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A PRELIMINARIES

A.1 DIFFERENTIAL PRIVACY

Definition 1. (Differential Privacy Dwork et al.| (2000)) Given a data universe X, two datasets
X, X' C X are adjacent if they differ by one data example. A randomized algorithm M is (g,0)-
differentially private if for all adjacent datasets X, X' and for all events S in the output space of
M, we have Pr(M(X) € §) < e Pr(M(X’) € S) + 4.

Differentially Private Stochastic Gradient Descent (DP-SGD) |Abadi et al.[(2016). DP-SGD is
an adaptation of this principle for machine learning models, where privacy is preserved during the
training process by modifying the gradient computation.

In the context of a model parameterized by weights 6 for loss £, the standard SGD update is modified
in DP-SGD to include a mechanism for privacy preservation. Specifically, the gradient V.L(6, x;)
for each training example x; is first computed, and then processed as follows to incorporate privacy:

1. Clipping: Each gradient is clipped to a maximum norm C, defined as: ¢, =
gimin(1, ﬁ), where g; = VL(0, ;).

2. Noise Addition: Gaussian noise is added to the aggregated clipped gradients to ensure
differential privacy:

B
~ 1 / 2,2
g B;:lgl—&—/\/(o,a(] )

where B is the batch size, and o is the noise scale, determined by the privacy budget,
subsampling rate, and iteration number.

The model parameters are then updated using the noisy, aggregated gradient: 6 < 6 —ng, where 7 is
the learning rate. This approach to privacy-preserving training addresses the fundamental trade-off
between accuracy and privacy by controlling the granularity of the updates through the parameters
Cando.

In this work, we actually use Differentially Private Adam (DP-Adam) instead of DP-SGD. While
DP-Adam incorporates the same mechanisms for gradient clipping and noise addition as described
for DP-SGD, it also leverages the adaptive learning rates characteristic of Adam. The detailed
algorithms can be found in Algorithm 2}{4]

Algorithm 2 Common Gradient Processing in DP-SGD and DP-Adam

Require: £(0,x;): Loss function for parameter 6 and input x;

Require: C': Clipping threshold

Require: o: Noise scale

Require: B: Batch size

: fori =1to Bdo

Compute gradient: g; = VL(0, ;)

Clip gradient: g} = g; min(1, ﬁ)

4: end for

5: Aggregate clipped gradients and add Gaussian noise: § = & Zil gi + N(0,02C?I)

» N

Algorithm 3 DP-SGD Specific Steps
Require: 6: Model parameters
Require: 7: Learning rate

1: for each training step do

2: Perform common gradient processing as in Algorithm 2]
3: Update model parameters: 6 < 6 — ng
4: end for
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Algorithm 4 DP-Adam Specific Steps

Require: m, v: Estimates of the first and second moments (initially 0)
1: for each training step do
2: Perform common gradient processing as in Algorithm 2]
3 Update moment estimates: m + Sym + (1 — (1)g
4: v Bov + (1 — fB2)g?
5: Compute adaptive learning rate: 1) = n/(y/v + ¢€)
6.
7:

: Update parameters: 6 < 6 — m
end for

A.2 TRANSFORMERS

The transformer architecture, proposed by Vaswani et al.|Vaswani et al.|(2017), is predicated on self-
attention mechanisms that process input tokens in parallel, significantly improving the performance
and training efficiency of sequence-to-sequence tasks. This architecture has become the backbone
of LLMs.

In a transformer model, the input tensor X of size B x T' x P (since we are considering LLM,
so we only focus on text data as the input), where B is the batch size, T is the sequence length
(number of tokens), and P is the embedding size of a token, undergoes a series of transformations
through multi-head self-attention and feedforward neural network blocks. For each token in the
sequence, the transformer computes a weighted sum of all tokens in the input, where the weights are
determined through the self-attention mechanism.

Multi-Head Attention (MHA). The attention mechanism is primarily built upon linear transforma-
tions where the query Q, key K, and value V matrices are obtained as follows:

Q=XWg, K=XWg, V=XWy (1)
where Wg, Wi, and Wy are the weight matrices that are subject to training.

