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ABSTRACT

We present new algorithms for estimating and testing collision probability, a fun-
damental measure of the spread of a discrete distribution that is widely used in
many scientific fields. We describe an algorithm that satisfies (α, β)-local dif-
ferential privacy and estimates collision probability with error at most ε using
Õ
(

log(1/β)
α2ε2

)
samples for α ≤ 1, which improves over previous work by a factor

of 1
α2 . We also present the first sequential testing algorithm for collision probabil-

ity, which can distinguish between collision probability values that are separated
by ε using Õ( 1

ε2 ) samples, even when ε is unknown. Our algorithms have nearly
the optimal sample complexity and in experiments we show that they require sig-
nificantly fewer samples than previous methods.

1 INTRODUCTION

A key property of a discrete distribution is how widely its probability mass is dispersed over its
support. One of the most common measures of this dispersal is collision probability. Let p =
(p1, . . . , pk) be a discrete distribution. The collision probability of p is defined

C(p) =

k∑
i=1

p2
i .

Collision probability takes its name from the following observation. If X and X ′ are independent
random variables with distribution p then C(p) = Pr[X = X ′], the probability that the values of X
and X ′ coincide. If a distribution is highly concentrated then its collision probability will be close
to 1, while the collision probability of the uniform distribution is 1/k.

Collision probability has played an important role in many scientific fields, although each time it
is rediscovered it is typically given a different name. In ecology, collision probability is called
the Simpson index and serves as a metric for species diversity (Simpson, 1949; Leinster, 2021).
In economics, collision probability is known as the Herfindahl–Hirschman index, which quantifies
market competition among firms (Herfindahl, 1997), and also the Gini diversity index, a measure
of income and wealth inequality (Gini, 1912). Collision probability is also known as the second
frequency moment, and is used in database optimization engines to estimate self join size (Cormode
& Garofalakis, 2016). In statistical mechanics, collision probability is equivalent to Tsallis entropy
of second order, which is closely related to Boltzmann–Gibbs entropy (Tsallis, 1988). The negative
logarithm of collision probability is Rényi entropy of second order, which has many applications,
including assessing the quality of random number generators (Skorski, 2017) and determining the
number of reads needed to reconstruct a DNA sequence (Motahari et al., 2013). Collision probability
has also been used by political scientists to determine the effective size of political parties (Laakso
& Taagepera, 1979).

Collision probability is not equivalent to Shannon entropy, the central concept in information the-
ory and another common measure of the spread of a distribution. However, collision probability
has a much more intuitive interpretation, and is also easier to estimate. Specifically, estimating the
Shannon entropy of a distribution with support size k requires Ω

(
k

log k

)
samples (Valiant & Valiant,
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2011), while the sample complexity of estimating collision probability is independent of k. Addi-
tionally, the negative logarithm of the collision probability of a distribution is a lower bound on its
Shannon entropy, and this lower bound becomes an equality for the uniform distribution.

1.1 OUR CONTRIBUTIONS

We present novel algorithms for estimating and testing the collision probability of a distribution.

Private estimation: We give an algorithm for estimating collision probability that satisfies (α, β)-
local differential privacy.1 As in previous work, our algorithm is non-interactive, which means
that there is only a single round of communication between users and a central server, and
communication-efficient, in the sense that each user sends O(1) bits to the server (in fact, just 1
bit). If α ≤ 1 then our algorithm needs Õ

(
log(1/β)
α2ε2

)
samples to output an estimate that has ε addi-

tive error, which nearly matches the optimal sample complexity and improves on previous work by
an O

(
1
α2

)
factor (Bravo-Hermsdorff et al., 2022).

Sequential testing: We give an algorithm for determining whether collision probability is equal to a
given value c0 or differs from c0 by at least ε > 0, assuming that one of those conditions holds. Our
algorithm needs Õ( 1

ε2 ) samples to make a correct determination, which nearly matches the optimal
sample complexity. Importantly, ε is not known to the algorithm. In other words, the algorithm
automatically adapts to easy cases by drawing fewer samples. While sequential testing algorithms
have been developed for many distributional properties, such as total variation distance (Daskalakis
& Kawase, 2017), as far as we know there is no existing sequential testing algorithm for collision
probability. Instead, previous work has focused on the batch setting, in which the number of samples
is specified in advance (Canonne, 2022a).

All of our theoretical guarantees hold with high probability, and we present numerical simulations
showing that our algorithms use significantly fewer samples than existing methods. For simplicity, in
the main body of this paper we state all theorems using big-O notation and argue for their correctness
with proof sketches only, reserving more detailed theorem statements and proofs for the Appendix.

2 RELATED WORK

The collision probability of a distribution is equal to its second frequency moment, and frequency
moment estimation has been widely studied in the literature on data streams, beginning with the
seminal work of Alon et al. (1999). Locally differentially private estimation of frequency moments
was first studied by Butucea & Issartel (2021), who gave a non-interactive mechanism for estimating
any positive frequency moment. The sample complexity of their mechanism depends on the support
size of the distribution, and they asked whether this dependence could be removed. Their conjecture
was affirmatively resolved for collision probability by Bravo-Hermsdorff et al. (2022), but removing
the dependence on support size led to a much worse dependence on the privacy parameter. It has
remained an open question until now whether this trade-off is necessary.

Property and closeness testing has a rich literature (Acharya et al., 2019a; 2013; Diakonikolas et al.,
2015; Goldreich & Ron, 2000; Canonne, 2022b), but the sequential setting is studied much less
intensively. Existing algorithms for sequential testing almost always define closeness in terms of
total variation distance, which leads to sample complexities on the order O(

√
k/ε2), where k is the

support size of the distribution and the distribution is separated from the null hypothesis by ε in
terms of total variation distance (Daskalakis & Kawase, 2017; Oufkir et al., 2021). By contrast, all
of our results are entirely independent of k, making our approach more suitable when the support
size is very large.

There are several batch testing approaches which are based on collision statistics. Most notably, the
optimal uniform testing algorithm of Paninski (2003) distinguishes the uniform distribution from a
distribution that is ε far from uniform in terms of total variation distance with a sample complexity
Θ(
√
k/ε2). However, in the batch setting, the parameter ε is given to the testing algorithm as input.

1Instead of denoting the privacy parameters by ε and δ, as is common in the privacy literature, we will use
them to denote error and probability, as is common in the statistics literature.
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3 PRELIMINARIES

We study two problems related to learning the collision probability C(p) =
∑
i p

2
i of an unknown

distribution p = (p1, . . . , pk).

In the private estimation problem, a set of n users each possess a single sample drawn indepen-
dently from distribution p. We are given an error bound ε ≥ 0 and confidence level δ ∈ [0, 1]. A
central server must compute an estimate Ĉ that satisfies |Ĉ − C(p)| ≤ ε with probability at least
1− δ while preserving the privacy of the users’ samples. A mechanism is a distributed protocol be-
tween the server and the users that privately computes this estimate. The execution of a mechanism
can depend on the samples, and the output of a mechanism is the entire communication transcript
between the server and the users. MechanismM satisfies (α, β)-local differential privacy if for each
user i and all possible samples x1, . . . , xn, x

′
i we have

Pr[M(x1, . . . , xn) ∈ O] ≤ eα Pr[M(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) ∈ O] + β,

where O is any set of possible transcripts between the server and the users. In other words, if the
privacy parameters α and β are small then changing the sample of a single user does not significantly
alter the distribution of the mechanism’s output. Local differential privacy is the strongest version of
differential privacy, and is suitable for a setting where the server is untrusted (Dwork et al., 2014).
The sample complexity of the mechanism is the number of users n.

In the sequential testing problem, we are given a confidence level δ ∈ [0, 1] and the promise that
exactly one of the following two hypotheses hold: The null hypothesis is that C(p) = c0, while the
alternative hypothesis is that |C(p) − c0| ≥ ε > 0. An algorithm must decide which hypothesis is
correct based on samples from p. Instead of fixing the number of samples in advance, the algorithm
draws independent samples from p one at a time, and after observing each sample decides to either
reject the null hypothesis or to continue sampling. If the null hypothesis is false then the algorithm
must reject it, and if the null hypothesis is true then the algorithm must not stop sampling, and each
of these events must occur with probability at least 1 − δ. Importantly, while c0 is known to the
algorithm, ε is not known, and thus the algorithm must adapt to the difficulty of the problem. The
sample complexity of the algorithm is the number of observed samples N if the null hypothesis is
false, a random variable.

4 PRIVATE ESTIMATION

In this section we describe a distributed protocol for privately estimating the collision probability
of a distribution. In our protocol, a set of users each draw a sample from the distribution, and then
share limited information about their samples with a central server, who computes an estimate of the
collision probability while preserving the privacy of each user’s sample.

As discussed in Section 1, the collision probability of a distribution is the probability that two in-
dependent samples from the distribution will coincide. Therefore the most straightforward strategy
the server could employ would be to collect all the users’ samples and count the number of pairs of
samples containing a collision. However, this approach would not be privacy-preserving.

Instead, in Mechanism 1 below, each user applies a one-bit hash function to their private sample and
shares only their hash value with the server. The server counts the number of collisions among all
pairs of hash values and then applies a bias correction to form an estimate of the collision probability.
To increase the robustness of this estimate, the server first partitions the hash values into groups and
uses the median estimate from among the groups.

