 1, we have limk→∞ ak =

limk→∞ bk = v∗ and {v∗} = ∩∞k=1[ak, bk].

4. For any k ≥ 0, B[ak,bk](v) is non-decreasing in [0, v∗] and non-increasing in [v∗, 1]

since v∗ ∈ [ak+1, bk+1] ⊂ [ak + wk
3
, bk − wk

3
]. Thus f(v), as the sum of these

functions, is non-decreasing in [0, v∗] and non-increasing in [v∗, 1].

5. For any k ≥ 0, we have B[ak,bk](v
∗) = 1 since v∗ ∈ [ak+1, bk+1] ⊂ [ak + wk

3
, bk− wk

3
].

Thus we are able to calculate f(v∗) = Cf
∑∞

k=0w
2
kB[ak,bk](v

∗) = Cf
∑∞

k=0w
2
k.

Note that it is enough to consider v ∈ [0, v∗] since the reasoning is exactly the

same for v ∈ [v∗, 1]. For v = v∗, we have any C > 0, f ∗(v) − f(v) = 0 ≤

C(v∗ − v)2 = 0. Now we consider any fixed v ∈ [0, v∗). Since a0 = 0, ak is

increasing and ak → v∗, there exists an i ≥ 0 such that v ∈ [ai, ai+1). Now there

are two further cases.

(a) v ∈ [ai + wi
3
, ai+1). In this case, we have f(v) = Cf

∑∞
k=0w

2
kB[ak,bk](v) =

Cf
∑i

k=0 w
2
k. Thus f ∗(v) − f(v) = Cf

∑∞
k=i+1w

2
k ≤ Cfw

2
i+1(
∑∞

k=0 3−2k) ≤
9
8
Cfw

2
i+1. On the other hand, we have v∗ ≥ ai+2 ≥ ai+1 + wi+1

3
≥ v + wi+1

3
.

Thus v∗ − v ≥ wi+1

3
. Therefore, we have

f(v∗)− f(v) ≤ 9

8
Cfw

2
i+1 ≤

81

8
Cf (v

∗ − v)2.

(b) v ∈ [ai, ai + wi
3

). In this case, we have f(v) = Cf
∑∞

k=0 w
2
kB[ak,bk](v) =

Cf
∑i−1

k=0 w
2
k + Cfw

2
iB[ai,bi](v). On the other hand, let vi = ai + wi

3
and

we have f(vi) = Cf
∑∞

k=0w
2
kB[ak,bk](v) = Cf

∑i
k=0w

2
k. By Lemma 3, we
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have f(vi)− f(v) = Cfw
2
i (1− B[ai,bi](v)) = Cfw

2
i (B[ai,bi](vi)− B[ai,bi](v)) ≤

Cfw
2
i

18
(bi−ai)2 (vi − v)2 = 18Cf (vi − v)2. In addition, as vi = ai + wi

3
∈ [ai +

wi
3
, ai+1), the just-derived result in (a) yields f(v∗)−f(v) ≤ 81

8
Cf (v

∗−v)2 ≤

18Cf (v
∗ − v)2. Thus we have

f(v∗)− f(v) = (f(v∗)− f(vi)) + (f(vi)− f(v))

≤ 18Cf (v
∗ − vi)2 + 18Cf (vi − v)2

≤ 18Cf
(
(v∗ − vi) + (vi − v)

)2
= 18Cf (v

∗ − v)2.

Thus we have f(v∗) − f(v) ≤ 18Cf (v
∗ − v)2 for v ∈ [0, v∗). The derivation

is exactly the same for v ∈ (v∗, 1] and thus we conclude that f(v∗) − f(v) ≤

18Cf (v
∗ − v)2 for v ∈ [0, 1].

From f(v), we define another function g(v) = 1 − 1
1+f(v)

. Then we have |g′(v)| =

| f
′
(v)

(f(v)+1)2
| ≤ 6Cf . Thus g(v) is 6Cf -Lipschitz by Lagrange’s Mean Value Theorem.

Moreover, we have |g(v1) − g(v2)| = | 1
1+f(v2)

− 1
1+f(v1)

| ≤ |f(v1) − f(v2)|. In addition,

g(v) is unimodal with the same unique maximizer v∗g = v∗f of f(v).

Let Cf ∈ (0, 1/6) and b =
1+6Cf

2
∈ (0, 1) be a constant. We further define the

function F (v) as

F (v) =



0, for v ∈ (−∞, b],

1− b
v
− 1−b

v
g(v−b

1−b), for v ∈ (b, 1),

2− 1+b
v
, for v ∈ [1, 1 + b),

1, for v ∈ [1 + b,+∞).

Then we have the following properties for F (v).

Lemma 5. 1. F (v) is a Cumulative Distribution Function (CDF) of some R-valued

random variable.
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2. F (v) is Lipschitz continuous on R.