Feedforward Network (FFN). The FEN in the transformer consists of two linear transformations
with a ReLU activation in between:

FFN(x) = ReLU(xW )W, 2

Here, W, and W, are the weight matrices, all of which are trainable parameters of the linear layers
within the FFN.

Layer Normalization (LN). LN is applied post-attention and FFN in each layer of the transformer.
It normalizes the output of each neuron to have a mean of zero and a variance of one, which are then
scaled and shifted by the trainable parameter vectors -y and 3, respectively:

LayerNorm(x) = v ©® (%) +3 (3)

where i and o2 are the mean and variance calculated over the last dimension of the input tensor x,
e is a small constant added for numerical stability, and © denotes element-wise multiplication. The
layer normalization parameters « (scale) and 3 (shift) are learned to optimally scale and shift the
normalized data.

The key trainable parameters in the transformer model are:

1. Weights of the WHA mechanism, including query W, key W g, and value Wy, matrices,
each of size P x P.

2. Position-wise FFN weights W of size P x H and W, of size H x P, where H is the
hidden layer size.

3. LN parameters « and 3, which are vectors of size P.

It is important to highlight that the bulk of the trainable parameters in the transformer model stems
from MHA and FFN modules, both of which consist of linear transformations. These linear parame-
ters are responsible for the vast majority of transformations within the transformer and significantly
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contribute to its parameter count. In contrast, the trainable parameters in LN represent a relatively
smaller portion of the model’s total parameters. Therefore, we focus on the linear parameters gradi-
ent computation.

DP-SGD for Training Transformers. The process of adapting DP-SGD to transformers is formal-
ized as follows: For each batch of input data X and corresponding loss function £, compute the
per-sample gradients Gy for all trainable parameters = {Wq, W, Wy, W1, Wy, v, B}

Go = VoL(0, X) € REXII, (4)

where VyL(6, X) denotes the computation of gradients of the loss with respect to the parameters
for the batch X.

A.3 GPU ARCHITECTURE AND CUDA PROGRAMMING

High performance in deep learning, particularly in operations like General Matrix to Matrix Mul-
tiplication (GEMM)), is largely attributable to the parallel processing power of modern Graphics
Processing Units (GPUs). The architectural design of GPUs, with their numerous cores and hierar-
chical memory systems, is optimized for the parallel execution of operations, making them ideal for
the matrix-intensive computations required in neural network training.

GPU Architecture. At the heart of GPU’s computational efficiency are its Streaming Multipro-
cessors (SMs), which are essentially multiprocessor units that execute a large number of threads
concurrently. Each SM is a powerhouse of performance, containing a set of processing cores and
a block of on-chip memory, primarily Shared Random Access Memory (SRAM), which includes
registers and shared memory. Shared memory, an ultra-fast SRAM, allows threads within the same
block to exchange data without involving the slower global memory (HBM), thus acting as a crucial
facilitator for matrix blocking.

CUDA and GEMM. The quintessential challenge in optimizing GEMM lies in the meticulous or-
chestration of data movement and computation, an endeavor where matrix blocking emerges as a
pivotal strategy. Leveraging the robust architecture of GPUs and the sophisticated abstractions pro-
vided by CUDA (Compute Unified Device Architecture), matrix blocking transforms the theoretical
prowess of parallel computation into a practical performance paradigm.

Principles of Matrix Blocking. Matrix blocking, also known as matrix tiling, is a technique in-
geniously conceived to enhance data locality and parallelism. It systematically partitions extensive
matrix operands into smaller, manageable sub-matrices or ’blocks’ that can be independently dis-
patched to the GPU’s SMs. The judicious use of shared memory within SMs for these blocks re-
duces the frequency and volume of global memory accesses, a common bottleneck due to its higher
latency. Blocking is pivotal in minimizing the communication overhead between the slow global
memory and the fast but limited on-chip shared memory. This stratagem leverages the temporal and
spatial locality by reusing data within the fast-access memory hierarchies, significantly reducing
the volume of data shuttled to and from the global memory, thereby enhancing the computational
throughput.