The hashing procedure in Mechanism 1 is carefully designed to both preserve user privacy and
also yield an accurate estimate. On the one hand, if each user privately chose an independent hash
function, then their hash values would be entirely uncorrelated and contain no useful information
about the underlying distribution. On the other hand, if every user applied the same hash function
to their sample, then the server could invert this function and potentially learn some user’s sample.
Instead, in Mechanism 1, the server sends the same hash function to all users, but each user prepends
their sample with a independently chosen salt, or random integer, before applying the hash function.
Salts are commonly used in cryptographic protocols to enhance security, and they play a similar role
in our mechanism. The number of possible salts serves as a trade-off parameter between the privacy
and accuracy of our mechanism, with more salts implying a stronger privacy guarantee.
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Mechanism 1 Private estimation for collision probability

Given: Number of users n, confidence level δ ∈ [0, 1], privacy parameters α ≥ 0, β ∈ [0, 1].
1: Server transmits random hash function h : {0, 1}∗ 7→ {0, 1} to each user.

2: Each user i chooses salt si uniformly at random from {1, . . . , r}, where r = 6
(
eα+1
eα−1

)2

log 4
β .

3: Each user i draws sample xi from distribution p.
4: Each user i sends hash value vi = h(〈si, xi〉) to the server, where 〈si, xi〉 is the binary encoding

of si prepended to xi and separated by a delimiter.
5: Server partitions users into k = 8 log 1

δ groups of size m = n
k each.

6: Server computes the all-pairs hash value collision frequency

c̄g =
2

m(m− 1)

∑
i,j∈Ig
i<j

1 {vi = vj}

for each group g, where Ig is the set of users in group g.
7: Server lets

ĉg = r(2c̄g − 1)

be the bias-corrected estimate for each group g.
8: Server outputs Ĉ, the median of the ĉg’s.

The theorems in this section provide guarantees about the privacy and accuracy of Mechanism 1.

Theorem 1. Mechanism 1 satisfies (α, β)-local differential privacy.

Proof sketch. We show that the communication transcript between the server and the users is not
very likely to be different if a single user changes their sample. Note that the communication tran-
script consists of the random hash function chosen by the server and the users’ hash values. Suppose
for now that the hash function is fixed. Each user’s choice of a random salt induces a distribution on
their hash value, and this distribution can change if the user changes their sample. If the distribution
changes too drastically then the mechanism will not be private. However, in expectation over the
choice of the hash function, the distribution is always uniform, and deviations from this expectation
will be small with high probability if the number of possible salts is sufficiently large. More con-
cretely, note that the number of possible salts r in Mechanism 1 increases as the privacy parameters
α and β decrease. Finally, since the hash function is chosen independently of the samples, the hash
function reveals no information about the samples by itself.

Theorem 2. If the number of samples n satisfies

n ≥ Ω

((
eα + 1

eα − 1

)2 log 1
β log 1

δ

ε2

)

then the estimate Ĉ output by Mechanism 1 satisfies |Ĉ − C(p)| ≤ ε with probability 1 − δ.
Additionally, if α ≤ 1 then it suffices that

n ≥ Ω

(
log 1

β log 1
δ

α2ε2

)
.

Proof sketch. The first step of the argument is to relate the likelihood of a hash collision to that of
the underlying sample collision. It is not hard to see that if xi 6= xj then Pr[vi = vj ] = 1

2 , while
if xi = xj then the Pr[vi = vj ] = 1

2 + 1
r , because two users with the same sample and same salt

are guaranteed to produce the same hash value. This discrepancy allows us to use the number of
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hash collisions as an estimator of the number of sample collisions. In particular, it implies that each
group estimate ĉg is an unbiased estimate of C(p).

Next we bound the variance of each ĉg . Clearly Var[ĉg] = O(r2) Var[c̄g]. Bounding the variance
Var[c̄g] is non-trivial, because the vi’s are not independent, since they are correlated by the random
choice of the hash function. By the law of total variance we have

Var[c̄g] = E[Var[c̄g | h]] + Var[E[c̄g | h]].

Since the vi’s are independent for a given hash function, the first term can be bounded by applying
Hoeffding’s theorem for U-statistics. The second term can be bounded by a fairly direct calculation.

Having shown that the ĉg’s are unbiased estimates of collision probability, and also having shown
that each of their variances is bounded, it remains to show that their median is concentrated about
their mean. This concentration follows from the analysis of the median-of-means estimator (Lugosi
& Mendelson, 2019).

4.1 LOWER BOUND

The next theorem proves that the sample complexity bound in Theorem 2 is tight for small α up to
logarithmic factors.

Theorem 3. Let Ĉα,n(p) be a collision probability estimate returned by an (α, 0)-locally differen-
tially private mechanism that draws n samples from distribution p. If α ≤ 1 and n ∈ o

(
1

α2ε2

)
then

there exists a distribution p such that

E
[
|Ĉα,n(p)− C(p)|

]
≥ ε.

Proof sketch. We apply a technique due to Duchi et al. (2016) for proving minimax lower bounds
for locally differentially private estimation. Their technique is a private version of Le Cam’s two-
point method (LeCam, 1973). It follows from Proposition 1 due to Duchi et al. (2016) that for all
distributions p0,p1 there exists distribution p such that

E
[
|Ĉα,n(p)− C(p)|

]
≥ |C(p0)− C(p1)|

2

(
1−

√
2α2nDKL (p0‖p1)

)
.

Thus if there exist p0 and p1 such that DKL (p0‖p1) ≤ O( 1
α2n ) and |C(p0) − C(p1)| ≥ Ω( 1

α
√
n

)

then the above lower bound is Ω( 1
α
√
n

), which suffices to prove the theorem. We give an explicit
construction of p0 and p1 in the Appendix. Briefly, p0 places probability mass 1

2 on one element
and uniformly distributes the remaining mass on the other k − 1 elements, while p1 is nearly the
same as p0 except for a Θ( 1

α
√
n

) perturbation applied to each probability.

4.2 EFFICIENT IMPLEMENTATION

In Mechanism 1 the server computes the all-pairs hash collision frequency per group. If each group
containsm samples, a naive implementation would require Ω(m2) time per group. The next theorem
shows how this can be reduced to O(m) time per group by computing the histogram of hash values.

Theorem 4. For any values v1, . . . , vm if c̄ = 2
m(m−1)

∑
i<j 1 {vi = vj} is the all-pairs collision

frequency and n̂v =
∑
i 1 {vi = v} is the multiplicity of value v then

c̄ =
1

m(m− 1)

∑
v

n̂2
v −

1

m− 1
.

4.3 COMPARISON TO PREVIOUS WORK

Butucea & Issartel (2021) gave a non-interactive (α, 0)-locally differentially private mechanism for
estimating collision probability with sample complexity Õ

(
(log k)2

ε2α2

)
and communication complex-

ity O(k). Bravo-Hermsdorff et al. (2022) gave a non-interactive mechanism with the same privacy
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guarantee, sample complexity Õ
(

1
α4ε2

)
, and communication complexity O(1).2 Thus the latter

mechanism is better suited to distributions with very large support sizes, but is a worse choice when
the privacy parameter α is very small. Our mechanism combines the advantages of these mecha-
nisms, at the expense of a slightly weaker privacy guarantee and an additional O(log 1

β ) samples.

Notably, the earlier mechanism due to Bravo-Hermsdorff et al. (2022) is also based on counting
collisions among salted hash values. But there are key differences between the mechanisms which
lead to our improved sample complexity. In their mechanism, the server assigns salts to the users,
each user adds noise to their hash value, and the server counts hash collisions among n

2 disjoint user
pairs. In our mechanism, the salts are chosen privately, no additional noise is added to the hash
values, and the server counts hash collisions among all

(
n
2

)
= O(n2) user pairs. Using all available

pairs to count collisions is a more efficient use of data (although it significantly complicates the
analysis, as the pairs are not all independent), and choosing the salts privately eliminates the need
for additional randomness, which improves the accuracy of the estimate.

5 SEQUENTIAL TESTING

In this section we describe an algorithm for sequentially testing whether C(p) = c0 (the null hy-
pothesis) or |C(p) − c0| ≥ ε > 0 (the alternative hypothesis), where c0 is given but ε is unknown.
Algorithm 2 below draws samples from the distribution p one at a time. Whenever the algorithm
observes a sample xi it updates a running estimate of |C(p) − c0| based on the all-pairs collision
frequency observed so far. The algorithm compares this estimate to a threshold that shrinks like
Θ
(√

i−1 log log i
)

and rejects the null hypothesis as soon as the threshold is exceeded. Although
our algorithm is simple to describe, its proof of correctness is non-trivial, as it involves showing that
a sequence of dependent random variables (the running estimates) become concentrated. Our proof
uses a novel decoupling technique to construct martingales based on the running estimates.

Algorithm 2 Sequential testing of collision probability

Given: Null hypothesis value c0, confidence level δ ∈ [0, 1].
1: for i = 1, 2, 3, . . . do
2: Draw sample xi from distribution p.
3: Let Ti =

∑i−1
j=1 1 {xi = xj} − 2(i− 1)c0.

4: if
∣∣∣ 2
i(i−1)

∑i
j=1 Tj

∣∣∣ > 3.2
√

log log i+0.72 log(20.8/δ)
i then

5: Reject the null hypothesis.
6: end if
7: end for

The next theorem provides a guarantee about the accuracy of Algorithm 2.

Theorem 5. If C(p) = c0 then Algorithm 2 does not reject the null hypothesis with probability
1 − δ. If |C(p) − c0| ≥ ε then Algorithm 2 rejects the null hypothesis after observing N samples,
where

N ∈ O
(

1

ε2
log log

1

ε
log

1

δ

)
with probability 1− δ.

