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Abstract

We consider a statistical model for matrix factorization in a regime where the rank1

of the two hidden matrix factors grows linearly with their dimension and their2

product is corrupted by additive noise. Despite various approaches, statistical and3

algorithmic limits of such problems have remained elusive. We study a Bayesian4

setting with the assumptions that (a) one of the matrix factors is symmetric, (b)5

both factors as well as the additive noise have rotational invariant priors, (c) the6

priors are known to the statistician. We derive analytical formulas for Rotation7

Invariant Estimators to reconstruct the two matrix factors, and conjecture that8

these are optimal in the large-dimension limit, in the sense that they minimize9

the average mean-square-error. We provide numerical checks which confirm the10

optimality conjecture when confronted to Oracle Estimators which are optimal by11

definition, but involve the ground-truth. Our derivation relies on a combination of12

tools, namely random matrix theory transforms, spherical integral formulas, and13

the replica method from statistical mechanics.14

1 Introduction15

Matrix factorization (MF) is the problem of reconstructing two matrices X and Y from the noisy16

observations of their product. Applications in signal processing and machine learning abound, such as17

for example dimensionality reduction [1, 2], sparse coding [3–5], representation learning [6], robust18

principal components analysis [7, 8], blind source separation [9], or matrix completion [10, 11].19

In this work we approach the problem from a Bayesian perspective and assume that an observation or20

data matrix S =
√
κXY +W is given to a statistician who knows the prior distributions of X and21

Y as well as the prior of the additive noise matrix W and the signal-to-noise ratio κ > 0. The task22

of the statistician is to construct estimators ΞX(·), ΞY (·) for the matrix factors X , Y , that ideally,23

minimize the average mean-square-error (MSE) E∥X − ΞX(S)∥2F and E∥Y − ΞY (S)∥2F (∥.∥F24

the Frobenius norm and E the expectation w.r.t X,Y ,W ). We consider priors which are rotation25

invariant for all three matrices X , Y , W and for X we furthermore impose that it is square and26

symmetric. These matrix ensembles are defined precisely in section 2.1, but the reader can keep in27

mind the examples of Wigner or Wishart matrices for X , and general Gaussian Y and W with i.i.d28

elements. We look at the asymptotic regime where all matrix dimensions and ranks tend to infinity29

at the same speed. We remark that the usual "rotation ambiguity" occuring in MF is not present30

because we impose that at least one of the two matrix factors is symmetric. We also remark that31

MF is different (and more difficult) than matrix denoising which would consist in constructing an32

estimator ΞXY (S) for the signal as a whole by minimizing E∥XY −ΞXY (S)∥2F.33

The rotation invariance of the model implies that the estimators minimizing the MSE belong to34

the class of rotation invariant estimators (RIE). RIEs are matrix estimators which have the same35

singular vectors (or eigenvectors) as the observation or data matrix. These estimators have been36
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proposed for matrix denoising problems (see references [12–15] for covariance estimation, [16] for37

cross-covariance estimation, and [17], [18] for extensions to rectangular matrices). For the present38

MF model, we derive optimal estimators (minimizing the MSE) that belong to the RIE class and can39

be computed explicitly in the large dimensional limit from the observation matrix and the knowledge40

of the priors. We propose:41

1. an explicit RIE to estimate X , which requires the knowledge of the priors of both X,Y42

and of the noise W . Moreover, under the assumption that X is positive-semi-definite, a43

sub-optimal RIE can be derived which does not require any prior on X .44

2. an explicit RIE to estimate Y , which requires the knowledge of the priors of the noise W45

and X only (the prior of Y is not required).46

3. combined with the singular value decomposition (SVD) of the observation matrix, our47

explicit RIEs provide a spectral algorithm to reconstruct both factors X and Y .48

The derivation of the proposed estimators relies on the replica method from statistical mechanics49

combined with techniques from random matrix theory and finite-rank spherical integrals [19, 20].50

Although the replica method is not rigorous and involves concentration assumptions, the derivation is51

entirely analytical and suggests that the estimators are optimal in the limit of large dimensions. This52

is corroborated by numerical calculations comparing our explicit RIEs with Oracle Estimators which53

are optimal by definition and involve the ground-truth matrices.54

1.1 Related literature and discussion55

When the matrices X and Y are assumed to have low-rank compared to their dimension, the56

mathematical theory of MF has enjoyed much progress under various settings (Bayesian, spectral,57

algorithmic) and fundamental information theoretical and algorithmic limits have been rigorously58

derived [21–27].59

In extensive-rank regimes, when the rank grows like the matrix dimensions, despite various attempts60

there is no solid theory of MF. One approach is based on Approximate Message Passing (AMP)61

methods developed in [28–30]. Despite acceptable performance in practical settings [31], as pointed62

out in [32] the AMP algorithms developed in these works are (theoretically) sub-optimal. Other63

approaches rooted in statistical physics have been considered in [32, 33] but have not led to explicit64

reconstructions of matrix factors or algorithms. A practical probabilistic approach to MF problem is65

based on variational Bayesian approximations [34–36], in which one tries to approximate the posterior66

distribution with proper distribution. In [37] it is shown that under Gaussian priors, the solution to the67

MF problem is a reweighted SVD of the observation matrix. We point out here that these estimators68

can be seen as a RIE and therefore there seems to be a rather close relation between the RIE studied69

here and the variational Bayesian approach. This also suggests that adapting RIEs to real data is an70

interesting direction for future research. Finally, let us also mention optimization approaches where71

one constructs estimators by following a gradient flow (or gradient descent) trajectory of a training72

loss of the type ∥S −XY ∥2F + reg. term (see [38], [39] for analysis in rotation invariant models).73

Benchmarking these various other algorithmic approaches against our explicit RIEs (conjectured to74

be optimal) is outside the scope of this work and is left for future work.75

Constraints such as sparsity or non-negativity of the matrix entries which have important applications76

[40] are not covered by our theory. Despite this drawback, we believe that the proposed estimators77

are important both for theoretical and practical purposes. Even in non-rotation invariant problems our78

explicit RIEs may serve as sub-optimal estimators, and as we show in an example they can be used79

as a "warmed-up" spectral initialization for more efficient algorithms (see for example [41, 42] for80

related ideas in other contexts). The methodology developed here may open up the way to further81

analysis in inference and learning problems perhaps also in the context of neural networks where82

extensive rank weight matrices must be estimated.83

1.2 Organization and notations84

In section 2, we introduce the precise MF model, general class of RIEs, and the Oracle estimators.85

In section 3, we present the explicit RIEs (and algorithm) to estimate X and Y . We provide the86

numerical examples and calculations in section 4. In section 5, we sketch the derivation of RIE for87

X , while the one for Y is similar and deferred to the appendices.88
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The following notations are used throughout. For a vector γ ∈ RN we denote by Γ ∈ RN×M a matrix89

constructed as Γ =
[
ΓN 0N×(M−N)

]
with ΓN ∈ RN×N a diagonal matrix with diagonal γ.90

The same notations will also be used for the vector σ and the corresponding matrix Σ and . For a91

sequence of non-symmetric matrices A of growing size, we denote the limiting empirical singular92

value distribution (ESD) by µA, and the limiting empirical eigenvalue distribution of AA⊺ by ρA.93

For a sequence of symmetric matrices B of growing size, we denote the limiting empirical eigenvalue94

distribution by ρB , and the limiting eigenvalue distribution of B2 by ρB2 .95

2 Matrix factorization model and rotation invariant estimators96

2.1 Matrix factorization model97

Let X = X⊺ ∈ RN×N a symmetric matrix distributed according to a rotationally invariant prior98

PX(X), i.e., for any orthogonal matrix O ∈ RN×N we have PX(OXO⊺) = PX(X). Let also99

Y ∈ RN×M be distributed according to a bi-rotationally invariant prior PY (Y ), i.e. for any100

orthogonal matrices U ∈ RN×N ,V ∈ RM×M we have PY (UY V ⊺) = PY (Y ). We observe the101

data matrix S ∈ RN×M ,102

S =
√
κXY +W (1)

where W ∈ RN×M is also bi-rotationally invariant distributed, and κ ∈ R+ is proportional to the103

signal-to-noise-ratio (SNR). The goal is to recover both factors X and Y from the data matrix S.104

For definiteness, we consider the regime M ≥ N with aspect ratio N/M → α ∈ (0, 1] as N → ∞.105

The case of α > 1 can be analyzed in the same manner and is presented in section F. Furthermore,106

we assume that the entries of X,Y and W are of the order O(1/
√
N). This scaling is such that the107

eigenvalues of X and singular values of Y ,W and S are of the order O(1) as N → ∞.108

Assumption 1. The empirical eigenvalue distribution of X converge weakly to measure ρX , and the109

ESD of Y ,W converge weakly to measures µY , µW with bounded support on the real line. Moreover,110

these measures are known to the statistician. He can deduce (in principle) these measures from the111

priors on X,Y ,W .112

Remark 1. In a general formulation of matrix factorization the hidden matrices have dimensions113