Mathematical Formalization of Blocking GEMM. Consider the GEMM operation defined as C =
A x B, where A € R™*" B € R™*P, and the resultant matrix C € R™*P. Blocking decomposes
this operation into smaller, tractable computations over blocks such that:

N
Cij = ZAik X By, &)
k=1

where NV is the number of blocks, and each C;;, A;;, and By; represents a sub-matrix or block
within C, A, and B, respectively. The indices 4, j, and k denote the specific block within the
partitioned matrices.

The dimensions of each block are chosen based on the GPU’s shared memory constraints and the
size of the SMs’ thread blocks, enabling optimal utilization of resources. These dimensions are
represented as B,,, x B, for A;; and B,, x B, for By, leading to a block B¢ in size of B,,, x B,
for C;;. Hence, the computational paradigm shifts to:
By,
BCij = Z(BAU@ X BBkj)’ (6)
k=1
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where each multiplication within the summation is an independent block-level GEMM that can be
executed in parallel.

B DETAILS OF TRAINING WORKFLOW

B.1 NON-PRIVATE TRAINING WORKFLOW

In the standard training regime without privacy constraints, the linear forward operation takes an
activation tensor X € RPXT*F and a weight matrix W € RP*P| producing an output Y €
REXT*D according to the matrix multiplication Y = XW T, where B, T, P, and D indicate the
batch size, sequence length (token length), feature dimension of input activation tensor X, and
feature dimension of output activation tensor Y, respectively.

During the backward pass, the gradient of the output with respect to the loss, denoted by Vy €
REXTXD "ig computed to be of the same dimensions as the output tensor Y. Subsequently, the
gradient with respect to the weight matrix W, denoted by Vyr € RP*F is obtained by summing
the product of the transpose of the gradient tensor of each batch item and the corresponding input
tensor, expressed as Viy = > 5 ZT(Vy)TX , Where ) represents the summation along the
dimension B (similar for other notations).

Figure |2| (a) illustrates the computational workflow for the forward and backward pass of a linear
operation within this conventional training framework. As shown in the figure, the activation tensor
X and the weights W reside in HBM, which allows for rapid parallel access and is typically used
for storing larger datasets and model parameters during GPU computations. The intermediate dot
products and summations are handled using SRAM, shown in orange, which is faster than HBM
and suitable for storing temporary, small blocks of data during computation. This setup minimizes
memory access time and maximizes throughput.

B.2 ExpLicIiT DP-SGD WORKFLOW

Figure [2| (b) terms the explicit method (e.g., Opacus, FastClip), demonstrates the traditional DP
approach where per-sample gradients are stored explicitly, resulting in increased memory usage due
to the retention of individual gradient information for noise addition and clipping. The explicit
DP-SGD workflow is normally organized into four distinct stages to ensure adherence to privacy
constraints:

Stage 1: Per-sample Gradient Computation. At this initial stage, the activation tensor X €
REXTXP and the output gradient tensor Vy € RBXT*D are loaded in blocks from the HBM to
the on-chip SRAM. The per-sample gradients tensor G € RBXP*P is computed by performing the
operation G = Y. VL X directly on the SRAM to minimize latency, effectively implementing a
batched GEMM operation, where each slice of G is per-sample gradient. After computation, the
per-sample gradients are written back to the HBM for further processing.

Stage 2: Gradient Norm Computation. The computed per-sample gradients G are again loaded
into SRAM in smaller blocks. The norm of per-sample gradient is then computed on-chip, |G|l =

V> p > p G € RB. Then, this norm calculation is stored in HBM.

Stage 3: Gradient Clipping. This stage involves loading both the per-sample gradients G and its
norm |G| from the HBM into SRAM. The clipping operation is performed by computing G’ =

G/ max (1, @) (this division occurs in dimension B), ensuring that each gradient’s norm does

not exceed the clipping threshold C'. The clipped gradients G’ are then stored back in HBM.