The log log 1
ε factor in Theorem 5 results from our application of a confidence interval due to Howard

et al. (2021) that shrinks like Θ
(√

i−1 log log i
)
. Note that log log 1

ε < 4 if ε ≥ 10−10, so this factor
is negligible for nearly all problem instances of practical interest.

2Note that Bravo-Hermsdorff et al.’s original NeurIPS paper claimed Õ
(

1
α2ε2

)
sample complexity, but

a more recent version on Arxiv claims Õ
(

1
α4ε2

)
sample complexity and explains that the original version

contained mistakes. See References for a link to the Arxiv version.
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Proof sketch of Theorem 5. First note that T1, T2, , . . . which are used in Line 3 of Algorithm 2
are dependent sequences, so Ti depends on all x1, . . . , xi, which prevent us from computing a
concentration bound for it. Therefore we shall apply a decoupling technique to derive a martingale
sequence. Let us define Ūm := Ū(X1, . . . , Xm) =

∑
i<j g(Xi, Xj) with

g(Xi, Xj) = 1 {Xi = Xj} − E [1 {Xi = Xj} |Xi]− E [1 {Xi = Xj} |Xj ] + E [1 {Xi = Xj}]
= 1 {Xi = Xj} − Pr (Xi = Xj |Xi)− Pr (Xi = Xj |Xj) + c0 .

This decoupling technique is motivated by Theorem 8.1.1 of Tsybakov (2008) since the kernel func-
tion g has became centered and degenerated, i.e. E [g(Xi, Xj)|Xj ] = E [g(Xi, Xj)|Xi] = 0 which
implies that Ūn is a zero-mean martingale with m ≥ 2. The empirical sequence is ūm =

∑m
i=1 ym

with

yj =

m−1∑
i=1

1 {xi = xj} −
m−1∑
i=1

pxi − (m− 1)pxj + (m− 1)c0

which is has bounded differences such that |Ūk − Ūk−1| = |Yk| ≤ 4m and y1 = 0. However we
cannot compute this empirical sequence, since the parameters of distribution are not known. As a
remedy, we further decompose Ūn as the sum of two sequences based on the observation that

E [pXi ] =
∑
i

p2
xi = c0

which implies that
∑m
i=1(pXi−c0) is again a zero-mean martingale sequence with the same filtration

Fm such that the difference |pXi − c0| < 1 for all i. This motivates the following decomposition of
Ūn as

Yj =

j−1∑
i=1

1 {Xi = Xj} − 2(j − 1)c0︸ ︷︷ ︸
Tj

+ 2(j − 1)c0 −
j−1∑
i=1

pXi − (j − 1)pXj︸ ︷︷ ︸
Ej

Note that Tm, used in Algorithm 2, can be computed and it is a zero-mean martingale sequence up
to an error term En which cannot be computed, since the parameters of the underlying distribution
p is not available. However En can be again decomposed into sequence of sums of zero mean-mean
terms which we can upper bound with high probability. Important to note that if H0 : c0 = 1/K,
the error term is equal to zero in any time step, i.e. En = 0,∀n ∈ [1, 2, . . . ), therefore Tm is a zero-
mean martingale itself. Finally, we rely on the work of Howard et al. (2021) in which a sequence of
confidence intervals is introduced for martingales that hold uniformly for each time step, even with
random stopping time.

We remark that our proof technique bears some superficial resemblance to the approach used in
recent work by Oufkir et al. (2021). They make use of the fact that for any random variable T taking
values from N and for all T ∈ N+, it holds that E [T ] ≤ N +

∑
t≥N P(T ≥ t). Then with a

carefully selected N and Chernoff bounds with infinite many applications of union bound implies
upper bound on the expected sample complexity. By contrast, we construct a test martingale that is
specific to collision probability and apply an anytime or time-uniform concentration bound to the
martingale introduced by Waudby-Smith & Ramdas (2020).

5.1 LOWER BOUND

The next theorem proves that sample complexity bound in Theorem 5 is tight up to log-log factors.
Theorem 6. LetN be the number of samples observed by a sequential testing algorithm for collision
probability. For all ε, δ ∈ [0, 1] there exists a distribution p and c0 ∈ [0, 1] such that |C(p)−c0| ≥ ε
and if the algorithm rejects the null hypothesis with probability 1− δ then

E[N ] ≥ Ω

(
log(1/δ)

ε2

)
.

Proof sketch. Our proof is based on a reduction to the problem of identity testing and a lower bound
for that problem due to Oufkir et al. (2021). In an identity testing problem we are given a dis-
tribution p0 and sample access to a distribution p1 and the goal is to decide whether p0 = p1
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or ‖p0 − p1‖1 ≥ ε > 0. Oufkir et al. (2021) proved that if ‖p0 − p1‖1 ≥ ε then the num-
ber of samples N needed to make a correct decision must satisfy E[N ] ≥ log(1/(3δ))

DKL(p0‖p1) . We com-
plete the proof by showing that there exist distributions p0 and p1 such that ‖p0 − p1‖1 ≥ Ω(ε),
|C(p0) − C(p1)| ≥ Ω(ε) and DKL(p0‖p1) ≤ O(ε2). An explicit construction of p0 and p1 is in
the Appendix, and they are the same distributions as in the proof of Theorem 3.

6 EXPERIMENTS

We compare our mechanism for private collision probability estimation (Mechanism 1) to the re-
cently proposed mechanism from Bravo-Hermsdorff et al. (2022). As discussed in Section 4.3, we
expect Mechanism 1 to outperform their mechanism when the support size of the distribution is
large and the privacy requirement is strict. We also compare to an indirect method: Privately esti-
mate the distribution itself, and then compute the collision probability of the estimated distribution.
In our experiments we use an open-source implementation of a private heavy hitters algorithm due
to Cormode et al. (2021).3

In Figure 1 we use each mechanism to privately estimate the collision probability of two distributions
supported on 1000 elements: the uniform distribution (pi = 1/k) and the power law distribution
(pi ∝ 1/i). Our simulations show that Mechanism 1 has significantly lower error for small values
of the privacy parameters α and β.

Figure 1: Sample complexity of private collision probability estimation mechanisms for α = 0.25.
Both mechanisms use the MD5 hash function and confidence level δ = 0.1. For Mechanism 1 we
let β = 10−5. Error bars are one standard error.

We next evaluate our sequential testing algorithm (Algorithm 2). Since we are not aware of any
existing algorithm for sequential testing of collision probability, we compare Algorithm 2 to two
batch testing algorithms, both of which are described in a survey by Canonne (2022a):

• Plug-in: Form empirical distribution p̂ from samples x1, . . . , xn and let Ĉ = C(p̂).

• U-statistics: Let Ĉ = 2
n(n−1)

∑
i<j 1 {xi = xj} be the all-pairs collision frequency.

Each batch testing algorithm takes as input both the null hypothesis value c0 and a tolerance param-
eter ε, and compares |Ĉ − c0| to ε to decide whether to reject the null hypothesis C(p) = c0. The
sample complexity of a batch testing algorithm is determined via worst-case theoretical analysis in
terms of ε (see Appendix). On the other hand, sequential testing algorithms automatically adapt
their sample complexity to the difference |C(p)− c0|.
In Figure 2 we evaluate batch and sequential testing algorithms on both on the uniform distribution
and power law distributions. We use 20 different support sizes for each distribution, evenly spaced
on a log scale between 10 and 106 inclusively. Varying the support size also varies |C(p)− c0|.

3https://github.com/Samuel-Maddock/pure-LDP
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As expected, when |C(p)−c0| is large, our sequential testing algorithm requires many fewer samples
than the batch algorithm to reject the null hypothesis, and as |C(p) − c0| shrinks the number of
samples required sharply increases (see grey areas in Figure 2). In all cases our sequential testing
algorithm is never outperformed by the batch testing algorithms.

Figure 2: Sample complexity of the sequential tester compared to the sample complexity of the
batch testers. For the batch testers, the tolerance parameter ε is set to 0.01.

Note that in Figure 3 the plug-in tester has a worse sample complexity than the U-statistics tester.
Since these sample complexities are determined by theoretical analysis, we experimentally con-
firmed that this discrepancy is not simply an artifact of the analysis. In Figure 3 we run simulations
comparing the algorithms in terms of their error |Ĉ − C(p)|, and find that the plug-in tester is also
empirically worse than the U-statistics tester.

Figure 3: Empirical absolute error of plug-in and U-statistic estimators when the data is generated
from uniform distribution and power law with domain size 1000.

7 CONCLUSIONS AND FUTURE WORK

We introduced a locally differentially private estimator for collision probability that is near-optimal
in a minimax sense and empirically superior to the state-of-the-art method introduced by Bravo-
Hermsdorff et al. (2022). Our method is based on directly estimating the collision probability using
all pairs of observed samples, unlike in previous work. We also introduced a near-optimal sequential
testing algorithm that is likewise based on directly estimating the collision probability, and requires
far fewer samples than the minimax optimal batch testing algorithm for many problem instances. In
the future, we plan to combine these methods and develop a locally differentially private sequential
testing algorithm which, to our best knowledge, does not currently exist. Also, we plan to develop
an adaptive testing algorithm which accounts for the variance of the estimator, which may allow us
to achieve even lower sample complexity (such as O(1/ε)) for particularly easy problem instances.
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A APPENDIX

B PROOF OF THEOREM 1

Let Xi and Vi be the private value and hash value, respectively, for user i, and let H be the random
hash function chosen by the server. Let X = (X1, . . . , Xn) and V = (V1, . . . , Vn).