3. There is a unique minimizer v∗r ≥ 0 for the function r(v) = v(1 − F (v)) on

R+ ∪ {0}.

4. For any v ≥ 0, we have r(v∗r)− r(v) ≤ 36
(1−6Cf )2

(v∗r − v)2.

Proof. 1. It is easy to see that limv→−∞ F (v) = 0 and limv→+∞ F (v) = 1. It is

also easy to see that F (v) is continuous on (−∞, b), (1, 1 + b) and (1 + b,+∞).

Since g(v) is continuous on (0, 1), g(v−b
1−b) is continous on v ∈ (b, 1). Thus F (v)

is continous on v ∈ (b, 1). Moreover, we have limv→b+ F (v) = limv→b+(1 − b
v
−

1−b
v
g(v−b

1−b)) = 1 − 1 − 1−b
b
g(0) = 0 = limv→b− F (v) = F (b) and thus F (v) is

continuous on v = b. Also, we have limv→1− F (v) = limv→1−(1− b
v
− 1−b

v
g(v−b

1−b)) =

1− b− (1− b)g(0) = 1− b = limv→1+ F (v) = F (1) and thus F (v) is continuous on

v = 1. In addition, we have limv→(1+b)− F (v) = 1 = limv→(1+b)+ F (v) = F (1 + b)

and thus F (v) is continuous on v = 1 + b. Thus F (v) is continous on R.

On the other hand, it is easy to see that F (v) is non-decreasing on (−∞, b] ∪

[1,+∞). For any v ∈ (b, 1), we have F
′
(v) =

b−vg′ ( v−b
1−b )+(1−b)g( v−b

1−b )

v2
. Then we have

b − vg′(v−b
1−b) ≥ b − v|g′(v−b

1−b)| ≥ b − 6Cf =
1+6Cf

2
− 6Cf =

1−6Cf
2

> 0. Thus we

have F (v) is non-decreasing on (b, 1) and F (b) ≤ F (v) ≤ F (1) for v ∈ (b, 1).

Thus F (v) is non-decreasing on R. Therefore, F (v) is a CDF for some R-valued

random variable.

2. It is easy to see that F (v) is 1-Lipschitz on (−∞, b] or [1 + b,+∞). Since

|F ′(v)| = |1+b
v2
| ≤ 2 for v ∈ (1, 1 + b) and F (v) is continuous on [1, 1 + b], we

have F (v) is 2-Lipschitz on [1, 1 + b] by Lagrange’s Mean Value Theorem. Since

|F ′(v)| = | b−vg
′
( v−b
1−b )+(1−b)g( v−b

1−b )

v2
| ≤ b+6Cf+(1−b)

b2
= 2 + 12Cf ≤ 14 for v ∈ (b, 1) and

F (v) is continuous on [b, 1], we have F (v) is 14-Lipschitz on [b, 1] by Lagrange’s

Mean Value Theorem. Therefore, by triangular inequalities, we have F (v) is

14-Lipschitz on R.
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3. For v ≥ 0, simple calculation yields

r(v) = v(1− F (v)) =



v, for v ∈ [0, b),

b+ (1− b)g(v−b
1−b), for v ∈ [b, 1],

1 + b− v, for v ∈ (1, 1 + b],

0, for v ∈ (1 + b,+∞).

Since g(v) ≥ 0, we have r(v) ≥ b > r(v
′
) for any v ∈ [b, 1] and v

′ ∈ (R+ ∪ {0}) \

[b, 1]. Since g(v) has the same unique maximizer v∗g = v∗f for f(v), we obtain that

v∗r = b+ (1− b)v∗g ∈ [b, 1] is the unique maximizer for r(v) on R+ ∪ {0}.

4. For any v ∈ [b, 1], we have

r(v∗r)− r(v) = (1− b)
(
g(
v∗r − b
1− b

)− g(
v − b
1− b

)
)

= (1− b)|g(v∗g)− g(
v − b
1− b

)|

≤ (1− b)|f(v∗f )− f(
v − b
1− b

)| ≤ (1− b)18Cf (v
∗
f −

v − b
1− b

)2

=
18Cf
1− b

((1− b)v∗f + b− v)2 =
36Cf

1− 6Cf
(v∗r − v)2.

For any v ∈ (R+∪{0})\ [1, b], we have r(v∗r)−r(v) ≤ r(v∗r) ≤ b+(1−b) = 1 since

g(v) ≤ 1 for any v ∈ [0, 1]. On the other hand, since v∗g = v∗f ∈ [1/3, 2/3], we have

v∗r = b+ (1− b)v∗g ∈ [b+ 1−b
3
, 1− 1−b

3
] and thus |v∗r − v| ≥ 1−b

3
for any v ∈ (R+ ∪

{0}) \ [1, b]. Thus we have r(v∗r)− r(v) ≤ 1 ≤ 9
(1−b)2 (v∗r − v)2 = 36

(1−6Cf )2
(v∗r − v)2.