X ∈ RN×H ,Y ∈ RH×M , and in the Bayesian framework with bi-rotational invariant priors for114

both factors, the optimal estimators are trivially the zero matrix. Indeed, from bi-rotational invariance115

we have PX(−X) = PX(X), PY (−Y ) = PY (Y ), which implies that the Bayesian estimate is116

zero. Here, by imposing that X ∈ RN×N is symmetric and PX(OXO⊺) = PX(X), we can break117

this symmetry and find non-trivial estimators. This is due to the fact that the map X → −X cannot118

be realized as a (real) orthogonal transformation, so PX(−X) = PX(X) does not hold in general119

(various examples are given in section 4 and appendices). Of course, if the prior is even, e.g. Wigner120

ensemble, again the Bayesian posterior estimate is trivially zero for both factors. As we will see our121

RIEs are consistent with these observations.122

2.2 Rotation invariant estimators123

To recover matrices X,Y from S, we consider two denoising problems. One is recovering X by124

treating both Y ,W as "noise" matrices, and the other is estimating Y by treating X,W as "noise".125

As will become clear the procedure is not iterative, and the two denoising problems are solved126

independently and simultaneously. In the following, for each of these two problems, we introduce two127

rotation invariant classes of estimators and discuss their optimum Oracle estimators. We then provide128

an explicit construction and algorithm for RIEs which we conjecture have the optimum performance129

of Oracle estimators in the large N limit.130

2.2.1 RIE class for X131

Consider the SVD of S = USΓV
⊺
S , where US ∈ RN×N , VS ∈ RM×M are orthogonal, and132

Γ ∈ RN×M is a diagonal matrix with singular values of S on its diagonal,
(
γi
)
1≤i≤N

. A rotational133

invaraint estimator for X is denoted ΞX(S), and is constructed as:134

ΞX(S) = US diag(ξx1, . . . , ξxN )U⊺
S (2)

where ξx1, . . . , ξxN are the eigenvalues of the estimator.135
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First, we derive an Oracle estimator by minimizing the squared error 1
N

∥∥X −ΞX(S)
∥∥2
F

for a given136

instance, over the RIE class or equivalently over the choice of the eigenvalues
(
ξxi

)
1≤i≤N

. Let the137

eigen-decomposition of X be X =
∑N

i=1 λi xix
⊺
i with xi ∈ RN eigenvectors of X . The error can138

be expanded as:139

1

N

∥∥X −ΞX(S)
∥∥2
F
=

1

N

N∑

i=1

λ2
i +

1

N

N∑

i=1

ξx
2
i −

2

N

N∑

i=1

ξxi

N∑

j=1

λj

(
u⊺
i xj

)2

where ui’s are columns of US . Minimizing over ξxi’s, we find the optimum among the RIE class:140

Ξ∗
X(S) =

N∑

i=1

ξ∗xi uiu
⊺
i , ξ∗xi =

N∑

j=1

λj

(
u⊺
i xj

)2
= u⊺

i Xui (3)

Expression (3) defines the Oracle estimator which requires the knowledge of signal matrix X .141

Surprisingly, in the large N limit, the optimal eigenvalues
(
ξ∗xi

)
1≤i≤N

can be computed from the142

observation matrix and knowledge of the measures ρX , µY , µW . In the next section, we show that143

this leads to an explicitly computable (or algorithmic) RIE, which we conjecture to be optimal as144

N → ∞, in the sense that its performance matches the one of the Oracle estimator.145

Now we remark that the Oracle estimator is not only optimal within the rotation invariant class but146

is also Bayesian optimal. From the Bayesian estimation point of view, one wishes to minimize the147

average mean squared error (MSE) MSEX̂ ≡ 1
NE

∥∥X − X̂(S)
∥∥2
F

, where the expectation is over148

X,Y ,W , and X̂(S) is an estimator of X . The MSE is minimized for X̂∗(S) = E[X|S] which is149

the posterior mean. Therefore, the posterior mean estimator has the minimum MSE (MMSE) among150

all possible estimators, in particular MSEX̂∗ ≤ MSEΞ∗
X

for any N . In section A.1, we show that, for151

rotational invariant priors, the posterior mean estimator is inside the RIE class. Thus, since Ξ∗
X(S) is152

optimum among the RIE class MSEΞ∗
X
≤ MSEX̂∗ . Therefore, we conclude that the Oracle estimator153

(3) is Bayesian optimal in the sense that MSEΞ∗
X
= MSEX̂∗ = MMSE.154

2.2.2 RIE class for Y155

Estimators for Y from the rotation invariant class are denoted ΞY (S), and are constructed as:156

ΞY (S) = US

[
diag(ξy1, . . . , ξyN ) 0N×(M−N)

]
V ⊺
S (4)

where ξy1, . . . , ξyN are the singular values of the estimator.157

Let the SVD of Y be Y =
∑N

i=1 σi y
(l)
i y

(r)
i

⊺
with y

(l)
i ∈ RN ,y

(r)
i ∈ RM the left and right singular158

vectors of Y . To derive an Oracle estimator, we proceed as above. Expanding the error, we have:159

1

N

∥∥Y −ΞY (S)
∥∥2
F
=

1

N

N∑

i=1

σ2
i +

1

N

N∑

i=1

ξy
2
i −

2

N

N∑

i=1

ξyi

N∑

j=1

σj

(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)

where vi’s are columns of VS . Minimizing over ξyi’s, we find the optimum among the RIE class:160

Ξ∗
Y (S) =

N∑

i=1

ξ∗yi uiv
⊺
i , ξ∗yi =

N∑

j=1

σj

(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)
= u⊺

i Y vi (5)

Expression (5) defines the Oracle estimator which requires the knowledge of signal matrix Y . Like161

for the case of X , in the large N limit we can derive the optimal singular values
(
ξ∗yi

)
1≤i≤N

in terms162

of the singular values of observation matrix and knowledge of the measures ρX , µW . This leads to163

an explicitly computable (or algorithmic) RIE, which is conjectured to be optimal as N → ∞, in the164

sense that it has the same performance as the Oracle estimator. Note that unlike the estimator for X ,165

we do not need the knowledge of µY .166

In section A.2, we show that for bi-rotationally invariant priors the posterior mean estimator Ŷ ∗(S) =167

E[Y |S] belongs to the RIE class, which (by similar arguments to the case of X) implies that the168

Oracle estimator (5) is Bayesian optimal.169
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3 Algorithmic RIEs for the matrix factors170

In this section, we present our explicit RIEs for X,Y and the corresponding algorithm. We conjecture171

that their performance matches the one of Oracles estimators in the large N limit and they are therefore172

Bayesian optimal in this limit. Let us first give a brief reminder on useful transforms in random173

matrix theory.174

3.1 Preliminaries on transforms in random matrix theory175

For a probability density function ρ(x) on R, the Stieltjes (or Cauchy) transform is defined as176

Gρ(z) =

∫

R

1

z − x
ρ(x) dx for z ∈ C\supp(ρ)

By Plemelj formulae we have for x ∈ R,177

lim
ϵ→0+

Gρ(x− iϵ) = πH[ρ](x) + πiρ(x) (6)

with H[ρ](x) = p.v. 1π
∫
R

ρ(t)
x−tdt the Hilbert transform of ρ (here p.v. stands for "principal value").178

Denoting the inverse of Gρ(z) by G−1
ρ (z), the R-transform of ρ is defined as [43]:179

Rρ(z) = G−1
ρ (z)− 1

z
For a probability density function µ with support contained in[−K,K] with K > 0, we define a180

generating function of (even) moments Mµ : [0,K−2] → R+ as Mµ(z) =
∫

1
1−t2zµ(t) dt− 1. For181

α ∈ (0, 1], define T (α)(z) = (αz + 1)(z + 1), and H(α)
µ (z) = zT (α)

(
Mµ(z)

)
. The rectangular182

R-transform with aspect ratio α is defined as [44]:183

C(α)
µ (z) = T (α)−1

( z

H(α)
µ

−1
(z)

)

3.2 Explicit RIE for X184

The RIE for X is constructed as Ξ̂∗
X(S) =

∑N
i=1 ξ̂

∗
xiuiu

⊺
i with eigenvalues

(
ξ̂∗xi

)
1≤i≤N

:185

ξ̂∗xi =
1

2κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

ζ3

[
GρX

(√z − ζ1
κζ3

)
+ GρX

(
−
√

z − ζ1
κζ3

)]}
(7)

where γi is the i-th singular value of S, µ̄S is the symmetrized limiting ESD of S, and186

ζ1 =
1

Gµ̄S
(z)

C(α)
µW

(
Gµ̄S

(z)
[
αGµ̄S

(z) +
1− α

z

])
(8)

and ζ3 satisfies 1:187

(z − ζ1)Gµ̄S
(z)− 1 = C(α)

µY

( 1

ζ3

[
αGµ̄S

(z) +
1− α

z

][
(z − ζ1)Gµ̄S

(z)− 1
])

(9)