Stage 4: Noise Addition and Aggregation. In the final stage, the clipped per-sample gradi-
ents G’ are loaded into SRAM, and Gaussian noise N (0, 02021) is added to each, according to
the specified noise scale o. This process ensures differential privacy by obfuscating the contri-
butions of individual training examples. The noisy, aggregated gradient for the weight update,
Vw = Y5 G + N(0,0°C?I), is computed and then written to HBM, ready for updating the
model parameters.
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Limitations. Standard DP-SGD requires the explicit storage of per-sample gradients in HBM, which
is crucial for computing the gradient norms needed for clipping. This requirement substantially
increases the memory footprint. This method becomes impractical for LLMs, which have large
model parameters and gradients due to extended sequence lengths. The extensive memory needed
to store these gradients often exceeds the available HBM capacity, leading to frequent data swapping
between memory and processing units, which severely slows down the training process. Crucially,
the computation of gradient norms breaks down standard kernel fusion strategies, preventing the
efficient integration of gradient computation and subsequent processing steps into a single operation,
resulting in increased latency and inefficient GPU utilization.

B.3 ImpLIiCcIT DP-SGD WORKFLOW

Figure 2] (c) illustrates the implicit method (e.g., GhostClip, BK), which optimizes the DP-SGD pro-
cess by recalculating gradients in a fused manner, thereby avoiding the explicit storage of per-sample
gradients. This approach reduces memory demands but introduces computational redundancy due
to multiple gradient recalculations. The implicit DP-SGD workflow is normally organized into two
distinct stages:

Stage 1: Fused Computation (corresponds to Stage 1-3 of the explicit method). In the implicit
method, stages 1 through 3 of the explicit method are executed in a fused computational process.
This involves loading the activation tensor X € REXTXF and the output gradient tensor Vy €
REXT*D into SRAM. The per-sample gradients tensor G € RE* P> ig recalculated by integrating
gradient computation, norm calculation, and clipping into a single pass. This minimizes latency
and avoids repeated data transfers to HBM. During this fused operation, the per-sample gradient
norms are calculated |G| directly on the chip. Clipping is simultaneously performed by scaling

the gradients: G’ = G/ max (1, @), where C is the clipping threshold. These operations are

performed without storing the intermediate states, reducing the memory footprint.

Stage 2: Noise Addition and Aggregation (corresponds to stage 4 of the explicit method). The
clipped gradients G’ are recalculated and loaded into SRAM where Gaussian noise N'(0, 02C?1) is
added, adhering to the specified noise scale o. The final aggregate gradient is then computed and
written back to HBM for the model update.

Limitations of Implicit methods: Implicit methods attempt to mitigate the high memory usage by
segmenting the gradient computation and clipping it into several smaller, manageable tasks. How-
ever, these methods involve multiple recalculations of the per-sample gradients, which is computa-
tionally expensive. Specifically, for LLM training where the sequence length dimension 7 is very
large, the redundant computation required by these methods can lead to a significant increase in
training time. The time complexity for per-sample gradient recalculations is O(T') when T is very
large, which makes such methods impractically slow for pre-training LLMs.

C ANALYSIS OF HBM MEMORY USAGE AND ACCESSES IN FLASHDP

The foundational design of FlashDP incorporates significant advancements in minimizing both
HBM usage and accesses. This dual optimization plays a pivotal role in enhancing the computa-
tional efficiency and scalability of DP training for LLMs. Reducing HBM usage is crucial because
it directly impacts the GPU’s ability to manage large datasets and complex computations without ex-
hausting available memory resources. Theorem [C.T illustrates that FlashDP’s HBM memory usage
is much lower than DP-SGD and almost equal to Non-private training.

Theorem C.1. Let B, T, P, D be the batch, token length, input, and output dimension, and let X €
REXTXP 7y, ¢ REXTXD and Vy, € RP*F be input, gradient output, and the gradient of weight
in the linear. Non-Private training backward requires BT (P + D) + DP (HBM) memory usage,
DP-SGD requires BT (P+ D)+ PD(B+1)+ B, and the FlashDP requires BT (P+ D)+ DP+b,
where b is the block size for B.