Since 36
(1−6Cf )2

≥ 36Cf
1−6Cf

, we have for any v ≥ 0, r(v∗r)− r(v) ≤ 36
(1−6Cf )2

(v∗r − v)2.

Step 2. Now we specify the problem setting and validate the assumptions. Let

θ0 = (0, 0, . . . , 0)> be the d0-dimensional zero vector. Let xt be i.i.d. samples from a dis-

tribution Px such that each component of xt are independent identically distributed as

Unif(−1, 1). Let the noise CDF be any F (v) generated from the procedure introduced

in Step 1. Then the support of xt is X = (−1, 1)d0 . Then ||xt||∞ ≤ 1, ||θ0||1 ≤ 1 and
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thus Assumption 1 is satisfied with the constant W = 1. Also, Σ = E
(
(1, x>t )(1, x>t )

)
is

a diagonal matrix Diag(1, 1/3, . . . , 1/3) and thus Assumption 2 is satisfied with the con-

stant c0 = 1/4. Let F (v) be the CDF for the market noise zt. Then by the construction

of F (v), the noise is bounded in [b, 1 + b] ⊆ (0, 2) since b ∈ (0, 1). In addition, any real-

ized valuations vt satisfies vt = x>t θ0 +zt = zt ∈ [b, 1+b] ⊆ [0, 2] and thus Assumption 3

is satisfied with B = 2. By Lemma 5, F (v) is 14-Lipschitz and thus Assumption 4 is sat-

isfied with L = 14. Now we prove that Assumption 5 is also satisfied. For any x ∈ X , we

have q = x>θ0 = 0. Thus fq(p) = p(1−F (p−x>θ0)) = p(1−F (p)) = r(p). Namely, r(v)

is just the revenue function. Thus by Lemma 5, the optimal price p∗(x) = v∗r ∈ [b, 1].

In addition, we have for any p ∈ [0, pmax] and x ∈ X ,

fq(p
∗(x))− fq(p) = r(v∗r)− r(p) ≤

36

(1− 6Cf )2
(v∗r − p)2 =

36

(1− 6Cf )2
(p∗(x)− p)2.

Therefore, Assumption 5 is satisfied. Thus under any noise CDF F (v) that is con-

structed through our introduced procedure, all Assumptions 1 – 5 are satisfied.

Now we construct instances to prove the main theorem. Note that each interval se-

ries {[ak, bk]}k≥0 that is introduced in Step 1 corresponds to a triplet (f(v), g(v), F (v)).

Thus each interval series corresponds to a noise CDF F (v) and thus a problem instance

constructed as above. We will construct an infinite sequence of well-formulated groups

of such instances. For each of these instance group, we will prove that no policy can

perform well on all the instances in this group. Specifically, let nk = dwk−1

w5
k
e for k ≥ 1.

For each k, we first define f0(v) = Cf
∑k−1

j=0 w
2
jB[aj ,bj ](v), which corresponds to the

finite series of intervals {[aj, bj]}0≤j≤k−1 and no choice of [ak, bk]. We further define

g0(v) and F0(v) based on f0(v) through the previously introduced procedure in Step

1. Then we consider the possible Qk = wk−1

3wk
choices of [ak, bk]. Denote these intervals

as Ij, j = 1, 2, . . . , Qk and the corresponding triplet (f(v), g(v), F (v)) for [ak, bk] = Ij as

(fj(v), gj(v), Fj(v)). These noise CDF {Fj(v)}j∈[Qk] form the k-th group of instances.

Now consider any policy π. For simplicity, we denote nk as n. The policy π

would interact with the noise distribution Fj(v) and generate the price and response
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sequence un = (p1, y1, p2, y2, . . . , pn, yn). Denote the distribution of un under Fj(v) as

Pj for j ∈ {0, 1, . . . , Qk}. We may assume pt ∈ [b, 1] as any price p
′ ∈ [0, pmax] \ [b, 1]

is suboptimal and dominated by any price p ∈ [b, 1] by the property of the revenue

function r(v).

Now we derive the KL-divergence KL(P0||Pj) for any j ∈ [Qk]. For j ∈ [Qk] ∪ {0},

denote Pj(y|p) as the Bernoulli distribution of the binary response y given the price

p under the noise distribution Fj. In particular, Pj(y|p) = Ber(1 − Fj(p)). Then we

have P0(un) = Πn
t=1

(
π(pt|p1, y1, . . . , pt−1, yt−1)P0(yt|pt)

)
. Similarly, we have Pj(un) =

Πn
t=1

(
π(pt|p1, y1, . . . , pt−1, yt−1)Pj(yt|pt)

)
. Thus we obtain

KL(P0||Pj) = EP0

(
log

P0(un)

Pj(un)

)
= EP0

(
log

Πn
t=1

(
π(pt|p1, y1, . . . , pt−1, yt−1)P0(yt|pt)