Remark 2. If ρX is a symmetric measure, ρX(x) = ρX(−x), then GρX
(−z) = −GρX

(z). This188

implies that the optimal eigenvalues
(
ξ̂∗xi

)
1≤i≤N

in (7) are all zero, and Ξ̂∗
X(S) = 0, see figure 4.189

3.2.1 An estimator for X2190

It is interesting to note that we can construct a RIE for X2 as Ξ̂∗
X2(S) =

∑N
i=1 ξ̂

∗
x2 i

uiu
⊺
i with191

eigenvalues
(
ξ̂∗x2 i

)
1≤i≤N

:192

ξ̂∗x2 i
=

1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ1
ζ3

Gµ̄S
(z)− 1

ζ3
(10)

with ζ1, ζ3 as in (8), (9). Note that, ζ1, ζ3 can be evaluated using the observation matrix and the193

knowledge of µY , µW , and therefore this time the statistician does not need to know the prior of X .194

Furthermore, assuming that X is positive semi-definite (PSD), we can construct a sub-optimal RIE195

for X by using
√
ξ̂∗x2 i

for the eigenvalues of the estimator.196

1ζ1, ζ3 are the only parameters which appear in the final estimator. However, in derivation of the RIE, we
have defined other parameters which do not appear in the final estimator and we omit them here.
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3.2.2 Case of Gaussian Y ,W197

If Y ,W have i.i.d. Gaussian entries with variance 1/N , then C(α)
µY (z) = C(α)

µW (z) = z/α. Consequently,198

ζ1, ζ3 can easily be computed to be ζ1 = ζ3 = Gµ̄S
(z) + (1−α)/(αz), thus the estimator (7) can be199

evaluated from the observation matrix. In particular, the estimator (10) simplifies to:200

ξ̂∗x2 i
=

1

κ

[
− 1 +

1

α
(
π2µ̄S(γi)2 +

(
πH[µ̄S ](γi) +

1−α
αγi

)2)
]

(11)

3.3 Explicit RIE for Y201

Our explicit RIE for Y is constructed as Ξ̂∗
Y (S) =

∑N
i=1 ξ̂

∗
yi
uiv

⊺
i with singular values

(
ξ̂∗yi

)
1≤i≤N

:202

ξ̂∗yi =
1√
κ

1

πµ̄S(γi)
Im lim

z→γi−i0+
q4 (12)

where γi is the i-th singular value of S, and q4 is the solution to the following system of equations 2:203 



β1 =
C(α)
µW

(q1q2)

q1
+ 1

2

√
q3
q1

(
RρX

(
q4 +

√
q1q3

)
−RρX

(
q4 −√

q1q3
))

β4 = 1
2

(
RρX

(
q4 +

√
q1q3

)
+RρX

(
q4 −√

q1q3
))

q1 = Gµ̄S
(z), q2 = αGµ̄S

(z) + (1− α) 1z
q3 = (z−β1)

2

β2
4

Gµ̄S
(z)− z−β1

β2
4

, q4 = z−β1

β4
Gµ̄S

(z)− 1
β4

(13)

Similarly to the estimator derived for X , if ρX is a symmetric measure then the optimal singular204

values for the estimator of Y are all zero, see remark 5.205

If X is a shifted Wigner matrix, i.e. X = F + cI with F = F ⊺ ∈ RN×N having i.i.d. Gaussian206

entries with variance 1/N and c ̸= 0 a real number, then RρX
(z) = z + c. Moreover, if W is207

Gaussian matrix with variance 1/N , then the set of equations (13) simplifies to a great extent, and we208

can compute q4 analytically in terms of Gµ̄S
(z), see section D.4.209

3.4 Algorithmic nature of the RIEs210

The explicit RIEs (7) and (12) proposed in this section, provide spectral algorithms to estimate the211

matrix factors from the data matrix (and the priors). An essential ingredient that must be extracted212

from the data matrix is Gµ̄S
(z). This quantity can be approximated from the observation matrix using213

Cauchy kernel method introduced in [45](see section 19.5.2), from which µ̄S(.) can be approximated214

using (6). Therefore, given an observation matrix S, the spectral algorithm proceeds as follows:215

1. Compute the SVD of S.216

2. Approximate Gµ̄S
(z) from the singular values of S.217

3. Construct the RIEs for X,Y as proposed in paragraphs 3.2, 3.3.218

4 Numerical results219

4.1 Performance of RIE for X220

We consider the case where Y ,W both have i.i.d. Gaussian entries of variance 1/N, and X is221

a Wishart matrix, X = HH⊺ with H ∈ RN×4N having i.i.d. Gaussian entries of variance 1/N.222

For various SNRs, we examine the performance of two proposed estimators, the RIE (7), and the223

square-root of the estimator (10) (since X is PSD), which is sub-optimal. In figure 1, the MSEs224

of these algorithmic estimators are compared with the one of Oracle estimator (3). We see that the225

average performance of the algorithmic RIE Ξ̂∗
X(S) is very close to the (optimal) Oracle estimator226

Ξ∗
X(S) (relative errors are small and provided in the appendices) and we believe that the slight227

mismatch is due to the numerical approximations and finite-size effects. Note that, although the228

estimator
√

Ξ̂∗
X2(S) is sub-optimal, it does not use any prior knowledge of X . For more examples,229

details of the numerical experiments and the relative error of the estimators, we refer to section C.3.230

2Like the case for X , we omit some of the parameters which do not appear in the final estimator.
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Oracle estimator, Ξ∗
X(S)

RIE, Ξ̂∗
X(S)√

Ξ̂∗
X2(S)

Figure 1: MSE of estimating X . MSE is normalized
by the norm of the signal, ∥X∥2F. X is a Wishart
matrix with aspect ratio 1/4, X = HH⊺ with H ∈
RN×4N having i.i.d. Gaussian entries of variance
1/N. Both Y and W are N ×M matrices with i.i.d.
Gaussian entries of variance 1/N. RIE is applied to
N = 2000,M = 4000, and the results are averaged
over 10 runs (error bars are invisible).

0 1 2 3 4 5

0.1

0.2

0.3

κ

M
S
E

Oracle estimator, Ξ∗
Y (S)

RIE, Ξ̂∗
Y (S)

Figure 2: MSE of estimating Y . MSE is normalized
by the norm of the signal, ∥Y ∥2F. Y has uniform spec-
tral density, U

(
[1, 3]

)
. X is a shifted Wigner matrix

with c = 3, and W is a N × M matrix with i.i.d.
Gaussian entries of variance 1/N. RIE is applied to
N = 2000,M = 4000, and the results are averaged
over 10 runs (error bars are invisible).

4.2 Performance of RIE for Y231

We consider the case where W has i.i.d. Gaussian entries of variance 1/N , and X is a shifted Wigner232

matrix with c = 3. Matrix Y is constructed as Y = UY ΣV ⊺
Y with UY ∈ RN×N ,VY ∈ RM×M are233

Haar distributed, and the singular values are generated independently from the uniform distribution234

on [1, 3]. MSEs of the RIE (12) and the Oracle estimator (5) are illustrated in figure 2. We see that235

the performance of the algorithmic RIE Ξ̂∗
Y (S) is very close to the optimal estimator Ξ∗

Y (S).236

Non-rotational invariant prior In another example, which we omit here, with the same settings237

for X,W , we consider the case where Y is a sparse matrix with entries distributed according to238

Bernoulli-Rademacher prior. The RIE is not optimal in this setting (since the prior is not bi-rotational239

invariant), however applying a simple thresholding function on the matrix constructed by RIE yields240

an estimate with lower MSE. This observation suggests that for the case of general priors, the RIEs241

can provide a spectral initialization for more efficient estimators. For more details and examples, see242

section D.4.243

4.3 Comparing RIEs of matrix factorization and denoising244

The proposed RIEs, namely (7) and (12), simplify greatly when the matrices W ,Y are Gaussian,245

and X is a shifted Wigner matrix. We perform experiments with these priors, where for a given246

observation matrix S, we look at the RIEs of X , Y for the MF problem, and simultaneously at247

the RIE of the product XY as a whole for the denoising problem with formulas introduced in [18]248

(which can also be obtained by taking X to be the identity matrix, see section D.3.1). Figure 3249

illustrates these experiments. In particular the MSE of the denoising-RIE matches well the one of the250

associated Oracle estimator, and as expected is lower than the MSE of the product of MF-RIEs.251

5 Derivation of the explicit RIEs252

In this section, we sketch the derivation of our explicit RIE for X . The RIE for Y is derived similarly,253

but requires more involved analysis and is presented in section D. For simplicity, we take the SNR254

parameter in (1) to be 1, so the model is S = XY +W . The optimal eigenvalues are constructed255

as ξ∗xi =
∑N

j=1 λj

(
u⊺
i xj

)2
. We assume that in the large N limit, ξ∗xi can be approximated by its256

expectation and we introduce257

ξ̂∗xi =
N∑

j=1

λj E
[(
u⊺
i xj

)2]
(14)

where the expectation is over the (left) singular vectors of the observation matrix S. Therefore,258

to compute these eigenvalues, we need to find the mean squared overlap E
[(
u⊺
i xj

)2]
between259
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Figure 3: MSE of factorization problem. MSE is normalized by the norm of the signal. X is a shifted Wigner
matrix with c = 1, and both Y and W are N ×M matrices with i.i.d. Gaussian entries of variance 1/N. RIE is
applied to N = 2000,M = 4000. In each run, the observation matrix S is generated according to (1), and the
factors X , Y are estimated simultaneously from S. Results are averaged over 10 runs (error bars are invisible).