Simultaneously, FlashDP drastically lowers the number of HBM accesses required during training.
Each access to HBM, whether for reading or writing data, incurs a latency penalty. By minimiz-
ing these accesses, FlashDP alleviates bandwidth bottlenecks that can degrade the training perfor-
mance. This is achieved by strategically leveraging faster, on-chip memory for the majority of the
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Figure 6: Comparative throughput of Non-private Training, DP-SGD, and FlashDP. This figure
plots the throughput in TFLOPS against a unified model parameter size denoted by ‘M’, where M
represents the equality of the dimensions P, D, and T. All experiments are implemented with batch-
size = 16 and run on A100 (80GB).

data-intensive computations, significantly reducing the need to fetch or store data in HBM. This
efficient memory usage prevents frequent swapping of data to and from slower storage media, thus
maintaining high computational speeds and reducing the potential for memory overflow issues. In
other words, FlashDP’s throughput is much higher than that of DP-SGD and is almost equal to that
of non-private training.

Theorem C.2. With the same notations as in Theorem [C.1, and let M be the number of CUDA
block, the Non-Private training backward requires BT (P + D) + DP (HBM accesses), DP-SGD
requires BT (P + D) + PD(4B + 1) + B, and FlashDP requires BT (P + D) + DP + 2Mb.

Comparative analysis. In our comparative analysis of throughput performance, depicted in Fig-
ure [6] we observe the scaling behavior of FlashDP relative to NonDP and DP-SGD as a function
of increasing model parameter size ‘M’ (we set M = P = D = T'). The results reveal that as
‘M’ increases, FlashDP’s throughput demonstrates a marked improvement over DP-SGD, suggest-
ing that our approach significantly mitigates the performance degradation typically associated with
DP. Notably, FlashDP’s curve closely aligns with that of NonDP training, which underscores the
efficacy of FlashDP in maintaining high throughput. This near convergence with NonDP throughput
is particularly evident when ‘M’ exceeds 3000, highlighting FlashDP’s scalability and potential for
practical application in large-scale LLM training where differential privacy is a requirement. These
findings corroborate our proposition that FlashDP’s I0-grained approach to gradient clipping within
GPU memory is not only innovative but also practically advantageous.

C.1 PROOFS OF THEOREMS ON HBM MEMORY USAGE AND ACCESSES

This section provides detailed proofs for the Theorem [C.I and [C.2 presented in the main text con-
cerning the High Bandwidth Memory (HBM) usage and accesses for different training methodolo-
gies of large language models. These theorems compare the efficiency of Non-Private training,
DP-SGD, and FlashDP, our proposed method.

Proof. In Non-Private training, the memory requirement includes the input tensor X € REXT*F,
the gradient output tensor Vy € REXT*D "and the gradient of weights Vyr € RPXF. Thus, the
total HBM usage is calculated as BT (P + D) + DP.

For DP-SGD, additional memory is required to store per-sample gradients G € REXP*F and
per-sample gradients norm |G| € R for whole sample, contributing to a significant increase in
memory usage, as reflected in the formula.. Thus, the total HBM usage is calculated as BT (P +
D)+ DP(B+1)+ B.

FlashDP optimizes memory by using the same base structure as Non-Private training but includes an
additional minimal term for the norm block B|q| € R?, significantly reducing the memory usage
compared to DP-SGD. The total HBM usage is calculated as BT (P + D) + DP + b. O
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Proof. In Non-Private training, the required accesses include loading and storing the input tensor
X € RBXTXP the gradient output tensor Vy € REXT*D and the gradient of weights Vy €
RP*P  The X and Vy should be uploaded and the Vy should be stored, leading to total HBM
accesses of BT (P + D)+ DP.

For DP-SGD, the tensor accesses increase significantly due to the handling of per-sample gradients
G € RBXDPXP and per-sample gradients norms |G| € RZ. Each per-sample gradient and norm
must be individually loaded for computation and then stored back. This includes not only their initial
computation but also the additional loads and stores for each gradient during the clipping and noise
addition stages, resulting in total accesses of BT (P + D) + PD(4B + 1) + B, reflecting multiple
reads and writes per sample.