)
Πn
t=1

(
π(pt|p1, y1, . . . , pt−1, yt−1)Pj(yt|pt)

))
= EP0

(
log

Πn
t=1P0(yt|pt)

Πn
t=1Pj(yt|pt)

)
= EP0

( n∑
t=1

log
P0(yt|pt)
Pj(yt|pt)

)
=

n∑
t=1

EP0

(
EP0

(
log

P0(yt|pt)
Pj(yt|pt)

∣∣pt)) =
n∑
t=1

EP0

(
KL
(
P0(·|pt)||Pj(·|pt)

))
=

n∑
t=1

EP0

(
KL
(
Ber(1− F0(pt))||Ber(1− Fj(pt))

))
=

n∑
t=1

EP0

(
1 pt−b

1−b /∈Ij
KL
(
Ber(1− F0(pt))||Ber(1− Fj(pt))

)
+ 1 pt−b

1−b ∈Ij
KL
(
Ber(1− F0(pt))||Ber(1− Fj(pt))

))
.

(10)

Now we present a lemma on the KL-divergence of two Bernoulli distributions.

Lemma 6. For Bernoulli distributions Ber(p) and Ber(p+ ε) with 1/2 ≤ p ≤ p+ ε ≤

1/2 + C, we have

KL(Ber(p)||Ber(p+ ε)) ≤ 4

1− 4C2
ε2.

Proof. For v > 0, we have v
1+v
≤ ln(1 + v) ≤ v since ( v

1+v
)
′

= 1
(1+v)2

≤
(

ln(1 + v)
)′

=
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1
1+v
≤ (v)

′
= 1 and ( v

1+v
)
∣∣
v=0

=
(

ln(1+v)
)∣∣
v=0

= (v)
∣∣
v=0

= 0. Direct calculation yields

KL(Ber(p)||Ber(p+ ε)) = p log(
p

p+ ε
) + (1− p) log(

1− p
1− p− ε

)

= p
(
− ln(1 +

ε

p
)
)

+ (1− p) ln(1 +
ε

1− p− ε
)

≤ p(−
ε
p

1 + ε
p

) + (1− p) ε

1− p− ε

=
−pε(1− p− ε) + (1− p)ε(p+ ε)

(p+ ε)(1− p− ε)

=
ε2

(p+ ε)(1− p− ε)

≤ ε2

(1
2

+ C)(1
2
− C)

=
4

1− 4C2
ε2.

For simplicity, denote qt = pt−b
1−b . Then for pt such that pt−b

1−b /∈ Ij, we have F0(pt) =

Fj(pt) by their constructions and thus KL
(
Ber(1− F0(pt))||Ber(1− Fj(pt))

)
= 0.

Then we focus on the pt such that qt = pt−b
1−b ∈ Ij, we have

(1− Fj(pt))− (1− F0(pt)) =
b+ (1− b)gj(pt−b1−b )

pt
−
b+ (1− b)g0(pt−b

1−b )

pt

=
1− b
pt

(gj(qt)− g0(qt))

=
1− b
pt

( 1

1 + f0(qt)
− 1

1 + fj(qt)

)
=

1− b
pt

( Cf∑∞i=k w2
iB[ai,bi](qt)

(1 + f0(qt))(1 + fj(qt))

)
≤ 1− b

b

Cfw
2
k(
∑∞

i=0 3−2i)

1× 1

≤ 1− 1/2

1/2

9

8
Cfw

2
k =

9

8
Cfw

2
k.
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Note that from the above derivation, we also have

(1− Fj(pt))− (1− F0(pt)) =
1− b
pt

( Cf∑∞i=k w2
iB[ai,bi](qt)

(1 + f0(qt))(1 + fj(qt))

)
≥ 0.

Moreover, we have 1−F0(pt) = b+(1−b)g0(qt)
pt

≥ b =
1+6Cf

2
≥ 1

2
since g0(qt) = 1− 1

1+f0(qt)
≥

0. Note that by Lemma 5, Fj(v) is a CDF and thus is non-decreasing. Since k ≥ 1, we

have qt = pt−b
1−b ∈ Ij ⊂ [a0 + 1/3, b0 − 1/3] = [1/3, 2/3]. Thus pt ≥ b + 1−b

3
. Therefore,

we obtain

1− Fj(pt) ≤ 1− Fj(b+
1− b

3
) =

b+ (1− b)gj(1/3)

b+ 1−b
3

= 3
b+ (1− b) fj(1/3)

1+fj(1/3)

2b+ 1
= 3

b+ (1− b) Cf
1+Cf

2b+ 1
=

340

427
<

5

6

with the choice of Cf = 1
60

and b =
1+6Cf

2
= 11

20
. Thus we have

1

2
≤ 1− F0(pt) ≤ 1− Fj(pt) ≤

1

2
+

1

3
.