eigenvectors of X and singular vectors of S. In what follows, we will see that (a rescaling of) this260

quantity can be expressed in terms of i-th singular value of S and j-th eigenvector of X (and the261

limiting measures, indeed). Thus, we will use the notation OX(γi, λj) := NE
[(
u⊺
i xj

)2]
in the262

following. In the next section, we discuss how the overlap can be computed from the resolvent of the263

"Hermitized" version of S.264

5.1 Relation between overlap and resolvent265

Construct the matrix S ∈ R(N+M)×(N+M) from the observation matrix:266

S =

[
0N×N S
S⊺ 0M×M

]

By Theorem 7.3.3 in [46], S has the following eigen-decomposition:267

S =

[
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

] [ ΓN 0 0
0 −ΓN 0
0 0 0

] [
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

]⊺
(15)

with VS =
[
V

(1)
S V

(2)
S

]
in which V

(1)
S ∈ RM×N . And, V̂ (1)

S = 1√
2
V

(1)
S , ÛS = 1√

2
US .268

Eigenvalues of S are signed singular values of S, therefore the limiting eigenvalue distribution of S269

(ignoring zero eigenvalues) is the same as the limiting symmetrized singular value distribution of S.270

Define the resolvent of S,271

GS(z) = (zI − S)−1

We assume that as N → ∞ and z is not too close to the real axis, the matrix GS(z) concentrates272

around its mean. Consequently, the value of GS(z) becomes uncorrelated with the particular273

realization of S. Specifically, as N → ∞ , GS(z) converges to a deterministic matrix for any274

fixed value of z ∈ C\R (independent of N). Denote the eigenvectors of S by si ∈ RM+N , i =275

1, . . . ,M +N . For z = x− iϵ with x ∈ R and small ϵ, we have:276

GS(x− iϵ) =
2N∑

k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
sks

⊺
k +

x+ iϵ

x2 + ϵ2

N+M∑

k=2N+1

sks
⊺
k

where γ̃k are the eigenvalues of S, which are in fact the (signed) singular values of S, γ̃1 =277

γ1, . . . , γ̃N = γN , γ̃N+1 = −γ1, . . . , γ̃2N = −γN .278

Define the vectors x̃i = [x⊺
i ,0M ]⊺ for xi eigenvectors of X . We have279

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i =

2N∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
x̃⊺
i sk

)2
+

ϵ

x2 + ϵ2

N+M∑

k=2N+1

(
x̃⊺
i sk

)2
(16)

Given the structure of sk’s in (15),
(
x̃⊺
i sj

)2
= 1

2

(
x⊺
i uj

)2
=

(
x̃⊺
i sj+N

)2
for 1 ≤ j ≤ N , and the280

second sum in (16) is zero. We assume that in the limit of large N this quantity concentrates on281
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Figure 4: Comparison of the theoretical prediction (20) of the
rescaled overlap with the numerical simulation. The rescaled overlap
between 200-th and 800-th left singular vector of S and the eigen-
vectors of X is illustrated. X = X⊺ ∈ RN×N has i.i.d. Gaussian
entries with variance 1/

√
N and is fixed. Both Y and Z are N ×M

matrices with i.i.d. Gaussian entries of variance 1/N. The simu-
lation results are average of 1000 experiments with fixed X , and
N = 1000,M = 2000. Some of the simulation points are dropped
for clarity.
One can see that the overlap is an even function of eigenvalues λi,
so the optimal eigenvalues ξ∗xi =

∑N
j=1 λj

(
u⊺

ixj

)2 are all zero, as
discussed in remark 2.

OX(γj , λi) and depends only on the singular values and eigenvalue pairs (γj , λi). We thus have:282

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i

N→∞−−−−→
∫

R

ϵ

(x− t)2 + ϵ2
OX(t, λi)µ̄S(t) dt (17)

where the overlap function OX(t, λi) is extended (continuously) to arbitrary values within the283

support of µ̄S (the symmetrized limiting singular value distribution of S) with the property that284

OX(t, λi) = OX(−t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find285

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i → πµ̄S(x)OX(x, λi) (18)

This is a crucial relation as it allows us to study the overlap by means of the resolvent of S. In the286

next section, we establish a connection between this resolvent and the signal X , which enables us to287

determine the optimal eigenvalues values ξ̂∗xi in terms of the singular values of S.288

5.2 Resolvent relation289

To derive the resolvent relation between S and X , we fix the matrix X and consider the model290

S = XU1Y V ⊺
1 +U2WV ⊺

2

with Y ,W ∈ RN×M fixed matrices with limiting singular value distribution µY , µW , and U1,U2 ∈291

RN×N ,V1,V2 ∈ RM×M independent random Haar matrices. Indeed, if we substitute the SVD of292

the matrices Y ,W in model (1) we find the latter model. Now, the average over the singular vectors293

of S (with fixed X) is equivalent to the average over the matrices U1,U2,V1,V2. In section C.1,294

using the Replica trick, we derive the following relation in the limit N → ∞:295

〈
GS(z)

〉
=

[
ζ−1
3 GX2

(
z−ζ1
ζ3

)
0

0 (z − ζ2)
−1IM

]
(19)

with ζ1, ζ2, ζ3 satisfying set of equations (41). ⟨.⟩ is the expectation w.r.t. the singular vectors of S296

(or equivalently over U1,U2,V1,V2), and GX2 is the resolvent of X2. As stated earlier, we assume297

that the resolvent GS(z) concentrates in the limit N → ∞, therefore we drop the brackets in the298

following computation.299

5.3 Overlaps and optimal eigenvalues300

From (18), (19), we find:301

OX(γ, λi) ≈
1

πµ̄S(γ)
Im lim

z→γ−i0+
x⊺
i ζ

−1
3 GX2

(z − ζ1
ζ3

)
xi

=
1

πµ̄S(γ)
Im lim

z→γ−i0+

1

z − ζ1 − ζ3λ2
i

(20)

In Fig. 4 we illustrate that the theoretical predictions (20) are in good agreement with numerical302

simulations for a particular case of X a Wigner matrix, and Y ,W with i.i.d. Gaussian entries.303

Once we have the overlap, we can compute the optimal eigenvalues to be304

ξ̂∗xi ≈
1

N

N∑

j=1

λjOX(γi, λj) ≈
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

λj

z − ζ1 − ζ3λ2
j

(21)

With a bit of algebra, we find the estimator in (7) in the limit N → ∞, see section C.2.305
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A Posterior mean estimator is in the RIE class422

In this section, we show that for rotational invariant priors, the posterior mean estimator is inside the423

RIE class. For each of the estimators of X,Y , we present an equivalent definition of the RIE, then424

we show that posterior mean estimator satisfies this definition.425

A.1 X Estimator426

Lemma 1. Given the observation matrix S, let X̂(S) be an estimator of X . Then X̂(S) is a RIE if427

and only if for any orthogonal matrices U ∈ RN×N ,V ∈ RM×M :428

X̂(USV ⊺) = UX̂(S)U⊺ (22)

Proof. If X̂(S) is a RIE, then the property (22) clearly follows from the definition (2). Now we turn429

to the converse.430

Suppose that an estimator X̂(S) satisfies (22). First, we show that if the observation matrix is431

diagonal, then the estimator is also diagonal. Consider the observation matrix to be Sdiag =432 [
diag(s1, . . . , sN) 0N×(M−N)

]
. Let I−

k ∈ RN×N ,J−
k ∈ RM×M be diagonal matrices with433

diagonal entries all one except the k-th entry which is −1. Note that for 1 ≤ k ≤ N , we have434

Sdiag = I−
k SdiagJ−

k . Moreover, matrices I−
k ,J−

k are indeed orthogonal. For any 1 ≤ k ≤ N , from435

the property we have:436

X̂(Sdiag) = X̂(I−
k SdiagJ−

k ) = I−
k X̂(Sdiag)I−

k (23)

This implies that all entries on the k-th row and k-th column of X̂(Sdiag) are zero except the k-th437

entry on the diagonal. Since this holds for any k, we conclude that X̂(Sdiag) is diagonal.438

Now, for a given general observation matrix with SVD S = USΓV
⊺
S , put U = U⊺

S ,V = V ⊺
S in the439

property (22). We have:440

X̂(Γ) = U⊺
SX̂(S)US

From the argument above, the matrix on the lhs is diagonal. Consequently, the matrix U⊺
SX̂(S)US441

is diagonal which implies that the columns of US are eigenvectors of X̂(S). Therefore, X̂(S) is a442

RIE.443

Now, we prove that the posterior mean estimator X̂∗(S) = E[X|S] has the property (22), and444

therefore belongs to the RIE class. For simplicity, we drop the SNR factor
√
κ. For any orthogonal445

matrices U ∈ RN×N ,V ∈ RM×M , we have:446

E[X|USV ⊺] =

∫
dY dX̃ X̃ PX(X̃)PY (Y )PW (USV ⊺ − X̃Y )∫
dY dX̃ PX(X̃)PY (Y )PW (USV ⊺ − X̃Y )

(a)
=

∫
dY dX̃ UX̃U⊺ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺Y )∫

dY dX̃ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺Y )

(b)
=

∫
dY dX̃ UX̃U⊺ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺UY V ⊺)∫

dY dX̃ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺UY V ⊺)

(c)
= U

{∫
dY dX̃ X̃ PX(X̃)PY (Y )PW (S − X̃Y )∫
dY dX̃ PX(X̃)PY (Y )PW (S − X̃Y )

}
U⊺

= UE[X|S]U⊺

where in (a), we changed variables X̃ → UX̃U⊺, used |detU | = 1, and rotational invariance of PX ,447

PX(X̃) = PX(UX̃U⊺). In (b), we changed variables Y → UY V ⊺, used |detU | = |detV | = 1,448

and bi-rotational invariance of PY , PY (Y ) = PY (UY V ⊺). In (c), we used the bi-rotational449

invariance property of PW , namely PW (USV ⊺ −UX̃Y V ⊺) = PW (S − X̃Y ).450
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A.2 Y Estimator451

Lemma 2. Given the observation matrix S, let Ŷ (S) be an estimator for Y . Then Ŷ (S) is a RIE if452

and only if for any orthogonal matrices U ∈ RN×N ,V ∈ RM×M :453

Ŷ (USV ⊺) = UŶ (S)V ⊺ (24)

Proof. If Ŷ (S) is a RIE, then this property clearly follows from the definition (4). Let us now show454

the converse.455

Suppose that an estimator Ŷ (S) satisfies (24). First, we show that if the observation matrix is456

diagonal, then the estimator is also diagonal. Consider the observation matrix to be Sdiag =457 [
diag(s1, . . . , sN) 0N×(M−N)

]
. Let I−

k ∈ RN×N ,J−
k ∈ RM×M be diagonal matrices with458

diagonal entries all one except the k-th entry which is −1. Note that for 1 ≤ k ≤ N , we have459

Sdiag = I−
k SdiagJ−

k . Moreover, matrices I−
k ,J−

k are indeed orthogonal. For any 1 ≤ k ≤ N , from460

the property we have:461

Ŷ (Sdiag) = Ŷ (I−
k SdiagJ−

k ) = I−
k Ŷ (Sdiag)J−

k (25)

This implies that all entries on the k-th row and k-th column of Ŷ (Sdiag) is zero except the k-th462

entry on the diagonal. Since this holds for any k, we conclude that Ŷ (Sdiag) is diagonal.463

Now, for a given general observation matrix S = USΓV
⊺
S , put U = U⊺

S ,V = V ⊺
S in the property464

(24). We have:465

Ŷ (Γ) = U⊺
S Ŷ (S)VS

From the argument above, the matrix on the lhs is diagonal. Consequently, the matrix U⊺
S Ŷ (S)VS is466

diagonal which implies that the columns of US ,VS are the left and right singular vectors of Ŷ (S).467

Therefore, Ŷ (S) is a RIE.468

Now, we prove that the posterior mean estimator Ŷ ∗(S) = E[Y |S] has the property (24), and it469

is inside the RIE class. For simplicity, we drop the SNR factor
√
κ. For any orthogonal matrices470

U ∈ RN×N ,V ∈ RM×M , we have:471

E[Y |USV ⊺] =

∫
dX dỸ Ỹ PX(X)PY (Ỹ )PW (USV ⊺ −XỸ )∫
dX dỸ PX(X)PY (Ỹ )PW (USV ⊺ −XỸ )

(a)
=

∫
dX dỸ UỸ V ⊺ PX(X)PY (Ỹ )PW (USV ⊺ −XUỸ V ⊺)∫

dX dỸ PX(X)PY (Ỹ )PW (USV ⊺ −XUỸ V ⊺)

(b)
=

∫
dX dỸ UỸ V ⊺ PX(X)PY (Ỹ )PW (USV ⊺ −UXU⊺UỸ V ⊺)∫

dX dỸ PX(X)PY (Ỹ )PW (USV ⊺ −UXU⊺UỸ V ⊺)

(c)
= U

{∫
dX dỸ Ỹ PX(X)PY (Ỹ )PW (S −XỸ )∫
dX dỸ PX(X)PY (Ỹ )PW (S −XỸ )

}
V ⊺

= UE[Y |S]V ⊺

where in (a), we changed variables Ỹ → UỸ V ⊺, used |detU | = |detV | = 1, and bi-rotational472

invariance of PY , PY (Ỹ ) = PY (UỸ V ⊺). In (b), we changed variables X → UXU⊺, used473

|detU | = 1, and rotational invariance of PX , PX(X) = PX(UXU⊺). In (c), we used the474

bi-rotational invariance property of PW , namely PW (USV ⊺ −UXỸ V ⊺) = PW (S −XỸ ).475
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B The replica method for deriving the resolvent relation476

In this section we present the replica method used to obtain the resolvent relation. For simplicity of477

notation we use G(z) ≡ GS(z) for the resolvent of a random matrix S.478

First, we express the entries of the resolvent G(z) using the Gaussian integral representation of an479

inverse matrix [47]:480

Gij(z) =

√
1

(2π)N+M det (zI − S)

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}

=

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}

∫ (M+N∏

k=1

dηk

)
exp

{
− 1

2
η⊺(zI − S

)
η
}

(26)

For z not close to the real axis, the resolvent is expected to exhibit self-averaging behavior in the481

limit of large N, meaning that it will not depend on the particular matrix realization. Thus, we can482

examine the resolvent GS(z) by analyzing its ensemble average, denoted by ⟨.⟩ in the following.483

〈
Gij(z)

〉
=

〈
1

Z

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}〉

(27)

where Z is the denominator in (26). Computing the average is, in general, non-trivial. However,484

the replica method provides us with a technique to overcome this issue by employing the following485

identity:486

〈
Gij(z)

〉
= lim

n→0

〈
Zn−1

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}〉

= lim
n→0

〈 ∫ (M+N∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑

τ=1

η(τ)⊺(zI − S
)
η(τ)

}〉 (28)

So, the problem now is reduced to computation of an average over n copies (or replicas) of the initial487

system (26). After computing the average value (the bracket) in (28), we can perform an analytical488

continuation of the result to real values of n and then take the limit n → 0. Throughout, we assume489

as is common in the replica method, that the analytical continuation can be done with only n different490

sets of points. Of course, this is a totally uncontrolled step that comes with no guarantees.491
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C Derivation of the RIE for X492

In this section, we consider estimating X , and treat both Y and W as noise. We consider X to be493

fixed, and the observation model:494

S = XU1Y V ⊺
1 +U2WV ⊺

2 (29)

where Y ,W ∈ RN×M are fixed matrices with limiting singular value distribution µY , µW , and495

U1,U2 ∈ RN×N ,V1,V2 ∈ RM×M are independent random Haar matrices.496

Construct the hermitization S ∈ R(N+M)×(N+M) from S as497

S =

[
0N×N S
S⊺ 0M×M

]

For simplicity of notation, we use T ≡ XU1Y V ⊺
1 , T ∈ R(N+M)×(N+M) the hermitization of T ,498

and W̃ denotes the hermitization of the matrix U2WV ⊺
2 .499

C.1 Resolvent relation500

We want to find a relation between G(z) ≡ GS(z), and the signal matrix X . From (28), we have501

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

〈
exp

{
− 1

2

n∑

τ=1

η(τ)⊺(zI − S)η(τ)
}〉

U1,U2,V1,V2

= lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− z

2

n∑

τ=1

η(τ)⊺η(τ)
}

×
〈
exp

{1
2

n∑

τ=1

η(τ)⊺T η(τ)
}〉

U1,V1

〈
exp

{1
2

n∑

τ=1

η(τ)⊺W̃η(τ)
}〉

U2,V2

(30)

Split each replica η(τ) into two vectors a(τ) ∈ RN , b(τ) ∈ RM , η(τ) =

[
a(τ)

b(τ)

]
. The exponent in502

the first bracket in (30) can be written as:503

η(τ)⊺T η(τ) = a(τ)⊺XU1Y V ⊺
1 b(τ) + b(τ)

⊺
V1Y

⊺U⊺
1 Xa(τ)

= 2a(τ)⊺XU1Y V ⊺
1 b(τ)

= 2Tr b(τ)a(τ)⊺XU1Y V ⊺
1

(31)

Using the formula for the rectangular spherical integral [20] (see Theorem 2 in H.1), we find:504

〈
exp

{ n∑

τ=1

Tr b(τ)a(τ)⊺XU1Y V ⊺
1

}〉
U1,V1

≈ exp
{N

2

n∑

τ=1

Q(α)
µY

( 1

NM
∥Xa(τ)∥2∥b(τ)∥2

)}

(32)

with Q(α)
µY (x) =

∫ x

0

C(α)
µY

(t)

t dt. In (32), we used that b(τ)a(τ)⊺X is a rank-one matrix with non-zero505

singular value ∥b(τ)∥∥Xa(τ)∥.506

Similarly, for the second bracket in (30) we can write:507

η(τ)⊺W̃η(τ) = a(τ)⊺U2WV ⊺
2 b(τ) + b(τ)

⊺
V2W

⊺U⊺
2 a

(τ)

= 2a(τ)⊺U2WV ⊺
2 b(τ)