Recall that in the local model of differential privacy, the output of a mechanism is the entire com-
munication transcript between the users and the server, which in the case of Mechanism 1 consists
of the hash function and all the hash values. Therefore our goal is to prove that for any subset O of
possible values for (V, H) we have

Pr[(V, H) ∈ O |X = x] ≤ eα Pr[(V, H) ∈ O |X = x′] + β. (1)

where x and x′ differ in one element.

The proof of Eq. (1) will need a couple of observations. First, given the hash function and private
values, the hash values are mutually independent:

Pr[V = v | H = h ∧X = x] =
∏
i

Pr[Vi = vi | H = h ∧Xi = xi]. (2)

Second, the hash function is independent of the private values:

Pr[H = h |X = x] = Pr[H = h |X = x′]. (3)

We also need a definition. Suppose x and x′ differ in the jth element. Define Hα to be the set of all
hash functions such that if h ∈ Hα then

Pr[Vj = v | H = h ∧Xj = xj ] ≤ eα Pr[Vj = v | H = h ∧Xj = x′j ] (4)

for all v. Note that the definition of Hα depends implicitly on xj and x′j , but does not depend on
Xj .

Combining the above we have

Pr[V = v ∧H = h |X = x ∧H ∈ Hα]

= Pr[V = v | H = h ∧X = x ∧H ∈ Hα] · Pr[H = h |X = x ∧H ∈ Hα]

=
∏
i

Pr[Vi = vi | H = h ∧Xi = xi ∧H ∈ Hα] · Pr[H = h |X = x ∧H ∈ Hα] ∵ Eq. (2)

=
∏
i

Pr[Vi = vi | H = h ∧Xi = xi ∧H ∈ Hα] · Pr[H = h |X = x′ ∧H ∈ Hα] ∵ Eq. (3)

≤ eα
∏
i

Pr[Vi = vi | H = h ∧Xi = x′i ∧H ∈ Hα] · Pr[H = h |X = x′ ∧H ∈ Hα] ∵ Eq. (4)

= eα Pr[V = v | H = h ∧X = x′ ∧H ∈ Hα] · Pr[H = h |X = x′ ∧H ∈ Hα] ∵ Eq. (2)

= eα Pr[V = v ∧H = h |X = x′ ∧H ∈ Hα].

Summing both sides over O yields

Pr[(V, H) ∈ O |X = x ∧H ∈ Hα] ≤ eα Pr[(V, H) ∈ O |X = x′ ∧H ∈ Hα]. (5)

Therefore we have

Pr[(V, H) ∈ O |X = x] = Pr[(V, H) ∈ O |X = x ∧H ∈ Hα] · Pr[H ∈ Hα |X = x]

+ Pr[(V, H) ∈ O |X = x ∧H 6∈ Hα] · Pr[H 6∈ Hα |X = x]

≤ Pr[(V, H) ∈ O |X = x ∧H ∈ Hα] · Pr[H ∈ Hα |X = x]

+ Pr[H 6∈ Hα |X = x]

= Pr[(V, H) ∈ O |X = x ∧H ∈ Hα] · Pr[H ∈ Hα |X = x′] ∵ Eq. (3)
+ Pr[H 6∈ Hα |X = x]

≤ eα Pr[(V, H) ∈ O |X = x′ ∧H ∈ Hα] · Pr[H ∈ Hα |X = x′] ∵ Eq. (5)
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+ Pr[H 6∈ Hα |X = x]

= eα Pr[(V, H) ∈ O ∧H ∈ Hα |X = x′] + Pr[H 6∈ Hα |X = x]

≤ eα Pr[(V, H) ∈ O |X = x′] + Pr[H 6∈ Hα |X = x]

= eα Pr[(V, H) ∈ O |X = x′] + Pr[H 6∈ Hα] ∵ Eq. (3)

It remains to show that Pr[H 6∈ Hα] ≤ β. Recall that xj 6= x′j are the only different values in x and
x′. For any hash value v and salt s define the random variables

ps,v(H) = 1 {H(〈s, xj〉) = v}
p′s,v(H) = 1

{
H(〈s, x′j〉) = v

}
Also define p̄v(H) = 1

r

∑
s ps,v(H) and p̄′v(H) = 1

r

∑
s p
′
s,v(H). Observe that

Pr[Vj = v | H = h ∧Xj = xj ] = p̄v(h)

Pr[Vj = v | H = h ∧Xj = x′j ] = p̄′v(h)

since each user chooses their salt uniformly at random from {1, . . . , r}. Therefore

Pr[H 6∈ Hα] = Pr

[
∃v :

p̄v(H)

p̄′v(H)
> eα

]
. (6)

We will analyze the right-hand side of Eq. (6). Clearly E[ps,v(H)] = E[p′s,v(H)] = 1
b , since each

H(〈s, x〉) is chosen uniformly at random from {1, . . . , b}. Also p̄v(H) and p̄′v(H) are each the
average of r independent Boolean random variables, since each H(〈s, x〉) is chosen independently.
Therefore, by the Chernoff bound, for all ε ∈ [0, 1] and any hash value v

Pr

[
p̄v(H) ≥ (1 + ε)

1

b

]
≤ exp

(
−ε

2r

3b

)
Pr

[
p̄′v(H) ≤ (1− ε)1

b

]
≤ exp

(
−ε

2r

3b

)
Fix ε = eα−1

eα+1 . Observe that if p̄v(H) ≤ (1 + ε) 1
b and p̄′v(H) ≥ (1− ε) 1

b then

p̄v(H)

p̄′v(H)
≤ 1 + ε

1− ε
= eα. (7)

Continuing from Eq. (6)

Pr

[
∃v :

p̄v(H)

p̄′v(H)
> eα

]
≤
∑
v

Pr

[
p̄v(H)

p̄′v(H)
> eα

]
≤
∑
v

Pr

[
p̄v(H) ≥ (1 + ε)

1

b
∨ p̄′v(H) ≤ (1− ε)1

b

]
∵ Eq. (7)

≤
∑
v

2 exp

(
−ε

2r

3b

)
∵ Chernoff bound

= 2b exp

(
−ε

2r

3b

)
≤ β

where the last line follows from r ≥ 3b
ε2 log 2b

β .

C PROOF OF THEOREM 2

Definition 1. For any k ≥ 0 the kth frequency moment of discrete random variable X is

Fk(X) =
∑
x

Pr[X = x]k.

14
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The next lemma says that when k is a positive integer then Fk(X) is the probability that k indepen-
dent copies of X all have the same value.

Lemma 1. If k is a positive integer then

Fk(X) = Pr[X1 = · · · = Xk]

where X1, . . . , Xk are independent and have the same distribution as X .

Proof.

Fk(X) =
∑
x

Pr[X = x]k

=
∑
x

Pr[X1 = x] · · ·Pr[Xk = x] ∵ Identical distributions

=
∑
x

Pr[X1 = x ∧ · · · ∧Xk = x] ∵ Independence

= Pr[X1 = · · · = Xk]

Next we compute the first and second frequency moments of the hash value returned by each user
in Mechanism 1.

Lemma 2. Let S be a uniform random variable in {1, . . . , r}. Let X be independent from S. Let
H : {0, 1}∗ 7→ {1, . . . , b} be a random hash function. If

V = H(〈S,X〉)

then

F2(V ) =
1

b
+ F2(X)

(
b− 1

br

)
F3(V ) =

1

b2
+ 3F2(X)

(
b− 1

b2r

)
+ F3(X)

(
(b− 1)(b− 2)

b2r2

)
F3(V ) =

1− 3F2(X) + 2F3(X)

b2
+ F3(X)

[
1

r2
+ 3

r − 1

r2b
+

1− 3/r + 2/r2

b2

]
+ 3(F2(X)− F3(X))

[
1

rb
+
r − 1

rb2

]
=

1

b2
+ 3F2(X)

[
1

rb
+

(r − 1)

rb2
− 1

b2

]
+ F3(X)

[
1

r2
+ 3

r − 1

r2b
+

2

r2b2
− 3

rb
− 1

b2

]
Proof. Let S1, S2 and S3 be independent random variables with the same distribution as S. Let
X1, X2 and X3 be independent random variables with the same distribution as X . Let Vi =
H(〈Si, Xi〉) for i ∈ {1, 2, 3}. By Lemma 1 we have

F2(V ) = Pr[V1 = V2]

= Pr[V1 = V2 | S1 = S2 ∧X1 = X2] · Pr[S1 = S2] · Pr[X1 = X2]+

Pr[V1 = V2 | S1 6= S2 ∧X1 = X2] · Pr[S1 6= S2] · Pr[X1 = X2]+

Pr[V1 = V2 | S1 = S2 ∧X1 6= X2] · Pr[S1 = S2] · Pr[X1 6= X2]+

Pr[V1 = V2 | S1 6= S2 ∧X1 6= X2] · Pr[S1 6= S2] · Pr[X1 6= X2]

=1 · 1

r
· F2(X)+

1

b
·
(

1− 1

r

)
· F2(X)+

1

b
· 1

r
· (1− F2(X))+

1

b
·
(

1− 1

r

)
· (1− F2(X))
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=
1

b
+ F2(X)

(
1

r
− 1

br

)
=

1

b
+ F2(X)

(
b− 1

br

)
which proves the first part of the lemma. For the second part, let S = (S1, S2, S3), X =
(X1, X2, X3) and V = (V1, V2, V3). Also for any vectors Z(1), . . . ,Z(k) let

m(Z(1), . . . ,Z(k)) =
∣∣∣{(i, j) : i < j ∧ Z(1)

i = Z
(1)
j ∧ · · · ∧ Z

(k)
i = Z

(k)
j

}∣∣∣ .
For example, if m(S,X) = 1 then exactly one pair of the variables S1, S2 and S3 are equal, as are
one pair of the variables X1, X2 and X3, and moreover the equal pairs have the same indices. The
distribution of m(X) is

Pr[m(X) = 3] = Pr[X1 = X2 = X3] = F3(X)

Pr[m(X) = 2] = 3 Pr[X1 = X2 ∧X2 = X3 ∧X1 6= X3] = 0

Pr[m(X) = 1] = 3 Pr[X1 = X2 6= X3] = 3(Pr[X1 = X2]− Pr[X1 = X2 = X3]) = 3(F2(X)− F3(X))

Pr[m(X) = 0] = 1−
3∑
k=1

Pr[m(X) = k] = 1− 3F2(X) + 2F3(X).

