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A Hyperparameters and Infrastructures

For all experiments on the SMAC benchmark, we use the default reward and observation settings. For
our method, we set the discount factor ~y to 0.99 for all experiments. We use RMSprop with o« = 0.99
and no momentum or weight decay for the optimization of both the critic and actors. The learning
rate for the critic is 0.0001 and the learning rate for actors is 0.0005. The critic and actors have the
same network architecture as DOP [51]. 16 episodes are sampled from the on-policy buffer each time
to train both the critic and actors. The on-policy buffer has a buffer size of 32. We run 4 parallel
environments to collect data. e-greedy is used during exploration. We let € first anneal linearly from
1.0 to 0.05 over 500k time steps and then keep constant for the rest of the training. All experiments
are conducted on NVIDIA GEFORCE RTX 3090 GPUs and Intel Xeon Gold 6248R CPUs. We use 1
GPU for each experiment.

B Choice of j3

When computing 9, we select a 3 such that D, (7} ||71,) < K LY. In this way, £ = — fa H(7},) —
faDxy(mi||mk) — (1 — fa)H(mg) > —faH (7)) — faKLY — (1 — fa)H(my) can be bounded.
There can be multiple values of 3 such that Dk, (7} ||7) < KLY is satisfied. We set 3 to the largest
one. To find such a 3, we first prove in Lemma. B.1 that Dkt (7} |7 ) monotonically increases as
increases.

Lemma B.1. Let N be the number of actions, i.e. N = | A|. Suppose the policy w is the softmax of

the logits |, and & is a vector of the same dimension as l. Let 7'(3) = softmax(l + 36). Then for
B >0, dDKL(;;(IB)”W) > (0.

Proof. Let Z = S°N_ exp(l(a)), Z'(8) = 32N, exp(l(a) + B5(a)), then
dDxy (7' (B)|m) _ d [i exp(i(a) + B5(a)) , exp(l(a) + Bd(a))/Z'(B)

B ~ap Z'(8) log exp((a)) /2 } a4
d eXp(l ) + B3(a)) exp(l(a) + Bd(a))/Z'(B)
‘Z 7B T ewl@iz
a exp(l(a) + Bo(a)) d . exp(i(a) + Bd(a))/Z'(B)
L=z Bt etz ) W
Because
i(eXp(l(a)Jrﬁg(a))) _exp(l(a a) + B(a))d(a)  exp(l(a) + Bé(a)) dZ' () (16)
s Z'(B) Z2'(B) Z'(B)? dp
and
o exp(l(a) + B4(a))/Z' (B) _d exp(l(a) + B35 (a))
7 eptmyz @ 2w ) ()
:@CXP(Z(G) + 86(a)) B 52 (8) (18)
exp(l(a) + 33(a)) Z'(P)
R 57 (8)
_$(a) _ 2B
=)~ g 19)
by incorporating Eq. 16 and 19 into Eq. 15, we have
dDxy (' (8)(|7)
dﬁ (20)
N g g / 35(a /
Z +ﬁ5( ))d(a)  exp(l(a) + Bd(a)) dZ (/B)Hlog exp(l(a) + 86(a))/Z (B)H

2'(B) Z'(8)? g exp(l(a))/Z
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N ex a 5 a 2 iZ’
3 el + 85(@) 5 #5270,

= 70 Z'(3) @D
el a)+55< D L AZB) 7
Z 5(0) ~ 057 i 2183(a) + log g+
exp(l(a) + Bé(a)) - 1 dz'(p)
; 7 B~z g (22)
gy o) +88() s 1 dZ'(B) s
LT T a P
[log Z’fﬁ) +1] Zl eXp(l(?,(—;)ﬁ(s(a)) [6(a) — Z’tﬂ) dZd/éﬂ)]- (23)
Let 7'(a; 8) = %‘;)&S(a)) then
1 dZ'(8) <= exp(l(a) + Bd(a))d N
Z'(B) dé ) :a; ol )Z’(,B)( %))%(e) :a;ﬂ' (a; B)é(a). (24)
Incorporating Eq. 24 to Eq. 23, we have
dDk1L(m'(B)|m) _ % © S s
—a :ﬂzvr’(a;ﬂ)[d(a) = > w(d;8)d(a)]é(a)+
[log Zw Z 7' (a'; B)6(a')] (25)
N
=m<2w'<a;ﬁ )~ O s )3t 6)

N
Zﬂ(a )é(a)? (Zw B)) = (O 7' (a; B)d(a))?]. 27

By Cauchy—Schwarz inequality, (3°_, 7 (a; 8)0(a)2) (X0, 7'(a; 8)) — (X0, 7' (a; B)d(a))? >
0. Because 3 > 0, %[W > 0. O

Based on this lemma, we can use a binary search algorithm to find the desired 5 with efficiency.
The algorithm is shown in Alg. 1. In this algorithm, we use two hyperparameters, BSN; and
BS Ns, to control the number of iterations of the binary search algorithm. In our experiments, we set
BSN; =55and BSNy = 15.