= 2Tr b(τ)a(τ)⊺U2WV ⊺
2

(33)

which using the formula of rectangular spherical integrals, implies508

〈
exp

{ n∑

τ=1

Tr b(τ)a(τ)⊺U2WV ⊺
2

}〉
U2,V2

≈ exp
{N

2

n∑

τ=1

Q(α)
µW

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)}
(34)
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From (30), (32), (34), we find:509

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
− 1

2

n∑

τ=1

z∥η(τ)∥2 −NQ(α)
µY

(∥Xa(τ)∥2∥b(τ)∥2
NM

)
−NQ(α)

µW

(∥a(τ)∥2∥b(τ)∥2
NM

)}

(35)

Now, we introduce delta functions δ
(
p
(τ)
1 − ∥a(τ)∥2

N

)
, δ

(
p
(τ)
2 − ∥b(τ)∥2

M

)
, and δ

(
p
(τ)
3 − ∥Xa(τ)∥2

N

)
,510

and using them, the integral in (35) can be written as (for brevity we drop the limit term):511

⟨Gij(z)⟩ =
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3

)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
p
(τ)
1 − ∥a(τ)∥2

N

)
δ
(
p
(τ)
2 − ∥b(τ)∥2

M

)
δ
(
p
(τ)
3 − ∥Xa(τ)∥2

N

)

× exp
{
− 1

2

n∑

τ=1

z∥η(τ)∥2 −NQ(α)
µY

(p
(τ)
2 p

(τ)
3 )−NQ(α)

µW
(p

(τ)
1 p

(τ)
2 )

}

(36)

In the next step, we replace each delta with its Fourier transform, δ
(
pτ1 − 1

N ∥aτ∥2
)
∝

∫
dζτ1 exp

{
−512

N
2 ζ

τ
1

(
pτ1 − 1

N ∥aτ∥2
)}

. After rearranging, we find:513

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3 dζ

(τ)
1 dζ

(τ)
2 dζ

(τ)
3

)

× exp
{N

2

n∑

τ=1

Q(α)
µY

(p
(τ)
2 p

(τ)
3 ) +Q(α)

µW
(p

(τ)
1 p

(τ)
2 )− ζ

(τ)
1 p

(τ)
1 − 1

α
ζ
(τ)
2 p

(τ)
2 − ζ

(τ)
3 p

(τ)
3

}

×
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp
{
− 1

2

n∑

τ=1

z∥η(τ)∥2 − ζ
(τ)
1 ∥a(τ)∥2 − ζ

(τ)
2 ∥b(τ)∥2 − ζ

(τ)
3 ∥Xa(τ)∥2

}

(37)
The inner integral in (37) is a Gaussian integral, and can be written as:514

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
n∑

τ=1

−1

2
η(τ)⊺

[
(z − ζ

(τ)
1 )IN − ζ

(τ)
3 X2 0

0 (z − ζ
(τ)
2 )IM

]
η(τ)

}

(38)

Denote the matrix in the exponent by C
(τ)
X . Its determinant reads:515

detC
(τ)
X = (z − ζ

(τ)
2 )M

N∏

k=1

(z − ζ
(τ)
1 − ζ

(τ)
3 λ2

k)

where λk’s are eigenvalues of X . So replacing the formula for the Gaussian integrals, (37) can be516

written as:517

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3 dζ

(τ)
1 dζ

(τ)
2 dζ

(τ)
3

)(
C

(1)
X

−1)
ij

× exp
{
− Nn

2
FX
0 (p1,p2,p3, ζ1, ζ2, ζ3)

}

(39)
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with518

FX
0 (p1,p2,p3, ζ1, ζ2, ζ3) =

1

n

n∑

τ=1

[
1

N

N∑

k=1

ln(z − ζ
(τ)
1 − ζ

(τ)
3 λ2

k) +
1

α
ln(z − ζ

(τ)
2 )

−Q(α)
µY

(p
(τ)
2 p

(τ)
3 )−Q(α)

µW
(p

(τ)
1 p

(τ)
2 ) + ζ

(τ)
1 p

(τ)
1 +

1

α
ζ
(τ)
2 p

(τ)
2 + ζ

(τ)
3 p

(τ)
3

]

(40)

In the large N limit, the integral in (39) can be computed using the saddle-points of the function FX
0 .519

In the evaluation of this integral, we use the replica symmetric ansatz that assumes a saddle-point of520

the form:521

∀τ ∈ {1, · · · , n} :

{
pτ1 = p1, pτ2 = p2, pτ3 = p3
ζτ1 = ζ1, ζτ2 = ζ2, ζτ3 = ζ3

The saddle point is a solution of the set of equations:522





ζ∗1 =
C(α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = α
p∗
2

(
C(α)
µW (p∗1p

∗
2) + C(α)

µY (p∗2p
∗
3)
)
, ζ∗3 =

C(α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = 1
ζ∗
3
GρX2

( z−ζ∗
1

ζ∗
3

)
, p∗2 = 1

z−ζ∗
2
, p∗3 =

z−ζ∗
1

ζ∗
3
2 GρX2

( z−ζ∗
1

ζ∗
3

)
− 1

ζ∗
3

(41)

Now, since the relation (39) and the solutions (41) hold for arbitrary indices i, j, we can state the523

relation in matrix form. The inverse of C∗
X

−1, and the block structure of GS(z) are computed in524

sections H.2. From (111), (112) we have (for sufficiently large N ):525

〈
GS(z)

〉
U1,U2,V1,V2

=

〈[
1
zIN + 1

zSGS⊺S(z
2)S⊺ SGS⊺S(z

2)
GS⊺S(z

2)S⊺ zGS⊺S(z
2)

]〉

=

[
1
ζ∗
3
GX2

( z−ζ∗
1

ζ∗
3

)
0

0 1
z−ζ∗

2
IM

] (42)

With this relation, we proceed to simplify the equations (41).526

The normalized trace of the upper-left blocks of
〈
GS(z)

〉
U1,U2,V1,V2

is:527

1

N

N∑

k=1

[1
z
+

1

z

γ2
k

z2 − γ2
k

]
=

1

z

1

N

N∑

k=1

[
1 +

γ2
k

z2 − γ2
k

]

= z
1

N

N∑

k=1

1

z2 − γ2
k

=
1

2N

N∑

k=1

[ 1

z − γk
+

1

z + γk

]
= Gµ̄S

(z)

(43)

and the normalized trace of the upper-left block in C∗
X

−1 is 1
ζ∗
3
GρX2

( z−ζ∗
1

ζ∗
3

)
= p∗1. Therefore, we528

have p∗1 = Gµ̄S
(z).529

The normalized trace of lower-right block of
〈
GS(z)

〉
U1,U2,V1,V2

reads:530

1

M
z
[ N∑

k=1

1

z2 − γ2
k

+ (M −N)
1

z2

]
=

N

M
Gµ̄S

(z) +
M −N

M

1

z
= αGµ̄S

(z) + (1− α)
1

z
(44)

and the normalized trace of the lower-right block in C∗
X

−1 is 1
z−ζ∗

2
= p∗2. Therefore, we have531

p∗2 = αGµ̄S
(z) + (1− α) 1z . Moreover, we also have that ζ∗2 = αz

zGµ̄S
(z)−1

αzGµ̄S
(z)+1−α .532
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Therefore, the saddle point equations (41) can be rewritten in a simplified form, which does not533

involve ρX2 , as:534





ζ∗1 =
C(α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = αz
zGµ̄S

(z)−1

αzGµ̄S
(z)+1−α , ζ∗3 =

C(α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = Gµ̄S
(z), p∗2 = αGµ̄S

(z) + (1− α) 1z , p∗3 =
z−ζ∗

1

ζ∗
3

Gµ̄S
(z)− 1

ζ∗
3

(45)

Note that ζ∗1 , ζ
∗
2 can be computed from the observation matrix, and we only need to find ζ∗3 satisfying535

the following equation:536

(z − ζ∗1 )Gµ̄S
(z)− 1 = C(α)

µY

( 1

ζ∗3

[
αGµ̄S

(z) +
1− α

z

][
(z − ζ∗1 )Gµ̄S

(z)− 1
])

(46)

C.2 Overlaps and optimal eigenvalues537

We restate the relation between the resolvent and the overlaps from the main text (18). For x̃i =538

[x⊺
i ,0M ]⊺ with xi eigenvectors of X , we have:539

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i ≈ πµ̄S(x)OX(x, λi) (47)

From (47), (42), we find:540

OX(γ, λi) ≈
1

πµ̄S(γ)
Im lim

z→γ−i0+
x⊺
i ζ

∗
3
−1GX2

(z − ζ∗1
ζ∗3

)
xi

=
1

πµ̄S(γ)
Im lim

z→γ−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(48)

Once we have the overlap, we can compute the optimal eigenvalues from (14) in section 5. Note541

that, until now we had absorbed
√
κ into X . Therefore, we should use (48) with OX(γ,

√
κλi). This542

leads to:543

ξ̂∗xi ≈
1

N

N∑

j=1

λjOX(γi,
√
κλj)