Thus m(X) ∈ {0, 1, 3} with probability 1. Clearly m(S,X) ≤ min{m(S),m(X)}. So the condi-
tional distribution of m(S,X) given m(X) is

Pr[m(S,X) = 3 |m(X) = 3] = Pr[S1 = S2 = S3] =
1

r2

Pr[m(S,X) = 2 |m(X) = 3] = 3 Pr[S1 = S2 ∧ S2 = S3 ∧ S1 6= S3] = 0

Pr[m(S,X) = 1 |m(X) = 3] = 3 Pr[S1 = S2 6= S3] =
3

r

(
1− 1

r

)
Pr[m(S,X) = 0 |m(X) = 3] = 1−

3∑
k=1

Pr[m(S,X) = k |m(X) = 3] = 1− 3

r
+

2

r2

Pr[m(S,X) = 1 |m(X) = 1] = Pr[S1 = S2] =
1

r

Pr[m(S,X) = 0 |m(X) = 1] = Pr[S1 6= S2] = 1− 1

r
Pr[m(S,X) = 0 |m(X) = 0] = 1

Thus m(S,X) ∈ {0, 1, 3} with probability 1. So the conditional distribution of m(V) given
m(S,X) is

Pr[m(V) = 3 |m(S,X) = 3] = 1

Pr[m(V) = 3 |m(S,X) = 1] =
1

b

Pr[m(V) = 3 |m(S,X) = 0] =
1

b2
.

Putting it all together we have

F3(V ) = Pr[V1 = V2 = V3]

= Pr[m(V) = 3]

=

3∑
k1=0

k1∑
k2=0

Pr[m(V) = 3 |m(X) = k1 ∧m(S,X) = k2] · Pr[m(X) = k1 ∧m(S,X) = k2]

=

3∑
k1=0

k1∑
k2=0

Pr[m(V) = 3 |m(S,X) = k2] · Pr[m(S,X) = k2 |m(X) = k1] · Pr[m(X) = k1]

=
1

b2
· 1 · (1− 3F2(X) + 2F3(X))+
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1

b2
·
(

1− 1

r

)
· 3(F2(X)− F3(X)) +

1

b
· 1

r
· 3(F2(X)− F3(X))+

1

b2
·
(

1− 3

r
+

2

r2

)
· F3(X) +

1

b
· 3

r

(
1− 1

r

)
· F3(X) + 1 · 1

r2
· F3(X)

=
1

b2
− 3F2(X)

b2r
+

3F2(X)

br
+

2F3(X)

b2r2
− 3F3(X)

br2
+
F3(X)

r2

=
1

b2
+ 3F2(X)

(
1

br
− 1

b2r

)
+ F3(X)

(
1

r2
− 3

br2
+

2

b2r2

)
=

1

b2
+ 3F2(X)

(
b− 1

b2r

)
+ F3(X)

(
(b− 1)(b− 2)

b2r2

)
We next show that the all-pairs collision frequency of a collection of independent and identically
distributed random variables has a variance that can be expressed in terms of frequency moments.
Incidentally, we believe that the following lemma can be simplified and generalized by using results
on U-statistics.
Lemma 3. Let V1, . . . , Vn be independent random variables such that each Vi has the same distri-
bution as random variable V . If

C̄ =
2

n(n− 1)

∑
i<j

1 {Vi = Vj}

then

Var[C̄] =
2

n(n− 1)

(
F2(V )− F2(V )2

)
+

4(n− 2)

n(n− 1)

(
F3(V )− F2(V )2

)
.

Proof. Let Cij = 1 {Vi = Vj}. By Bienaymé’s identity (Bauer, 2011) we have

Var

∑
i<j

Cij

 =
∑
i1<j1
i2<j2

Cov [Ci1j1 , Ci2j2 ] .

Let i = (i1, i2) and j = (j1, j2). Let d(i, j) be the number of indices among i1, i2, j1 and j2, that
are distinct. For example, if i1 = i2 = 1 and j1 = j2 = 2 then d(i, j) = 2. Clearly d(i, j) ≤ 4.
Also, if i1 < j1 and i2 < j2 then d(i, j) ≥ 2. Thus continuing from above we have∑
i1<j1
i2<j2

Cov [Ci1j1 , Ci2j2 ] =
∑
i1<j1
i2<j2
d(i,j)=2

Cov[Ci1j1 , Ci2j2 ] +
∑
i1<j1
i2<j2
d(i,j)=3

Cov[Ci1j1 , Ci2j2 ] +
∑
i1<j1
i2<j2
d(i,j)=4

Cov[Ci1j1 , Ci2j2 ]

We will simplify each term on the right-hand side of the above equation.

Note that Cij is a Bernoulli random variable that is equal to 1 with probability Pr[Vi = Vj ]. Thus
by Lemma 1 if i 6= j then Var[Cij ] = F2(V )−F2(V )2. If i1 < j1 and i2 < j2 and d(i, j) = 2 then
we must have i1 = i2 and j1 = j2, which implies

Cov[Ci1j1 , Ci2j2 ] = Var[Ci1j1 ] = F2(V )− F2(V )2.

Also, if i1 < j1 and i2 < j2 and d(i, j) = 3 then there must exist distinct indices i, j, k such that

Cov[Ci1j1 , Ci2j2 ] = E[Ci1j1Ci2j2 ]− E[Ci1j1 ] E[Ci2j2 ]

= E[1 {Vi1 = Vj1}1 {Vi2 = Vj2}]− E[1 {Vi1 = Vj1}] E[1 {Vi2 = Vj2}]
= E[1 {Vi = Vj}1 {Vj = Vk}]− E[1 {Vi1 = Vj1}] E[1 {Vi2 = Vj2}]
= Pr[Vi = Vj = Vk]− Pr[Vi1 = Vj1 ] Pr[Vi2 = Vj2 ]

= F3(V )− F2(V )2. ∵ Lemma 1

Also, if d(i, j) = 4 then Ci1j1 is independent of Ci2j2 , and therefore

Cov[Ci1j1 , Ci2j2 ] = 0.
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Finally, counting arguments show that

|{(i1, i2, j1, j2) : i1 < j1 ∧ i2 < j2 ∧ d(i, j) = 2}| = n(n− 1)

2

|{(i1, i2, j1, j2) : i1 < j1 ∧ i2 < j2 ∧ d(i, j) = 3}| = n2(n− 1)2

4
− n(n− 1)(n− 2)(n− 3)

4
− n(n− 1)

2
= n(n− 1)(n− 2)

Putting everything together, we have

Var[C̄] = Var

 2

n(n− 1)

∑
i<j

Cij


=

4

n2(n− 1)2
Var

∑
i<j

Cij


=

4

n2(n− 1)2

(
n(n− 1)

2

(
F2(V )− F2(V )2

)
+ n(n− 1)(n− 2)

(
F3(V )− F2(V )2

))
=

2

n(n− 1)

(
F2(V )− F2(V )2

)
+

4(n− 2)

n(n− 1)

(
F3(V )− F2(V )2

)
.

We next show that the median of a collection of random variables is a good estimate of their common
mean, provided that each random variable has small variance. The proof of the following lemma is
adapted from Lugosi & Mendelson (2019).
Lemma 4. Let Z1, . . . , Zn be independent random variables such that E[Zi] = µ and Var[Zi] ≤
σ2. If M is the median of Z1, . . . , Zn then

Pr[|M − µ| ≥ 2σ] ≤ exp
(
−n

8

)
.

Proof. Choose any a > 0. Let Yi = 1 {|Zi − µ| ≥
√
aσ} and pi = E[Yi]. We have

pi = Pr[Yi = 1]

= Pr
[
|Zi − µ| ≥

√
aσ
]

≤ 1

a
∵ Chebyshev’s inequality

Let Ȳ = 1
n

∑
i Yi and p̄ = 1

n

∑
i pi. Clearly E[Ȳ ] = p̄ ≤ 1

a . Observe that if |M − µ| ≥
√
aσ then

Ȳ ≥ 1
2 . Therefore

Pr
[
|M − µ| ≥

√
aσ
]
≤ Pr

[
Ȳ ≥ 1

2

]
≤ Pr

[
Ȳ ≥ p̄+

(
1

2
− 1

a

)]
≤ exp

(
−2n

(
1

2
− 1

a

)2
)

∵ Hoeffding’s inequality

Setting a = 4 proves the lemma.

We are ready to prove Theorem 2.