FlashDP, leveraging the same base structure as Non-Private training, reduces HBM accesses by
avoiding per-sample operations. It introduces efficient on-chip processing for the norm calculations
and clipping in blocks, significantly reducing the need for frequent tensor movements. The primary
memory movements in FlashDP are associated with loading the partitions of X, Vy, and storing
Vw, along with minimal additional accesses for the norm blocks B e € R? with 2M times. The
total HBM accesses are thereby BT (P + D) + DP + 2Mb, representing a significant reduction
compared to DP-SGD. O

D ADDITIONAL EXPERIMENTS SETTINGS

Batch Size & Micro Batch Size For the batch size experiment, we vary the batch sizes at 1, 2, 4,
and 8, using GPT-2 models of small, medium, and large scales to test the method’s scalability and
efficiency. Similarly, in the micro-batch size experiment, we set the micro-batch sizes at 1, 2, 4, and
8, with a gradient accumulation step of 4.

Experiments on Testing Utility We conduct an experiment to evaluate the performance of the
GPT2-small model trained from scratch using DP-SGD and FlashDP under differential privacy con-
straints, with epsilon values set at 0.2, 0.5, and 0.8. The model is trained on the Fineweb-edu
(Lozhkov et al.,[2024) dataset. Key hyperparameters include a total batch size of 524,288 tokens, a
micro batch size per device of 32, and a sequence length of 1024. We use a maximum learning rate
of 6 x 10~* and a minimum learning rate of 6 x 1075, with weight decay set at 0.1 and gradient
clipping at 1.0. The model undergoes training with a validation frequency every 250 steps and model
saving every 5000 steps, using both DP-SGD and FlashDP, enabling differential privacy with delta
set at 1 x 1072 and a clipping threshold of 100. The training aims to compare utility across different
privacy levels and analyze the trade-offs between privacy and utility. We use the validation loss as
the evaluation metric in Table 2l

Sequence Length Long sequence lengths allow LLMs to maintain a broader context, crucial for
tasks such as document summarization, question answering, and natural language understanding
over extended dialogues. However, accommodating these longer sequences inherently increases
the computational complexity and memory demands, particularly for gradient calculations during
training. This experiment is designed to evaluate the efficiency of FlashDP in handling varying
sequence lengths, specifically to address the challenge of increased memory usage associated with
longer sequences in differential privacy settings. By training the TinyLlama model variant with Flash
Attention Dao et al. (2022) at different sequence lengths, we aim to demonstrate FlashDP’s capacity
for memory management and throughput efficiency across these conditions. Such an analysis is
essential to verify FlashDP’s suitability for practical deployment in scenarios where deep contextual
understanding is required.

In this experimental setup, we measure memory usage and throughput while training with sequence
lengths of 1024, 2048, 4096, and 8192, at a fixed batch size of 1, comparing the performance of
FlashDP against NonDP, Opacus, and BK methods. It is important to note that GhostClip does not
support the Llama Model.

Distributed Training DDP involves distributing the model’s parameters across several devices,
and each device computes gradients for a subset of the data independently. This method is beneficial
for managing models that fit within the memory limits of a single GPU but need faster processing
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through parallel execution. On the other hand, Pipeline Parallel (PP) splits the model’s layers across
different devices, allowing different parts of the model to be processed simultaneously. PP is partic-
ularly useful for very large models that exceed the memory capacity of individual GPUs, enabling
concurrent processing of different stages of the model across the pipeline. The experiments with
DDP and PP are designed to evaluate the effectiveness of FlashDP in a distributed training context,
assessing its performance in terms of memory usage and throughput across various model sizes and
batch sizes. These experiments are critical to demonstrate that FlashDP can maintain its efficiency
and scalability when applied to state-of-the-art LLMSs, which require substantial computational re-
sources and sophisticated training mechanisms to manage their size and complexity.

In this setup, we explore the scaling capabilities of FlashDP using DDP on four A100 GPUs (80GB
each) by training GPT-2 models of small, medium, and large sizes with fixed sequence lengths of
1024 and varying batch sizes of 8, 4, and 2. Additionally, PP experiments are conducted on Llama
models of sizes 3B, 7B, and 13B to evaluate throughput and memory efficiency across different
stages of the model pipeline. It is important to note that GhostClip and BK do not support the
distributed modes we used.