C Experimental Settings

In this section, we describe the detailed settings of MPE tasks in our experiments.

Spread: There are 3 agents and 3 landmarks in a 5 x 5 grid. Agents need to occupy all 3 landmarks
at the same time. Agents can observe both its location and the relative location of other agents and all
landmarks. For each landmark ¢, let d; be the distance from the nearest agent. The reward is — > d;
subtracting the number of collisions.

Gather: There are 3 agents and 1 landmark in a 5 x 5 grid. Agents need to gather at the landmark
simultaneously to get a reward. Agents can observe both its location and the relative location of other
agents and the landmark. The reward is the sum of the negative distance between every agent and the
landmark.
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Algorithm 1 Find g by Binary Search

Input: [;,0, KLY, BSNy, BSN,
Output:

1: 7 := softmax(ly)

2: 1:=0,r:=1,bsn:=0

3: fori = 1to BSN; do

4: w}, := softmax(ly + r0)
5: bsn:=i—1
6: if Dxr, (7}, ||75) > KLY then
7: Break
8: end if
9: ri=7r%x2
10: end for
11: fori = 1to BSNy + bsn do
12: m = HTT
13: 7t = softmax (I + md)
4. if Dy (7} ||7,) > KLY then
15: ri=m
16: else
17: l:=m
18: end if
19: end for
20: return

Formation: There are 4 agents and 1 landmark in a 5 x 5 grid. Agents need to form a square
whose center is the landmark. Agents can observe both its location and the relative location of other
agents and the landmark. For each agent i, let d; be the distance from the landmark, and «; be the
angle formed by the z-axis and the segment connecting it and the landmark. When calculating the
reward, we first rearrange the order of agents so that o; < a; 1. Let 8; = o — i%’r. The reward is

— S0 (18 — Bl +|di — d|), where 3= 15" Biandd = 1577 d;.

D More Experimental Results

Influence of the attack frequency and the KL-divergence upper bound: We provide more
experiments under different attack budgets in Fig. 7 and Fig. 8. From these results, we can see that
better attack performance can be obtained with a higher attack frequency or a larger KL upper bound
for our methods. By contrast, random attacks are less affected. These results are in line with our
observation in the main text that our method find a better attack direction.

Var-based TRAM: fa=0.4 fa=0.6 —— f4=08 —— f,pr=10 - DOP
J-based TRAM: fa=0.4 fa=0.6 fa=0.8 fa=1.0
Random attack: fa=0.4 =06 —— =08 —— f,=10
2s_vs_lsc 2s_vs_lsc 2s_vs_lsc

100 . 100 100

= R ®

= £ £

2 50 = 50 2 50

g g J g

[= = [ s

0| 0| 0|
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Timestep (M) Timestep (M) Timestep (M)

Figure 7: Performance of our methods and the random attack baseline under different attack frequen-
cies on the map 2s_vs_1sc. For these experiments, K LY =6.

We also show the log likelihood of being abnormal due to attacks for our methods and the random
attack baseline under different attack frequencies and KL-divergence upper bounds in Table 2 and
Table 3. A larger likelihood value in these tables indicates that the attacked policy is more like
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Var-based TRAM: KLY =2 — KLU=4 — KY=6 DOP
J-based TRAM: KLY=2 KLY=4 KLY=6
Random attack: KLlV=2 —— KLY=4 — KLY=6
2s vs 1sc 2s vs 1sc 2s vs 1sc
100
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 8: Performance of our methods and the random attack baseline under different KL-divergence
upper bounds on the map 2s_vs_1sc. For these experiments, f4 = 1.

the intact policy. From these results, we can draw a similar conclusion as in the main text that our
methods make a better use of the limited attack budget.