Proof of Theorem 2. Let V be defined as in Lemma 2. By the definitions in Mechanism 1 we have
for any group g

E[ĉg] = E

[
r(bc̄g − 1)

b− 1

]
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=

(
br

b− 1

)(
E [c̄g]−

1

b

)

=

(
br

b− 1

) 2

m(m− 1)

∑
i,j∈Ig
i<j

Pr [vi = vj ]−
1

b


=

(
br

b− 1

)(
F2(V )− 1

b

)
∵ Lemma 1

= F2(X) ∵ Lemma 2

and

Var[ĉg] =

(
br

b− 1

)2

Var[c̄g]

=

(
br

b− 1

)2(
2

m(m− 1)

(
F2(V )− F2(V )2

)
+

4(m− 2)

m(m− 1)

(
F3(V )− F2(V )2

))
. ∵ Lemma 3

We can replace F2(V ) and F3(V ) with F2(X) and F3(X), respectively, in the above expression
using Lemma 2. We have(

br

b− 1

)2 (
F2(V )− F2(V )2

)
=

(
br

b− 1

)2
(

1

b
+ F2(X)

(
b− 1

br

)
−
(

1

b
+ F2(X)

(
b− 1

br

))2
)

∵ Lemma 2

=

(
br

b− 1

)2
(

1

b
+ F2(X)

(
b− 1

br

)
− 1

b2
− 2F2(X)

b

(
b− 1

br

)
− F2(X)2

(
b− 1

br

)2
)

=
br2

(b− 1)2
+ F2(X)

(
br

b− 1

)
− r2

(b− 1)2
− 2F2(X)

(
r

b− 1

)
− F2(X)2

=
r2

b− 1
+ F2(X)

r(b− 2)

b− 1
− F2(X)2 (8)

and (
br

b− 1

)2 (
F3(V )− F2(V )2

)
=

(
br

b− 1

)2
(

1

b2
+ 3F2(X)

(
b− 1

b2r

)
+ F3(X)

(
(b− 1)(b− 2)

b2r2

)

−
(

1

b
+ F2(X)

(
b− 1

br

))2
)

∵ Lemma 2

=

(
br

b− 1

)2
(

1

b2
+ 3F2(X)

(
b− 1

b2r

)
+ F3(X)

(
(b− 1)(b− 2)

b2r2

)

− 1

b2
− 2F2(X)

b

(
b− 1

br

)
− F2(X)2

(
b− 1

br

)2
)

=3F2(X)

(
r

b− 1

)
+ F3(X)

(
b− 2

b− 1

)
− 2F2(X)

(
r

b− 1

)
− F2(X)2

=F2(X)

(
r

b− 1

)
− F2(X)2 + F3(X)

(
b− 2

b− 1

)
(9)

Plugging Eq. (8) and Eq. (9) into the expression for Var[ĉg] above we have

Var[ĉg] =
2

m(m− 1)

(
r2

b− 1
+ F2(X)

r(b− 2)

b− 1
− F2(X)2

)
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+
4(m− 2)

m(m− 1)

(
F2(X)

(
r

b− 1

)
− F2(X)2 + F3(X)

(
b− 2

b− 1

))
= σ2.

Thus if k = 1 we have

Pr

[
|T̂ − T (X)| ≥ σ

√
1

δ

]
= Pr

[
|ĉ1 − E[ĉ1]| ≥ σ

√
1

δ

]
≤ δ

by Chebyshev’s inequality, and if k = 8 log 1
δ we have

Pr
[
|T̂ − T (X)| ≥ 2σ

]
= Pr [|m̂− F2(X)| ≥ 2σ] ≤ δ

by Lemma 4.

D PROOF OF THEOREM 3

We make use of the lower bound for local differential privacy introduced by Duchi et al. (2016)
which is relying on a privatized version of Le Cam’s two point method. Accordingly, we construct
a pair of problem instances p and p′ for which dC(p0,p1) = |C(p) − C(p′)| ≥ Ω(τ) and at the
same time dKL(p0,p1) ∈ Θ(τ2) which can be plugged into the privatized lower and results in the
optimality of Mechanism 1 in terms of α and ε in minimax sense. For doing so, let us define

p0 =

(
1

2(K − 1)
, . . . ,

1

2(K − 1)
,

1

2

)
and p1 =

(
1− τ

2(K − 1)
, . . . ,

1− τ
2(K − 1)

,
1 + τ

2

)
(10)

The KL divergence between p0 and p1 is

dKL (p0,p1) =
1

2
log

1

1− τ2
= Θ(τ2)

and the absolute difference between their collision probability is

dC(p0,p1) = |C(p0)− C(p1)| = τ

2

(
1 +

(
τ

2
− 1

2(K − 1)

))
≥ τ/2

The lower bound of Duchi et al. (2016) readily implies the following Corollary.
Corollary 1. Suppose that θ is an estimator of C(p) which gets n observations from an α-locally
differential private channel Q with α ∈ [0, 23/35], i.e. channel Q is a conditional probability
distribution which maps each observation xi to a probability distribution on some finite discrete
domain Z . We will denote the privatized data by Zi ∼ Q(.|xi). Then for any pair of distributions
p0 and p1 such that dC(p0,p1) ≥ τ/2, then it holds

inf
Q

inf
θ

sup
p

EQ,p [dC(p, θ(Z1, . . . , Zn))] ≥ τ

4

(
1−

√
2α2ndKL (p0,p1)

)
Corollary 1 applied to the the pair of distribution defined (10) with τ = 1/(α

√
n) implies that

Mechanism 1 is minimax optimal in terms of ε and α by achieving a sample complexity that is
O(1/(α

√
n)). Note that we do not focus on communication complexity here, so the domain Z can

be arbitrary large but finite.

E PROOF OF THEOREM 4

We have ∑
v

n̂2
v =

∑
v

(∑
i

1 {vi = v}

)2

=
∑
v

∑
i,j

1 {vi = v}1 {vj = v}
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=
∑
v

∑
i,j

1 {vi = vj = v}

=
∑
i,j

1 {vi = vj}

= m+ 2
∑
i<j

1 {vi = vj}

and rearranging proves the theorem.

F PROOF OF THEOREM 5

First let us define

Um =
2

m(m− 1)

m∑
i=1

i−1∑
j=1

1 {Xi = Xj} (11)

based on {X1, . . . , Xm}. The sequence U1, U2, , . . . are dependent sequences, since each of them
depends on all previous observations, thus we shall apply a decoupling technique to obtain a mar-
tingale sequence which we can use in a sequential test. Based on Um, let us define

Ūm :=

m∑
i=1

i−1∑
j=1

gp(Xi, Xj)

with

gp(Xi, Xj) = 1 {Xi = Xj} − Pr (Xi = Xj |Xi)− Pr (Xi = Xj |Xj) + C(p) .

This decoupling technique is motivated by Theorem 8.1.1 of Tsybakov (2008) since the kernel func-
tion g has became centered and degenerated, i.e. E [gp(Xi, Xj)|Xj ] = E [gp(Xi, Xj)|Xi] = 0
which implies that Ūn is a zero-mean martingale with n ≥ 2 as follows.
Lemma 5. Ū2, Ū3, . . . is a discrete-time martingale the filtration of which is defined Ft =
{X1, . . . , Xm} and for all m,

E [Ym(p)|Fm−1] = 0

where Ym(p) =
∑m−1
i=1 gp(Xm, Xi) if m ≥ 2 and Y1 = 0.

Proof. This decoupling is motivated by Theorem 8.1.1 of de la Peña & Giné (1999). First note that
E [gp(Xi, Xj)|Xj ] = E [gp(Xi, Xj)|Xi] = 0 by construction. This implies that

E [Ym(p)|Fm−1] =

m−1∑
i=1

E [gp(Xm, Xi)|Fm−1] =

m−1∑
i=1

E [gp(Xm, Xi)|Xi] = 0

for all m ≥ 2. Since Ūm =
∑m
i=1 Yi(p), it holds that

E
[
Ūm|Fm−1

]
= Ūm−1 + E [Ym(p)|Fm−1] = Ūm−1 .

Finally, it is straightforward that E [|Ym(p)|] <∞ which implies that Ū2, Ū3, . . . is a discrete-time
martingale by definition.

The empirical sequence is ūm =
∑m
i=1 ym(p) with

yj(p) =

m−1∑
i=1

1 {xi = xj} −
m−1∑
i=1

pxi − (m− 1)pxj + (m− 1)C(p)

which is a realization of a martingale with bounded difference such that |Ūk − Ūk−1| = |Yk| ≤ 4m
and y1(p) = 0. However we cannot compute the empirical sequence, since the parameters of
distribution are not known. As a remedy, we further decompose Ūn as the sum of two sequences
based on the observation that

E [pXi ] =
∑
i

p2
xi = C(p)
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which implies that
∑m
i=1(pXi − C(p)) which is again a zero-mean martingale sequence with the

same filtration Fm such that the difference |pXi −C(X)| < 1 for all i. This motivates the following
decomposition of Ūn as

Yj(p) =

j−1∑
i=1

1 {Xi = Xj} − 2(j − 1)C(p)︸ ︷︷ ︸
Tj(p)

+ 2(j − 1)C(p)−
j−1∑
i=1

pXi − (j − 1)pXj︸ ︷︷ ︸
Ej(p)

Note that Tm(p) can be computed, and it is a zero-mean martingale sequence up to an error term
En(p) which we cannot be computed, since the parameters of the underlying distribution p is not
available to the tester. Also note that Tm(p) is a centralized version of Um defined in (11). More
detailed, we have that

2

m(m− 1)

m∑
i=1

Tm(p) = Um − C(p)

which means that Algorithm 2 uses the sequence of U1, . . . , Um as test statistic which was our point
of departure. Now we will focus on Em(p) and how it can be upper bounded.