Thus by Lemma 6, we obtain

Ber(1− F0(pt))||Ber(1− Fj(pt)) ≤
4

1− 4 · (1
3
)2

(
(1− Fj(pt))− (1− F0(pt))

)2

≤ 36

5
· (9

8
)2 · ( 1

60
)2 · w4

k ≤
1

300
w4
k.
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Then we can further bound KL(P0||Pj) through the Equation (10) as

KL(P0||Pj) =
n∑
t=1

EP0

(
1 pt−b

1−b /∈Ij
KL
(
Ber(1− F0(pt))||Ber(1− Fj(pt))

)
+ 1 pt−b

1−b ∈Ij
KL
(
Ber(1− F0(pt))||Ber(1− Fj(pt))

))
≤

n∑
t=1

EP0(1 pt−b
1−b /∈Ij

· 0 + 1 pt−b
1−b ∈Ij

· 1

300
w4
k)

=
1

300
w4
k

n∑
t=1

P0(
pt − b
1− b

∈ Ij) =
1

300
w4
k

n∑
t=1

P0(qt ∈ Ij).

(11)

Now, consider any function h on the price and response sequence un = (p1, y1, . . . , pn, yn)

that has a bounded value range [0,M ]. Define the reference measure Qj = 1
2
(Pj + P0).

Then both Pj and P0 are absolute continuous with respect to Qj. Thus the Radon-

Nikodym derivatives
dPj
dQj = mj and dP0

dQj = mj,0 exist. Denote the set Oj = {u :

mj(u)−mj,0(u) ≥ 0}. Then we have

EPj(h(un))− EP0(h(un)) =

∫
hdPj −

∫
hdP0 =

∫
hmjdQj −

∫
hmj,0dQj

=

∫
h(mj −mj,0)dQj ≤

∫
mj−mj,0≥0

h(mj −mj,0)dQj

≤
∫
Oj

M(mj −mj,0)dQj = M
( ∫

Oj

dPj −
∫
Oj

dP0

)
= M(Pj(Oj)− P0(Oj)) ≤M sup

O
|Pj(O)− P0(O)|

= M ||Pj − P0||1 ≤M

√
1

2
KL(Pj||P0).

(12)

We use the Pinsker’s inequality for the last step, which demonstrates the relationship

between the total variantion distance between two probability measures and their KL-

divergence.

Now, for each j ∈ [Qk], denote Nj = |{t|qt = pt−b
1−b ∈ Ij, t ∈ [nk]}|. Then Nj is

a function of the price and response sequence un and is bounded in the range [0, nk].
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Thus by combining the Equation (11) – (12), we obtain

EPj(Nj)− EP0(Nj) ≤ nk

√
1

2
KL(Pj||P0) ≤ nk

√√√√1

2

1

300
w4
k

n∑
t=1

P0(qt ∈ Ij)

≤ 1

20
nkw

2
k

√√√√ n∑
t=1

P0(qt ∈ Ij) =
1

20
nkw

2
k

√
EP0(Nj).

Thus EPj(Nj) ≤ EP0(Nj) + 1
20
nkw

2
k

√
EP0(Nj). For k ≥ 3, we sum over j ∈ [Qk] and

take the average to obtain

1

Qk

Qk∑
j=1

EPj(Nj) ≤
1

Qk

Qk∑
j=1

EP0(Nj) +
1

Qk

1

20
nkw

2
k

Qk∑
j=1

√
EP0(Nj)

=
nk
Qk

+
1

20

1

Qk

nkw
2
k

Qk∑
j=1

√
EP0(Nj)

(Cauchy-Schwarz) ≤ nk
Qk

+
1

20

nk
Qk

w2
k

√√√√Qk

Qk∑
j=1

EP0(Nj)

=
nk
Qk

+
1

20

nk
Qk

w2
k

√
Qknk

= nk(
3wk
wk−1

+
1

20

3w3
k

wk−1

√
wk−1

3wk
dwk−1

w5
k

e)

≤ nk(
1

27
+

1

20

3w3
k

wk−1

√
wk−1

3wk

2wk−1

w5
k

)

≤ nk(
1

27
+

3

20
) ≤ 1

5
nk.

Therefore, there exists some j ∈ [Qk] such that EPj(Nj) ≤ 1
5
nk. Define the correspond-

ing expected revenue function under the noise distribution Fj as rj(p) = p(1− Fj(p)).

Recall that fj(v) = Cf
∑k−1

i=0 w
2
iB[ai,bi](v) + w2

kBIj(v) +
∑∞

i=k+1w
2
iB[ai,bi](v). Then the

unique optimal price p∗j satisfies that q∗j =
p∗j−b
1−b is the unique maximum for both fj and

gj. Thus q∗j =
p∗j−b
1−b ∈ Ij = [ak, bk]. For any price p ∈ [b, 1] such that q = p−b

1−b /∈ Ij, we
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have fj(q
∗
j )− fj(q) ≥ w2

k. Thus we have

gj(q
∗
j )− gj(q) =

fj(q
∗
j )− fj(q)

(1 + fj(q∗j ))(1 + fj(q))
≥ 1

(1 + 9
8
Cf )2

w2
k ≥

1

2
w2
k.