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

λj

z − ζ∗1 − ζ∗3κλ
2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

κζ∗3

1

N

N∑

j=1

λj

z−ζ∗
1

κζ∗
3

− λ2
j

=
1

κπµ̄S(γi)
Im lim

z→γi−i0+

1

ζ∗3

(
1

2

1

N

N∑

j=1

1√
z−ζ∗

1

κζ∗
3

− λj

− 1

2

1

N

N∑

j=1

1√
z−ζ∗

1

κζ∗
3

+ λj

)

≈ 1

κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

2

1

ζ∗3
GρX

(√z − ζ∗1
κζ∗3

)
− 1

2

1

ζ∗3
Gρ−X

(√z − ζ∗1
κζ∗3

)}

=
1

2κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

ζ∗3

[
GρX

(√z − ζ∗1
κζ∗3

)
+ GρX

(
−

√
z − ζ∗1
κζ∗3

)]}

(49)

C.2.1 Estimating X2544

The resolvent relation we have found in (42) is in terms of GX2 . Therefore, like other RIEs in other545

problems [14, 18], we can express the estimator for X2 without any knowledge about ρX or ρX2 .546

One can see that, the optimal RIE for X2 is constructed in the same way as for X with eigenvalues547

denoted by ξ̂∗x2 i
. To compute the optimal eigenvalues, we absorb

√
κ into X and we use the exact548
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expression in (48). In the end, we only need to divide by κ to find an estimator for the true X2.549

ξ̂∗x2 i
≈ 1

N

N∑

j=1

λ2
jOX(γi, λj)

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

λ2
j

z − ζ∗1 − ζ∗3λ
2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

ζ∗3

1

N

N∑

j=1

λ2
j

z−ζ∗
1

ζ∗
3

− λ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
− 1

ζ∗3

1

N

N∑

j=1

z−ζ∗
1

ζ∗
3

− λ2
j − z−ζ∗

1

ζ∗
3

z−ζ∗
1

ζ∗
3

− λ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
− 1

ζ∗3

1

N

N∑

j=1

[
1− z − ζ∗1

ζ∗3

1
z−ζ∗

1

ζ∗
3

− λ2
j

]

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+
− 1

ζ∗3
+

z − ζ∗1
ζ∗3

2 GρX2

(z − ζ∗1
ζ∗3

)

(a)
=

1

πµ̄S(γi)
Im lim

z→γi−i0+
p∗3

(b)
=

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄S
(z)− 1

ζ∗3

(50)

where in (a) we used (41), and for (b) we used (45). Thus, the optimal eigenvalues for X2 read:550

ξ̂∗x2 i
=

1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄S
(z)− 1

ζ∗3
(51)

Note that the parameters ζ∗1 , ζ
∗
3 can be computed from (45), (46), without the knowledge of ρX or551

ρX2 .552

Remark 3. The main barrier to find an estimator for X is that the resolvent relation (42) is in terms of553

GρX2 . Moreover, in the estimator for X , second equality in (49), we have the sum
∑N

j=1
λj

z−ζ∗
1−κζ∗

3λ
2
j

554

which cannot be written in terms of GρX2 .555

Remark 4. If we add the assumption that the matrix X is positive semi-definite, without any further556

knowledge on the prior, we can use
√
ξ̂∗x2 i

for the eigenvalues of ΞX(S). However, note that, this557

estimator is sub-optimal for X as
√∑N

j=1 λ
2
j

(
u⊺
i xj

)2 ̸= ∑N
j=1 λj

(
u⊺
i xj

)2
.558

C.3 Numerical Examples559

In this section, we will illustrate the derived formulas (42), (48), and (49) with numerical experiments.560

We consider matrices Y ,W ∈ RN×M to have i.i.d. Gaussian entries, so C(α)
µY (z) = C(α)

µW (z) = 1
αz561

which leads to a simplification of saddle point equations (45):562

{
ζ∗1 = 1

αp
∗
2, ζ∗2 = αz

zGµ̄S
(z)−1

αzGµ̄S
(z)+1−α , ζ∗3 = 1

αp
∗
2

p∗1 = Gµ̄S
(z), p∗2 = αGµ̄S

(z) + (1− α) 1z , p∗3 =
z−ζ∗

1

ζ∗
3

Gµ̄S
(z)− 1

ζ∗
3

(52)

C.3.1 Resolvent relation563

We take κ = 1. In model (29), without loss of generality we can consider X to be diagonal. In figures564

5 and 6 respectively, we consider the X to be a diagonal matrix obtained by taking the eigenvalues of565

a Wigner matrix and a Wishart matrix respectively.566

Note that µS and Gµ̄S
(z) can be computed analytically using tools from random matrix theory, but the567

computation is highly involved. In our experiments, we use instead a numerical estimation of Gµ̄S
(z)568
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obtained from the observation matrix with the help of a Cauchy kernel to compute the parameters569

ζ∗1 , ζ
∗
3 (see section G, and [45] for details on the Cauchy kernel method).570

Unlike the simpler models [15] for which the fluctuations are derived to be of the order 1/
√
N , based571

on our derivation we cannot assess the order of fluctuations. However, from our numerics we observe572

that the fluctuations are of the order o(N). Moreover, fluctuations near the edge points of density are573

larger (in particular for the last row in both figures 5, 6), which is due to the fact that the limiting574

measures have higher fluctuations on their edge-points.575

Another observation, from comparison of figures 5, 6, is that the fluctuations for the first example are576

relatively larger than the second one. One possible guess could be that this is due to the symmetry of577

ρX in the first example. However based on more extensive numerical observations (which we omit578

here) we speculate that this issue is in fact related to the existence of small eigenvalues of X . In other579

words, if X has eigenvalue 0 or small eigenvalues, we have higher fluctuations in the relation (47).580

C.3.2 Overlaps581

To illustrate the formula for the overlap (48), we fix the matrix X and run experiments over various582

realization of the model (29). For each experiment, we record the overlap of k-th left singular583

vector of S and the eigenvectors of X . To compute the theoretical prediction, we find ζ∗1 = ζ∗3 for584

z = γ̄k − i0+ where γ̄k is the average of k-th singular value of S in the experiments.585

To find ζ∗1 = ζ∗3 , we use the set of equations (41) which for Y ,W Gaussian can be written as:586





ζ∗1 = 1
αp

∗
2, ζ∗2 = p∗1 + p∗3, ζ∗3 = 1

αp
∗
2

p∗1 = 1
ζ∗
1
GρX2

(
z
ζ∗
1
− 1

)
, p∗2 = 1

z−ζ∗
2
, p∗3 =

z−ζ∗
1

ζ∗
1
2 GρX2

(
z
ζ∗
1
− 1

)
− 1

ζ∗
1

(53)

Now we proceed to simplify the solution above:587

ζ∗2 = p∗1 + p∗3 =
z

ζ∗1
2GρX2

( z

ζ∗1
− 1

)
− 1

ζ∗1
588

p∗2 =
1

z − ζ∗2
=

ζ∗1
ζ∗1z − z

ζ∗
1
GρX2

(
z
ζ∗
1
− 1

)
+ 1

589

ζ∗1 =
1

α
p∗2 =⇒ ζ∗1z −

z

ζ∗1
GρX2

( z

ζ∗1
− 1

)
+ 1 =

1

α

⇒ GρX2

( z

ζ∗1
− 1

)
= ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

⇒ z

ζ∗1
− 1 = G−1

ρX2

(
ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

)

⇒ z

ζ∗1
− 1− 1

ζ∗1
2 +

(
1− 1

α

) ζ∗
1

z

= RρX2

(
ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

)

(54)

Thus, ζ∗1 is the solution to (54). For each example, we solve this equation and compare the obtained590

theoretical overlap against the average over the experiments.591

Wigner X . Let X ∈ RN×N be a Wigner matrix, then RρX2 (z) = 1
1−z . Solving (54), we can592

compute the overlap using (48). In Fig. 7a, we compare the theoretical computation with simulations593

for N = 1000,M = 2000. As in previous cases µ̄S(γ) is approximated using a Cauchy kernel [45].594

Square root Wishart X . Let X ∈ RN×N be the square root of a Wishart matrix X =
√

1
NHH⊺595

with H ∈ RN×N ′
having i.i.d. Gaussian entries. Then RρX2 (z) =

1
α′

1
1−z , α′ = N/N ′. Solving (54),596

we can compute the overlap using (48). In Fig. 7b, we compare the theoretical computation with597

simulations for N = 1000, N ′ = 4000,M = 2000.598
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Figure 5: Illustration of (42). X is diagonal matrix from the eigenvalues of a Wigner matrix and Y ,Z
are Gaussian matrices with N = 2000,M = 3000. The empirical estimate of GS(z) (dashed blue line) is

computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N . Theoretical estimate (solid orange line) computed from the
rhs of (42) with parameters obtained from the generated matrix. Note that, the theoretical estimate has also
fluctuations because the parameters ζ∗1 , ζ∗3 are given by the numerical estimate of Gµ̄S (z).
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Figure 6: Illustration of (42).X is diagonal matrix from the eigenvalues of a Wishart matrix with aspect ratio
1/2 and Y ,Z are Gaussian matrices with N = 2000,M = 3000. The empirical estimate of GS(z) (dashed

blue line) is computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N . The Theoretical estimate (solid orange line) is
computed from the rhs of (42) with parameters obtained from the generated matrix. Note that, the theoretical
estimate has also fluctuations because the parameters ζ∗1 , ζ∗3 are given by the numerical estimate of Gµ̄S (z).
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Figure 7: Computation of the rescaled overlap. Both Y and W are N×M matrices with i.i.d. Gaussian entries
of variance 1/N , and aspect ratio N/M = 1/2. The simulation results are averaged over 1000 experiments
with fixed X , and N = 1000,M = 2000. Some of the simulation points are dropped for clarity.