Further note that En(p) can be again decomposed into sequence of sums of zero mean-mean terms
which we can upper bound with high probability. Due to the construction, it holds that

m∑
i=1

Yi(p) =

m∑
i=1

Ti(p) +

m∑
i=1

Ei(p)

We can apply the time uniform confidence interval of Howard et al. (2021) to the lhs which implies
that it holds that

Pr

[
∀m ∈ N :

∣∣∣∣∣ 2

m(m− 1)

m∑
i−1

Yi(p)

∣∣∣∣∣ ≥ φ(i, δ)

]
≤ δ . (12)

if the data is generated from p where

φ(i, δ) = 1.7

√
log log i+ 0.72 log(10.4/δ)

i
.

Note that the confidence interval of Howard et al. (2021) applies to the sum of discrete time mar-
tingales where each term is sub-Gaussian. This also applies to Yi(p, since it is a bounded random
variable.

Next we upper bound
∑
iEi(p). For doing so, we decompose each term as

Ei(p) =

i−1∑
j=1

(
F2(p)− pXj

)
+ (i− 1)(F2(p)− pXi)

which implies

m∑
i−1

Ei(p) =

m∑
i=1

i−1∑
j=1

(
F2(p)− pXj

)
+

m∑
i=1

(i− 1)(F2(p)− pXi)

=

m−1∑
i=1

(m− i)
(
F2(p)− pXi

)
+

m∑
i=1

(i− 1)(F2(p)− pXi)

= m

m∑
i=1

(
F2(p)− pXi

)
Apply the time uniform confidence interval of Howard et al. (2021) to Ei(p), we have that

Pr

[
∀m ∈ N :

∣∣∣∣∣ 2

m(m− 1)

m∑
i−1

Ei(p)

∣∣∣∣∣ ≥ φ(i, δ)

]
≤ δ . (13)
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Due to union bound, we can upper bound the difference of Ti(p) and Yi(p) using (13) and (12) as

2

m(m− 1)

∣∣∣∣∣
m∑
i=1

Yi(p)−
m∑
i=1

Ti(p)

∣∣∣∣∣ ≤ 2φ(i, δ/2)

with probability at least 1− δ for all m even if m is a random variable that depends on X1, . . . , Xm.
This implies that if the observations is generated from a distribution with parameters p, then

2
m(m−1)Ti(p) stays close to zero, including all distribution p0 such that C(p0) = c0. This im-
plies the correctness of Algorithm 2.

Finally note that∣∣∣∣∣ 2

m(m− 1)

m∑
i=1

Ym(p)− 2

m(m− 1)

m∑
i=1

Yi(p0)

∣∣∣∣∣ = |C(p)− C(p0)︸ ︷︷ ︸
=c0

|

for any p0 such that C(p0) = c0 which implies the sample complexity bound. This concludes the
proof.

G PROOF OF THEOREM 6

Before we proof the lower bound, we need to get a better understating of the relation of the total
variation distance and dC(p,p′) = |C(p)− C(p′)|

G.1 TOTAL VARIATION DISTANCE

The total variation distance between random variables X and Y is defined

|X − Y | = 1

2

∑
z

|Pr[X = z]− Pr[Y = z]|

where the sum is over the union of the supports of X and Y .

Theorem 7. For any X and Y

|C(X)− C(Y )| ≤ 6 |X − Y | .

Proof. Let z1, z2, . . . be an enumeration of the union of the supports of X and Y . Let pi = Pr[X =
zi] and qi = Pr[Y = zi].

Assume without loss of generality C(X) ≤ C(Y ). It suffices to prove C(Y ) ≤ C(X) + 6|X − Y |.
Let δi = pi − qi. We have

C(X) =
∑
i

p2
i

=
∑
i

(qi + δi)
2

=
∑
i

q2
i + 2

∑
i

qiδi +
∑
i

δ2
i

≤
∑
i

q2
i + 2

∑
i

qi|δi|+
∑
i

δ2
i

≤
∑
i

q2
i + 2

∑
i

|δi|+
∑
i

δ2
i

≤
∑
i

q2
i + 2

∑
i

|δi|+
∑
i

|δi|

= C(Y ) + 6|X − Y |

and rearranging completes the proof.

23



Under review as a conference paper at ICLR 2024

G.2 LOWER BOUND

Based on of Lemma A.1 due to Oufkir et al. (2021), one can lower bound the stopping time of any
sequential testing algorithm in expectation. Note that this lower bound readily applies to our setup
and implies a lower bound for the expected sample complexity which is

log 1/3δ

dKL(p,p′)
(14)

where
dC(p,p′) = |C(p)− C(p′)| = ε

In addition to this, the following Lemma lower bounds the sensitivity of KL divergence in terms of
collision probability.

Lemma 6. For any random variables X and X ′ with parameters p and p, it holds

dC(p,p′)2 ≤ 18dKL(p,p′)

Proof. Pinsker’s inequality and Theorem 7 implies this result.

Lemma 6 applied to (14) implies that Theorem 5 achieves optimal sample complexity, since for any
distribution for which

C(p0) = c0

and
dC(p,p′) = ε

the expected sample complexity of any tester is lower bounded by

log 1/3δ

ε2

This concludes the proof.

H BATCH TESTERS USED IN THE EXPERIMENTS

In the experimental study, we used two batch testers as baseline. Each of these testers are based on
learning algorithm which means that using a learning algorithm, the collision probability is estimated
with an additive error ε/2 and then one can decide whether the true collision probability is close to
c0 or not. This approach is caller testing-by-learning. In this section, we present exact sample
complexity bound for these batch testers and in addition to this, we show that these approaches are
optimal in minimax sense for testing collision probability for discrete distributions. In this section
we present the following results:

• We start by presenting a minmax lower bound for the batch testing problem which is
Ω(ε−2). In addition, we also show that the same lower bound applies to learning.

• In Subsection H.2, we consider two estimators, i.e. plug-in and U-statistic, and we compute
their sample complexity upper bound that are of order ε−2 and they differ only in constant.
These are presented in Theorem 8 and 9, respectively.

• In Subsection H.3, we present the testing-by-learning approach and discuss that the plug-in
estimator is minmax optimal on a wide range of parameters.

H.1 LOWER BOUND FOR ESTIMATION AND TESTING

To construct lower bound for estimation and testing we consider the pair of distributions defined
in (10) with τ = ε. In this case, we obtain two distributions such that dKL (p0,p1) = Θ(ε2) and
dC (p0,p1) ≥ ε/2. Then estimator lower bound can be obtained based on LeCam’s theorem (See
Appendix I.1) which is Θ(1/ε2) as follows.
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Corollary 2. For any estimator θ̂n for Collision probability F2(p) based on n ∈ o(1/ε2), there
exist a discrete distribution p for which

EP
[∣∣∣θ̂n(Dn)− F2(p)

∣∣∣] ≥ C · ε
where C > 0 does not depend on the distribution p.

One can show a similar lower bound for testing using Neyman-Pearson lemma. We refer the reader
to Section 3.1 of Canonne (2022b) for more detail. We recall this result here with dC .
Corollary 3. Let f an (ε, δ)-tester with sample complexity n. Then for any pair of distributions p0

and p1 such that dC(p0,p1) = ε, it holds that

1− 2δ ≤ dTV(p⊗n0 ,p⊗n1 )

where p⊗n is the n times product distribution from p.

Using Pinsker’s inequality it results in that

dTV(p⊗n0 ,p⊗n1 )2 ≤ 1

2
dKL(p⊗n0 ,p⊗n1 ) =

n

2
dKL(p0,p1) .

Accordingly, since we already constructed a pair of distributions for which d2(p0,p1) = ε and
dKL (p0,p1) = Ω(ε2), the sample compelxity lower bound for testing is also Ω(1/ε2).

H.2 PLUG-IN ESTIMATOR VERSUS U-STATISTIC ESTIMATOR

The first estimator is the plug-in estimator which estimates the distribution p by the normalized
empirical frequencies p̂ := p̂(Dm) and then the estimator is computed as

C(p̂) = F2(p̂) =

K∑
i=1

p̂2
i

In this section, we will other frequency moments of discrete distributions, therefore we will use
Fk(p) as the frequency moment of order k, which is the collision probability with k = 2.

The plug-in estimator is well-understood in the general case via lower and upper bound that are
presented in Acharya et al. (2014). Here we recall an additive error bound under Poissonization
which assumes that the sample size is chosen as M ∼ Poi(m) and the data is then DM .
Theorem 8. If

m ≥ max

{
1600F3/2(p)2

ε2
,

8

ε2
log

2

δ

}
=

8

ε2
·max

{
200 · F3/2(p)2, log

2

δ

}
.

then
P (|F2(p̂(DM ))− T2(X)| ≥ ε) ≤ δ

where the dataset DM is sampled with sample size M ∼ Poi(m).

Proof. Based on Theorem 9 of Acharya et al. (2014), the bias of the estimator with Poissonization
is

|E [F2(p̂(DM ))]− T2(X)| ≤ 8

m
+

10√
m
F3/2(p)

and its variance is
V [F2(p̂(DM ))] ≤ 64

m3
+

4 · 17√
m
F7/2(p) .