Thus we have

rj(p
∗
j)− rj(p) = (1− b)(gj(q∗j )− gj(q)) ≥

1− 6Cf
2

1

2
w2
k ≥

1

5
w2
k.

For k ≥ 2, we have nk = dwk−1

w5
k
e = d

(
1
wk

)5− 1
k e ≤ 2

(
1
wk

)5− 1
k . Thus we have

n
3
5
− 1

5k
k ≤ 2

( 1

wk

)3− 1
k
− 3

5k
+ 1

5k2 ≤ 2
( 1

wk

)3− 1
k .

Therefore, for k ≥ 2, we obtain

Regret = EPj

( nk∑
t=1

(
rj(p

∗
j)− rj(pt)

))
=

nk∑
t=1

EPj

(
1 pt−b

1−b ∈Ij

(
rj(p

∗
j)− rj(pt)

)
+ 1 pt−b

1−b /∈Ij

(
rj(p

∗
j)− rj(pt)

))
≥

nk∑
t=1

EPj

(
1 pt−b

1−b /∈Ij

(
rj(p

∗
j)− rj(pt)

))
≥

nk∑
t=1

EPj
(
1 pt−b

1−b /∈Ij
1

5
w2
k

)
=

1

5
w2
kEPj

( nk∑
t=1

1 pt−b
1−b /∈Ij

)
=

1

5
w2
k

(
nk − EPj

( nk∑
t=1

1 pt−b
1−b ∈Ij

))
=

1

5
w2
k

(
nk − EPj(Nj)

)
≥ 1

5
w2
k

4

5
nk =

4

25
w2
kd
wk−1

w5
k

e ≥ 4

25
w2
k

wk−1

w5
k

=
4

25
w

1
k
−3

k =
4

25

( 1

wk

)3− 1
k ≥ 4

25
· 1

2
n

3
5
− 1

5k
k

=
2

25
n

3
5
− 1

5k
k .

Now we claim that for any δ > 0, no policy can achieve the regret of O(T
3
5
−δ). We

prove by contradiction. Suppose that there is some δ > 0 and a policy π such that its
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T -period regret RegT (π) ≤ C1T
3
5
−δ for any noise distribution and T ∈ N+ where C1

is a constant. Since nk = dwk−1

w5
k
e = d35·k!−(k−1)!e ≥ 34·k!, there exists some sufficiently

large k > 1
δ

such that n
1
2k
k ≥ 32·(k−1)! > 25C1

2
. Then we obtain

Regnk(π) ≤ C1n
3
5
−δ

k < C1n
3
5
− 1
k

k <
2

25
n

3
5
− 1

2k
k <

2

25
n

3
5
− 1

5k
k ≤ Regnk(π).

This forms a contradiction.

Therefore, for any δ > 0, no policy can achieve the regret of O(T
3
5
−δ). Namely, the

lowest rate of any regret upper bound we could prove for this dynamic pricing problem

is O(T 3/5). In this work, we use Ω̃(T 3/5) to refer to this lower bound on any valid

regret upper bound rates. In two previous works (Kleinberg, 2004; Xu and Wang,

2022) with the same type of proved lower bound results (no policy can achieve the

regret of O(Tα−δ) for any δ > 0), Kleinberg (2004) used Ω(Tα) while Xu and Wang

(2022) used Ω̃(Tα). As Ω(Tα) sometimes refers to a stronger lower bound claim that

RegT (π) ≥ CTα, ∀T ∈ N+, we choose the notation Ω̃(·) as paralleled with Xu and

Wang (2022).

B Assumption Verifications for Simulation Settings

B.1 Simulation Setting for Case (A)

For Case (A), we constructed a simulation setting with θ0 = 30, xt
i.i.d.∼ Unif(1/2, 1),

and a uniform mixture noise distribution 3
4
Unif(−15, 0) + 1

4
Unif(0, 15). Thus the noise

CDF F has the form

F =



0, for x ∈ (−∞, 15],

3/4 + x/20, for x ∈ (−15, 0],

3/4 + x/60, for x ∈ (0, 15],

1, for x ∈ [15,+∞).
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Now we verify the seven assumptions.

Assumption 1. It is easy to see that Assumption 1 is satisfied with a constant W =

30 ≥ ||θ0||1.

Assumption 2. The matrix Σ = E
(
(1, x>t )>(1, x>t )

)
=

 1 3/4

3/4 (3/4)2 + 1/48

. Thus

Σ has two eigenvalues 19+
√

349
24

, 19−
√

349
24

and both of them is larger than 1/100.

Thus Σ − 1
100

I is positive-definite and Assumption 2 is satisfied with a positive

constant c0 = 1/100.