E MORE EXPERIMENTAL RESULTS

E.1 RESULTS OF MICRO BATCH SIZE

Table 3: Micro Batch Size Analysis. Comparing memory and throughput at varying micro batch
sizes B (1, 2, 4, 8) and the same gradient accumulation steps (4) for GPT-2 sizes with differential
privacy methods under consistent settings with Tablell}

GPT2-medium 6.60 6.37(x0.97) 7.16(x1.08)  6.60(x1.00) 1.55 1.03(x0.66)  1.05(x0.68)  1.19(x0.77)
GPT2-large - - - - - - - B

Model B Memory Usage (MB xle4) Throughput (tokens/sec x1e4)
NonDP Opacus GhostClip BK FlashDP NonDP Opacus GhostClip BK FlashDP
GPT2-small 1 0.51 0.97(x1.90) 0.51(x1.00) 0.71(x1.39) 0.51(x1.00) 3.07 1.20(x0.39)  0.60(x0.20) 1.75(x0.57) 1.86(x0.61)
GPT2-medium 1 1.26 1.69(x1.34) 1.25(x0.99) 1.81(x1.44) 1.26(x1.00) 1.27  0.61(x0.48) 0.45(x0.35) 0.86(x0.68) 0.91(x0.72)
GPT2-large 1 248  3.64(x1.47) 2.46(x0.99) 3.21(x1.29) 248(x1.00) | 0.67  0.39(x0.43) 0.32(x0.46) 0.47(x0.69) 0.53(x0.89)
GPT2-small 2 0.87 1.15(x1.32)  1.00(x1.15) 1.06(x1.22) 0.87(x1.00) 322 1.68(x0.52) 0.92(x0.29) 1.91(x0.59) 2.32(x0.72)
GPT2-medium 2 2.07  2.88(x1.39) 2.01(x0.97) 2.62(x1.27) 2.07(x1.00) 1.38  0.88(x0.64) 0.65(x0.47) 0.88(x0.64) 1.04(x0.75)
GPT2-large 2 391 6.07(x1.55) 3.83(x0.98) 4.43(x1.13) 3.91(x1.00) | 0.74  0.46(x0.62) 0.43(0.58) 0.49(x0.66) 0.59(x0.80)
GPT2-small 4 1.53  2.10(x1.37) 1.48(x0.97) 1.73(x1.13) 1.53(x1.00) 372 249(x0.67) 1.50(x0.40) 2.30(x0.62) 2.59(x0.70)
GPT2-medium 4 358 5.51(x1.54)  3.46(x0.97) 4.04(x1.13) 3.58(x1.00) 1.48  0.97(x0.66) 0.86(x0.58) 0.99(x0.67) 1.29(x0.87)
GPT2-large 4 6.60 - 6.45(x0.98) - 6.60(x1.00) | 0.79 - 0.53(x0.67) - 0.65(x0.82)
GPT2-small 8 2.86  4.00(x1.40) 2.78(x0.97) 3.06(x1.07) 2.86(x1.00) 3.87  2.60(x0.67) 1.99(x0.51) 2.44(x0.63) 2.73(x0.71)
8 - -
8

Table 3] further explores the impact of varying micro batch sizes, a crucial factor for managing mem-
ory in constrained environments and optimizing the use of gradient accumulation steps. FlashDP
consistently displayed minimal memory footprint increases and maintained high throughput effi-
ciency, even as micro batch sizes increased. For example, at a micro batch size of 8 for the GPT-2
medium model, FlashDP’s memory usage was 6.49 x 10* MB—marginally higher than its usage at
smaller micro batch sizes and significantly lower than Opacus at the same size. This robust perfor-
mance underscores FlashDP’s effective management of memory, which is essential for scaling up
the training of large models without excessive hardware requirements.