Table 2: Log likelihood under different attack frequencies. For these experiments, KLYV = 6.

map 283z 3m 6m 2s_vs_lsc
Frequency 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0
Var-based TRAM | —1.24 —1.90 —231 —341[-123 -1.76 —213 —387 [ -112 —221 —301 —432]| -189 -279 —327 -336
J-based TRAM —0.72 -0.96 -127 -165| —-080 —-1.13 —-1.67 —243[-1.03 -142 181 -288] -098 -1.34 -1.82 -3.08
Random attack 0.74 1.03 1.35 1.76 0.77 1.05 1.28 1.53 0.97 1.35 1.75 2.28 1.09 1.53 1.96 2.45

Table 3: Log likelihood under different KL upper bounds. For these experiments, f4 = 1.
map 283z 3m 6m 2s_vs_lsc
KL 2 4 6 2 4 6 2 4 6 2 4 6
Var-based TRAM | —2.09 —2.50 —341 | —2.43 —3.74 —3.87 | —2.82 —4.20 —4.32 | —3.01 —3.23 —3.36
Jbased TRAM | —1.13 —1.65 —1.65 | 1.53 248 243 | 1.68 276 —2.83 | ~1.67 —3.06 3.0
Random attack | —1.21 —1.564 —1.76 | ~1.26 —1.58 —1.53 | —1.26 —2.16 228 | —~1.74 —2.35 2.4

Attacking other MARL algorithms: We change the attack target algorithm from DOP to another
policy-based MARL algorithm, COMA [9] and show the result of both our methods and random
attack on several SMAC maps in Fig. 9. From these results we can see that on COMA, Var-based
TRAM is more effective than J-based TRAM, and random attack is the weakest attack.

TRAM on higher dimensional environments: We compare our methods with the random attack
baseline (all attacking DOP) on two environments with higher dimension, 15m and 20m, to justify the
scalability of our methods. The result is shown in Fig. 10. Var-based TRAM has the most significant
influence, and J-based TRAM also undermines the performance a lot. The random attack baseline
has little influence on DOP and even slightly improves the training performance on 20m.

Results with confidence intervals of experiments under different attack budgets In Fig. 5 and
Fig. 6, because curves are distinguished from each other by transparencies and showing confidence
intervals may make some curves unclear, we hide the confidence intervals. We show these two figures
with confidence intervals in Fig. 11 and Fig. 12.

E Limitations and Future Directions

In our work, we make an approximation for the first term of Eq. 8, Vzp(s,a). This can lead to
an inaccurate value of § computed by our methods. This might be exaggerated especially for long-
horizon tasks, because a contaminated action may change the experience distribution of all following
timesteps. One way to alleviate this issue can be training an FDM (forward dynamics model) for the
environment to accurately model the change of state-action distribution caused by policy changes.

Another limitation of our method is that in both attack methods, we use the critic (or advantage
function A) and the policy 7 to compute 4. This makes an additional assumption that the agents’
critic and policy should be known. In some realistic scenarios where this information is not available,
our attack methods will not be effective. One way to solve this issue can be using imitation learning
to approximate the policy and the advantage function.
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Figure 9: Performance of our methods and a random attack baseline attacking COMA on SMAC
maps.

—— DOP —— J-based TRAM Random attack —— Var-based TRAM
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Figure 10: Performance of our methods and a random attack baseline (attacking DOP) on higher
dimensional environments.

The two methods proposed in this work are actually maximizing one optimization goal:
Ep(s7a|5) Hg(sv a) — Vg J(at)|2] = Ep(s,a|6) [|g(s7 a)|2 - 29(‘9’ a)TVGtJ(et) + |v9“](9t)|2]

, where g(s,a) = A(s,a)Vg: logmy:(a|T) and p(:|9) follows the same definition as p(-) in the
main text (just to emphasize the influence of J to p). The variance-based method increases the first
term (E,(5,4/5)[|9(s, @)[?]) on the right hand side (RHS), the J-based method decreases the second
term (E,(s,a5)[9(s,a) " Ve J(8;)]), and the third term (E,(s q/5)[| Vo J(6¢)[?]) is not affected by
0. Intuitively, maximizing this optimization goal increases the expected distance between the
contaminated and the original policy gradients. Therefore, another future direction could be to
investigate the attack when our methods are incorporated.
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Figure 11: Include confidence intervals of Fig. 5.
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Figure 12: Include confidence intervals of Fig. 6..
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