Assumption 3. The noise zt ∈ (−15, 15) and x>t θ0 ∈ (15, 30). Thus x>t θ0 + zt ∈

(0, 45) ⊆ [0, 50]. Thus Assumption 3 is satisfied with a constant B = 50.

Assumption 4. It is easy to see that F is 1-Lipschitz. Thus Assumption 4 is satisfied

with the constant L = 1.

Assumption 5. For any x ∈ X , denote q = x>θ0 ∈ (15, 30). Then the expected

revenue function fq(p) = p(1− F (p− q)) has the form

fq(p) =



p, for p ∈ [0, q − 15],

p(1/4− (p− q)/20) = − 1
20

(p− 5+q
2

)2 + (5+q)2

80
, for p ∈ (q − 15, q],

p(1/4− (p− q)/60) = − 1
60

(p− 15+q
2

)2 + (15+q)2

240
, for p ∈ (q, q + 15],

0, for p ∈ (q + 15,+∞).

Therefore, for p ∈ [0, q − 15], the optimal price is p∗1 = q − 15 with the maximal

expected revenue fq(p
∗
1) = q − 15. For p ∈ [q − 15, q], the optimal price is

p∗2 = 5+q
2
∈ (q − 15, q) since q ∈ (15, 30). The corresponding maximal expected

revenue is fq(p
∗
2) = (5+q)2

80
. For p ∈ [q, q + 15], the optimal price is p∗3 = q

since 15+q
2

< q for q ∈ (15, 30). The corresponding maximal expected revenue is

fq(p
∗
3) = q

4
. Note that p∗1 is at the right boundary of the left range [0, q − 15]
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and p∗3 is at the left boundary of the right range [q, q + 15]. Thus (p∗1, fq(p
∗
1))

and (p∗3, fq(p
∗
3)) are both on the middle quadratic function − 1

20
(p− 5+q

2
)2 + (5+q)2

80
.

Let r = 5
2
. Then we have min{p∗2 − p∗1, p

∗
3 − p∗2} = min{35−q

2
, q−5

2
} ≥ r. Thus

the maximum of the middle quadratic function fq(p
∗
2) > max{fq(p∗1), fq(p

∗
3)}.

Therefore, p∗(x) = p∗2 = 5+q
2

. Actually, by the property of quadratic functions,

fq(p) is non-decreasing on [0, p∗(x)] and non-increasing on [p∗(x), pmax] where

pmax = 50.

For any p ∈ [p∗(x)− r, p∗(x) + r], we have p ∈ [q − 15, q] and thus

fq(p
∗(x))− fq(p) =

1

20
(p∗(x)− p)2. (13)

On the other hand, for p ∈ [0, pmax] \ (p∗(x)− r, p∗(x) + r), we have

fq(p
∗(x))− fq(p) ≤ fq(p

∗(x)) =
(5 + q)2

80
≤ 20

≤ 4 · r2 ≤ 4(p∗(x)− p)2

(14)

Combining Equation (13) and Equation (14), we obtain for any x and p ∈

[0, pmax],

fq(p
∗(x))− fq(p) ≤ C(p∗(x)− p)2

where C = 4. Thus Assumption 5 is satisfied with constant C = 4.

Therefore, our simulation setting for Case (A) satisfy Assumptions 1 – 5, which include

the Lipschitz and 2nd-order smoothness assumptions.

B.2 Simulation Setting for Case (B)

For Case (B), we constructed a simulation setting with θ0 = 30, xt
i.i.d.∼ Unif(1/2, 1),

and a uniform mixture noise distribution 1
4
Unif(−15, 0) + 3

4
Unif(0, 15). Thus the noise

36



CDF F has the form

F =



0, for x ∈ (−∞, 15],

1/4 + x/60, for x ∈ (−15, 0],

1/4 + x/20, for x ∈ (0, 15],

1, for x ∈ [15,+∞).

Similar to the simulation setting for Case (A), we can verify Assumptions 1 – 4.

Now we prove that Assumption 5 is not satisfied. Namely, there exists a covariate

x ∈ X = (1/2, 1), such that for any constant C, fq(p
∗(x))− fq(p) ≤ C(p∗(x)− p)2 does

not hold for some p ∈ [0, pmax]. Here we use the notation q = x>θ0. Actually, we will

prove that for any covariate x ∈ X = (1/2, 1) and any constant C, fq(p
∗(x))− fq(p) ≤

C(p∗(x)− p)2 does not hold for some p ∈ [0, pmax].

Consider any x ∈ X = (1/2, 1). Denote q = x>θ0 ∈ (15, 30). Then we have

fq(p) =



p, for p ∈ [0, q − 15],

p(3/4− (p− q)/60) = − 1
60

(p− 45+q
2

)2 + (45+q)2

240
, for p ∈ (q − 15, q],

p(3/4− (p− q)/20) = − 1
20

(p− 15+q
2

)2 + (15+q)2

80
, for p ∈ (q, q + 15],

0, for p ∈ (q + 15,+∞).