To be specific, 1) Opacus showed a consistent increase in memory usage as micro batch sizes in-
creased, which is indicative of its inefficient memory handling under fragmented gradient compu-
tations. 2) GhostClip, while better in memory usage compared to Opacus, didn’t scale as well in
throughput, which decreased noticeably with larger micro batches, reflecting the computational cost
of gradient recalculations. 3) BK displayed trends similar to Opacus but generally used slightly less
memory and provided slightly better throughput, suggesting a more optimized handling of gradient
accumulation steps. 4) FlashDP maintained minimal increases in memory usage with increasing
micro batch sizes and consistently provided the highest throughput, highlighting its effective inte-
gration of operations within the computational workflow. To summarize, as the micro batch size
increases, FlashDP’s memory usage increases only slightly and still maintains the highest through-
put, demonstrating its efficient memory management techniques.
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Figure 7: Memory and Throughput Analysis of GPT-2 Models Using Automatic Mixed Pre-
cision (AMP) Training Across Floatl6 and BFloatl6 Precision.: (a) Demonstrates the memory
usage for GPT-2 small, medium, and large models with Float16 precision. (b) shows throughput
using Float16 precision, and (c) shows throughput with BFloat16 precision.

E.2 RESULTS OF AMP TRAINING SCALABILITY

Automatic Mixed Precision (AMP) Micikevicius et al.| (2017) training involves utilizing lower pre-
cision formats like float16 and bfloat16 within a training session to reduce computational demands
and memory usage. This strategy is particularly valuable for large language models (LLMs), which
typically require substantial computational resources. By employing AMP, training processes can
be accelerated, and larger models or batches can be managed more efficiently without proportional
increases in hardware capacity. The integration of differential privacy with AMP, especially in
techniques like FlashDP, is critical for exploring the practical limits of DP-SGD. This experiment
assesses how FlashDP adapts to AMP settings compared to other methods, and evaluates the impact
on memory efficiency and processing speed, which are crucial for the scalability of private training
in constrained environments.

In our experiments, we analyze GPT-2 models of varying sizes using batch sizes of 8, 4, and 2
across float16 and bfloat16 precision formats to measure memory usage and throughput, examining
FlashDP’s performance relative to NonDP, Opacus, and BK methods. It is important to note that
GhostClip does not support AMP, and Opacus does not support the bfloat16 precision format.

Memory Usage Analysis. As depicted in Figure [7| (a), the memory usage across GPT-2 models
of different sizes indicates that FlashDP, when utilizing AMP in both float16 and bfloat16 formats,
maintains lower memory consumption compared to Opacus and BK, and closely approximates the
NonDP configuration. This showcases FlashDP’s effective use of AMP to minimize memory over-
head, facilitating the training of large models under stringent privacy constraints.

Throughput Analysis with Float16 and BFloat16. In terms of throughput, Figure|7|(b) and 5(c)
present a comprehensive look at the advantages of using float16 and bfloat16 precision formats
under AMP. FlashDP consistently outperforms Opacus and BK in throughput metrics across both
precision types. This is especially notable in larger model configurations, where the differences in
throughput become more pronounced, highlighting FlashDP’s capability to handle extensive com-
putational loads efficiently. As demonstrated in Figure 5(b), FlashDP exhibits significant throughput
advantages over the other DP methods. This performance is indicative of the efficient computational
optimizations that FlashDP leverages within the AMP framework. As shown in Figure|7|(c), while
bfloatl6 typically offers slightly lower computational throughput than float16 due to its numeri-
cal properties, FlashDP’s implementation still ensures that it outperforms other differential privacy
methods. This underscores FlashDP’s robust performance across varying precision settings.

F ADDITIONAL TABLES AND MORE FIGURES
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Table 4: Comparison of Backward Propagation Methods.

Method Per-sample Gradient Implicit Fusion

Cache Recalculation

Non-DP X X v
Explicit-DP v X X
Implicit-DP X v v
FlashDP X X v
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Figure 8: Memory and Throughput for GPT Models Using Distributed Data Parallel Training.
(a) Memory usage for GPT-samll, GPT-medium, and GPT-large models. (b) Throughput in tokens
per second across these model sizes. A value of 0 indicates out of memory.
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