Thus

P (|F2(p̂(DM ))− T2(X)| ≥ ε) = P (|F2(p̂(DM ))− E [F2(p̂(DM ))] + E [F2(p̂(DM ))]− T2(X)| ≥ ε)
≤ P (|F2(p̂(DM ))− E [F2(p̂(DM ))]| ≥ ε− |E [F2(p̂(DM ))]− T2(X)|)

where we applied the triangle inequality. Therefore if m is big enough, then it holds that

8

m
+

10√
m
F3/2(p) ≤ ε

2
(15)
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and also holds

P (|F2(p̂(DM ))− E [F2(p̂(DM ))]| ≥ ε/2) ≤ δ (16)

thus the statement in the theorem holds. What remains is to compute a lower bound for m. (15)
holds if

m ≥ max

{
32

ε
,

1600F3/2(p)2

ε2

}
.

Based on Bernstein’s inequality, see Theorem 11 in Appendix I, (16) hold if

m ≥ max

8 log 2
δ

ε2
,

4736 · 4

√
log 2

δ√
ε

,
6528 3

√
F7/2(p) log 2

δ

ε4/3


which concludes the proof. To simplify the last terms, alternatively we can apply Hoeffding’s in-
equality which yields that (16) holds whenever

m ≥ 8

ε2
log

2

δ
.

Finally note that 32/ε ≤ 8/ε2 log 2/δ for any ε, δ ∈ (0, 1] which concludes the proof.

Theorem 9. If

m ≥ max

{
32(F3(X)− F2(X)2)

ε2
ln

4

δ
,

128 + 1/6

ε
ln

4

δ

}
then

P (|F2(X)− U(Dm)| ≥ ε) ≤ δ

Proof. Based on Theorem 9 of Acharya et al. (2014), the bias of the estimator with Poissonization
is

|E [F2(p̂(DM ))]− T2(X)| ≤ 8

m
+

10√
m
F3/2(p)

and its variance is
V [F2(p̂(DM ))] ≤ 64

m3
+

4 · 17√
m
F7/2(p) .

Thus

P (|F2(p̂(DM ))− T2(X)| ≥ ε) = P (|F2(p̂(DM ))− E [F2(p̂(DM ))] + E [F2(p̂(DM ))]− T2(X)| ≥ ε)
≤ P (|F2(p̂(DM ))− E [F2(p̂(DM ))]| ≥ ε− |E [F2(p̂(DM ))]− T2(X)|)

where we applied the triangle inequality. Therefore if m is big enough, then it holds that
8

m
+

10√
m
F3/2(p) ≤ ε

2
(17)

and also holds

P (|F2(p̂(DM ))− E [F2(p̂(DM ))]| ≥ ε/2) ≤ δ (18)

thus the statement in the theorem holds. What remains is to compute a lower bound for m. (17)
holds if

m ≥ max

{
32

ε
,

1600F3/2(p)2

ε2

}
.

Based on Bernstein’s inequality, see Theorem 11 in Appendix I, (18) hold if

m ≥ max

8 log 2
δ

ε2
,

4736 · 4

√
log 2

δ√
ε

,
6528 3

√
F7/2(p) log 2

δ

ε4/3


which concludes the proof. To simplify the last terms, alternatively we can apply Hoeffding’s in-
equality which yields that (18) holds whenever

m ≥ 8

ε2
log

2

δ
.

Finally note that 32/ε ≤ 8/ε2 log 2/δ for any ε, δ ∈ (0, 1] which concludes the proof.
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Note that as soon as (F3(X) − F2(X)2)/5 ≤ ε, the second term of the sample complexity
of Theorem 9 becomes dominant, and thus the sample complexity in these parameter regime is
O(ln(1/δ)/ε). In addition to this, it is easy to see that the first tern of the sample complexity is zero
when X is distributed uniformly.

H.3 TESTING BY LEARNING

Testing by learning consists of estimating the parameter itself with a small additive error which
allows us to distinguish between null H0 and alternative hypothesis H1. This approach had been
found to be optimal in several testing problem Busa-Fekete et al. (2021), as it is also optimal in this
case based on the lower bound presented in the previous section. We considered several estimators
for Collision entropy which can be used in a batch testing setup by setting the sample size so as
the additive error of the estimator is smaller than ε/2. In this way, we can distinguish between H0

and H1 as expected. The confidence interval of each estimator does depend on some frequency
moment of the underlying distribution which can be upper worst case upper bounded. For example,
the plug-n estimator sample complexity m is 1600/ε2 if e−199 ≤ δ.

I TECHNICAL TOOLS

I.1 LECAM’S LOWER BOUND

Let θ̂n = θ̂(x1, . . . , xn) such that θ̂n : (Σd)n 7→ R be an estimator using n samples.
Theorem 10. [Le Cam’s theorem] Let P be a set of distributions. Then, for any pair of distributions
P0, P1 ∈ P , we have

inf
θ̂

max
P∈P

EP
[
d(θ̂n(P ), θ(P ))

]
≥ d(θ(P0), θ(P1))

8
e−ndKL(P0,P1),

where θ(P ) is a parameter taking values in a metric space with metric d, and θ̂n is the estimator of
θ based on n samples.

I.2 BERSNTEIN’S BOUND

The following form of Bernstein’s bound can be derived from Theorem 1.4 of Dubhashi & Panconesi
(2009).
Theorem 11. (Bernstein’s bound) Let X1, . . . , Xn be i.i.d. random variables, and ∀i ∈ [n], |Xi −
E[Xi]| ≤ b and E[Xi] = µ. Let σ2 = V[Xi]. Then with probability at least 1− δ it holds that∣∣∣∣∣ 1n

n∑
i=1

Xi − µ

∣∣∣∣∣ ≤
√

4σ2 ln 2
δ

n
+

4b ln 2
δ

3n
.

J COMPARISON TO DASKALAKIS & KAWASE (2017)

Daskalakis & Kawase (2017) described a sequential testing algorithm that can be adapted to collision
probability testing. However, their approach has two major disadvantages relative to Algorithm
2, both of which lead to much higher sample complexities in practice. First, their approach is
based on a simple “doubling trick”: They repeatedly invoke a non-sequential testing algorithm on
subsequences of samples with successively smaller values of the error tolerance ε, and stop when the
testing algorithm rejects. This is a wasteful use of samples compared to our approach, as stopping
cannot occur within a subsequence, and everything learned from previous subsequences is discarded.
Second, applying their approach to collision probability testing requires partitioning the n samples
into n

2 disjoint pairs, so that the observed collisions are independent of each other. By contrast, our
approach uses observed collisions among all

(
n
2

)
pairs of samples to estimate collision probability,

which significantly complicates the theoretical analysis, but leads to better empirical performance.

We ran experiments comparing the two algorithms on the power law distribution (pi ∝ 1/i) and
exponential distribution (pi ∝ exp(−i)), with the results depicted in Figure 4. We found that as each
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tester’s null hypothesis approaches the true collision probability, the empirical sample complexity of
Daskalakis & Kawase (2017)’s algorithm became much larger than the empirical sample complexity
of Algorithm 2.

Figure 4: Sample complexity of our sequential tester (Algorithm 2) compared to the sample com-
plexity of Daskalakis & Kawase (2017)’s sequential tester adapted for collision probability testing.

K FAILURE OF REDUCTION TO DISTRIBUTION ESTIMATION

In Section 6 we showed empirically that our method for privately estimating the collision probability
of a distribution outperforms the indirect method of privately estimating the distribution itself and
then computing the collision probability of the estimated distribution. In this section we prove a
theoretical separation between these two methods, by showing that the reduction does not work
in general. Specifically, we show that even if the private distribution estimation algorithm has the
optimal sample complexity, using it as a subroutine for collision probability estimation may require
a number of samples that depends on the support size of the distribution. By contrast, the sample
complexity of our method is independent of support size (see Theorem 2).

Let [k] = {1, . . . , k} be the sample space. Let ∆k be the set of all distributions on [k]. Let A :
[k]n → ∆k denote an algorithm that inputs n samples, one per user, and outputs an estimated
distribution. An (α, β)-local differentially private algorithm A∗ is (α, β)-minimax optimal if

A∗ = arg min
A

max
p∈∆k

E(x1,...,xn)∼pn [‖A(x1, . . . , xn)− p‖1]

where the minimization is over all (α, β)-local differentially private algorithms. Recall from Section
3 that C(p) =

∑k
i=1 p

2
i denotes the collision probability of a distribution p ∈ ∆k.

Theorem 12. There exists an algorithm A∗ : [k]n → ∆k that is (α, 0)-minimax optimal for all
α ≥ log k and a distribution p ∈ ∆k such that if each xi ∈ [k] is drawn independently from p then

E [|C(A(x1, . . . , xn))− C(p)|] ≥ Ω

(
min

{
1,

k√
n

})
.

Proof. It is known that k-ary randomized response is (α, 0)-minimax optimal for all α ≥ log k
(Acharya et al., 2019b). In this algorithm, each user i reports their true value xi with probability

eε

eε+k−1 , and otherwise reports another value chosen uniformly at random. The estimated distribu-
tion p̃ is defined by p̃i = b(p̂i − a), where p̂ is the empirical distribution and a = k−1

eε+k−1 and
b = eε+k−1

eε−k+1 serve to debias the noise introduced by the randomized response. Now suppose the true
distribution p is concentrated on a single element. It follows straightforwardly from some algebra
that for large n we have E[|C(p̃)−C(p)|] ≥ b√

n
. Noting that b = Ω(k) when α = log k completes

the proof.

By contrast, our method for estimating collision probability is (α, β)-differentially private, and if

α = log k it achieves O
(√

log 1
β

n

)
error (see Theorem 2).
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