Therefore, for p ∈ [0, q−15], the optimal price is p∗1 = q−15 with the maximal expected

revenue fq(p
∗
1) = q − 15. For p ∈ [q − 15, q], the optimal price is p∗2 = q since 45+q

2
> q

for q ∈ (15, 30). The corresponding maximal expected revenue is fq(p
∗
2) = 3q

4
. For

p ∈ [q, q + 15], the optimal price is p∗3 = q = p∗2 since 15+q
2

< q for q ∈ (15, 30). The

corresponding maximal expected revenue is fq(p
∗
3) = 3q

4
. Note that p∗1 is at the right

boundary of the left range [0, q − 15], p∗2 is at the right boundary of the middle range

[q−15, q] and p∗3 is at the left boundary of the right range [q, q+15]. Thus (p∗1, fq(p
∗
1)) is

on the middle quadratic function − 1
60

(p− 45+q
2

)2 + (45+q)2

240
and fq(p

∗
1) < fq(p

∗
2) = fq(p

∗
3).
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Therefore, the optimal price p∗(x) = p∗2 = p∗3 = q.

The left derivative of fq(p) at the optimal price p∗(x) = q is

f
′

q,−(p∗(x)) = 3/4− p∗(x)

30
+

q

60
=

45− q
60

≥ 1

4
.

Denote C1 = f
′
q,−(p∗(x)) ≥ 1

4
, then we have

lim
p→q−

fq(p
∗(x))− fq(p)
p∗(x)− p

= C1.

Thus there exists a constant C2 ≤ 1 such that for any p ∈ (p∗(x) − C2, p
∗(x)),

fq(p∗(x))−fq(p)
p∗(x)−p ≥ C1

2
≥ 1

8
. Thus for any constant C > 0, we can select p ∈ (max{p∗(x)−

C2, p
∗(x)− 1

8C
}, p∗(x)) ∈ [0, pmax] and obtain

fq(p
∗(x))− fq(p) ≥

1

8
(p∗(x)− p) > C(p∗(x)− p)2.

Therefore, for any covariate x ∈ X = (1/2, 1) and any constant C, fq(p
∗(x))− fq(p) ≤

C(p∗(x) − p)2 does not hold for some p ∈ [0, pmax]. Thus, the 2nd-order smoothness

Assumption 5 is not satisfied under the simulation setting designed for Case (B).

B.3 Expected Revenue Function Plots

In Figure 1, we plot the expected revenue function fq(p) = p(1 − F (p − q)) for q =

x>θ0 = 25 under the two simulation settings with different noise distributions. It

matches our theoretical verifications that the simulation setting for Case (A) satisfies

the 2nd-order smoothness assumption, while the simulation setting for Case (B) does

not.
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(a) Simulation setting for Case (A). (b) Simulation setting for Case (B).

Figure 1: Expected revenue functions for q = x>θ0 = 25 under the two simulation
settings for Case (A) and Case (B).

C Background Review: Perturbed Linear Bandit

The Perturbed Linear Bandit (PLB) is introduced in (Luo et al., 2021). Here we

present the formal definition of PLB.

Definition 1. The rewards Zt, parameters ξt and action sets At form a perturbed

linear bandit with a perturbation constant Cp, if

Zt = 〈ξt, At〉+ ηt

for any selected action At ∈ At, and any two parameters are close to each other, i.e.,

||ξs − ξt||∞ ≤ Cp,∀s, t ∈ N+. Here ηt is σ-sub-Gaussian conditional on the filtration

Ft−1 = σ(ξ1, A1, Z1, . . . , ξt, At).

The “all-close-to-each-other” condition on the linear parameters ξt’s implies the

existence of a “central” parameter ξ∗ such that ||ξt − ξ∗||∞ ≤ Cp
2

for any t. Thus

the reward structure at time t regulated by ξt can be viewed as a perturbation from

that regulated by ξ∗. The linear bandit (Abbasi-Yadkori et al., 2011; Chu et al., 2011;

Agrawal and Goyal, 2013) is a zero-perturbation PLB with ξt = ξ∗ for any t.

39



D Ethic Issues

In this work, we considered a dynamic pricing problem where some sales-relevant con-

textual information, such as product features and market environments, are available

at each selling period. In practical settings of dynamic pricing, the available contextual

information may contain customer characteristics. Recently, the study of personalized

pricing has garnered some research interest (Ban and Keskin, 2021; Elmachtoub et al.,

2021; Chen and Gallego, 2022). In some cases, it would be embarassing if the seller

could make use of the customers’ personal information and set different prices for the

same product towards different customers. However, the customized pricing approaches

are common and widely accepted by consumers in insurance and lending industries.

Such first-degree price discriminations are also practiced on many popular e-commerce

platforms. In fact, the classical sales measure of tailor-made discount coupons also

results in different prices for different cunsumers.
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