C.3.3 RIE performance599

In this section, we investigate the performance of our proposed estimators for X . We compare600

performances of the optimal RIE (49) with the one of Oracle estimator (3). Moreover, we illustrate601

the performance of the estimator for X2 (50), and the sub-optimal estimator of X derived from it,602

see remark 4.603

For Y ,W with Gaussian i.i.d. entries, (51) simplifies to:604

ξ̂∗x2 i
=

1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄S
(z)− 1

ζ∗3

=
1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z

ζ∗1
Gµ̄S

(z)− Gµ̄S
− 1

ζ∗1

=
1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z

Gµ̄S
(z) + 1−α

α
1
z

Gµ̄S
(z)− Gµ̄S

(z)− 1

Gµ̄S
(z) + 1−α

α
1
z

=
1

κ

1

πµ̄S(γi)
Im

{
γi

πH[µ̄S ](γi) + πiµ̄S(γi) +
1−α
α

1
γi

(
πH[µ̄S ](γi) + πiµ̄S(γi)

)

−
(
πH[µ̄S ](γi) + πiµ̄S(γi)

)
− 1

πH[µ̄S ](γi) + πiµ̄S(γi) +
1−α
α

1
γi

}

=
1

κ

1

πµ̄S(γi)
πµ̄S(γi)

(
− 1 +

1

α
(
π2µ̄S(γi)2 +

(
πH[µ̄S ](γi) +

−1+ 1
α

γi

)2)
)

=
1

κ

[
− 1 +

1

α
(
π2µ̄S(γi)2 +

(
πH[µ̄S ](γi) +

−1+ 1
α

γi

)2)
]

(55)

For our first example, we consider two priors for X:605

Shifted Wigner X . We consider X = F + cI where F = F ⊺ ∈ RN×N has i.i.d. entries with606

variance 1/N , and c ̸= 0 is a real number. Then, the spectrum of X is a shifted version of the Wigner607

law608

ρX(λ) =

√
4− (λ− c)2

2π
, for c− 2 < λ < c+ 2,

and the Stieltjes transform reads:609

GρX
(z) =

z − c−
√
(z − 2− c)(z + 2− c)

2
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Figure 8: Estimating X . The MSE is normalized by the norm of the signal, ∥X∥2F. Both Y and W are N×M
matrices with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 1/2. The RIE is applied to
N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

X(S) and Oracle estimator is also reported.
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Figure 9: Estimating X2. The MSE is normalized by the norm of the signal, ∥X2∥2F. Both Y and W are
N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 1/2. The RIE is applied
to N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

X(S) and Oracle estimator is also reported.

Wishart X . Take X = 1
NHH⊺ with H ∈ RN×N ′

having i.i.d. Gaussian entries, with N/N ′ =610

α′ ≤ 1. Then, the spectrum of X is the renowned Marchenko-Pastur distribution:611

ρX(λ) =

√[
λ−

(
1√
α′ − 1

)2][( 1√
α′ + 1

)2 − λ
]

2πλ
, for

( 1√
α′ − 1

)2
< λ <

( 1√
α′ + 1

)2
,

and the Stieltjes transform reads:612

GρX
(z) =

z −
(

1
α′ − 1

)
−

√[
z −

(
1√
α′ − 1

)2][
z −

(
1√
α′ + 1

)2]

2z

In Figure 8, the MSE of Oracle estimator, RIE (49), and
√
X2-RIE is illustrated for shifted Wigner613

X with c = 3, and Wishart with aspect-ratio α′ = 1/4. We see that the performance of RIE is close to614

the one of Oracle estimator, which implies the optimality of the proposed estimator (49). Moreover,615

we observe the sub-optimality of estimating X using
√
Ξ̂∗

X2(S). Note that, in the low-SNR regime,616

the estimated eigenvalues ξ̂∗x2 i
might be negative which makes the estimator

√
Ξ̂∗

X2(S) undefined,617

so the MSE is not depicted in this case.618

In Figure 9, the MSE of estimating X2 is shown. We see that in the high-SNR regimes the RIE (55)619

has the same performance as the Oracle estimator.620
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Figure 10: Estimating X and X2 with Bernoulli spectral prior distribution. The MSE is normalized by the
norm of the signal, ∥X∥2F = ∥X2∥2F. Both Y and W are N × M matrices with i.i.d. Gaussian entries of
variance 1/N , and aspect ratio N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

X(S) and Oracle
estimator is also reported.
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Bernoulli spectral distribution. In this case, the matrix X is constructed as X = UXΛU⊺
X with621

UX a N ×N orthogonal matrix distributed according to Haar measure on orthogonal matrices, and622

Λ = diag(λ) where λ has i.i.d. Bernoulli elements. Thus, ρX = pδ0 + (1− p)δ+1 for p ∈ (0, 1),623

and the Stieltjes transform is:624

GρX
(z) = p

1

z
+ (1− p)

1

z − 1

For this prior, we have that X = X2, so both estimators Ξ̂∗
X(S) and Ξ̂∗

X2(S) should have the same625

performance. However, note that Ξ̂∗
X2(S) does not use any knowledge of ρX . In Figure 10, the MSE626

is illustrated for these two estimators for two sparsity parameter, p = 0.5 and 0.9. We observe that,627

except for for the low-SNR regimes, both estimators have the same MSE. The poor performance of628

Ξ̂∗
X2(S) in the low-SNR regimes might be due to the fact that, some of the estimated eigenvalues629

ξ̂∗x2 i
are negative although the true eigenvalue is 0. This makes the estimation more difficult for the630

sparser prior, see Figure 10b. However, this problem is resolved in Ξ̂∗
X(S) by taking the knowledge631

of GρX
(z) into account.632

Effect of aspect-ratio α. In Figure 11, we consider X to be shifted Wigner with c = 3, and the633

MSE is depicted for various values of the aspect-ratio α. As expected, as M increases (α decreases)634

and we have more observation or more data samples, the estimation error decreases.635
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D Estimating Y636

In this section, we present the derivation of the optimal RIE for Y . For simplicity, the SNR parameter637

in (1) is absorbed into Y , so the model is S = XY +W . Therefore, the final estimator should be638

divided by 1/
√
κ to give an estimate of the original Y .639

The optimal singular values are constructed as ξ∗yi =
∑N

j=1 σj

(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)
. We assume that,640

for large N , ξ∗yi can be approximated by its expectation:641

ξ̂∗yi ≈
N∑

j=1

σj E
[(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)]

where the expectation is over the singular vectors of the observation matrix S. Therefore, to compute642

the optimal singular values, we need to find the mean overlap E
[(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)]
between singular643

vectors of Y and singular vectors of S. In the following we will see that (a rescaling of) this quantity644

can be expressed in terms of i-th singular value of S and j-th singular value of Y (and the limiting645

measures, indeed). Thus, we will use the notation OY (γi, σj) := NE
[(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)]
in what646

follows. In the nest section, we discuss how the overlap can be computed from the resolvent of the647

Hermitized matrix of S.648

D.1 Relation between overlap and the resolvent649

Construct the matrix S ∈ R(N+M)×(N+M) from the observation matrix:650

S =

[
0N×N S
S⊺ 0M×M

]

By Theorem 7.3.3 in [46], S has the following eigen-decomposition:651

S =

[
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

] [ ΓN 0 0
0 −ΓN 0
0 0 0

] [
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

]⊺
(56)

with VS =
[
V

(1)
S V

(2)
S

]
in which V

(1)
S ∈ RM×N . And, V̂ (1)

S = 1√
2
V

(1)
S , ÛS = 1√

2
US .652

Eigenvalues of S are signed singular values of S, therefore the limiting eigenvalue distribution of S653

(ignoring zero eigenvalues) is the same as the limiting symmetrized singular value distribution of S.654

Define the resolvent of S655

GS(z) =
(
zI − S

)−1

Denote the eigenvectors of S by si ∈ RM+N , i = 1, . . . ,M +N . For z = x− iϵ with x ∈ R and656

ϵ ≫ 1
N , we have:657

GS(x− iϵ) =
2N∑

k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
sks

⊺
k +

x+ iϵ

x2 + ϵ2

N+M∑

k=2N+1

sks
⊺
k

where γ̃k are the eigenvalues of S, which are in fact the (signed) singular values of S, γ̃1 =658

γ1, . . . , γ̃N = γN , γ̃N+1 = −γ1, . . . , γ̃2N = −γN .659

Define the vectors ri =
[

0N

y
(r)
i

]
, li =

[
y
(l)
i

0M

]
for y(r)

i ,y
(l)
i right/ left singular vectors of Y , we660

have661

r⊺i
(
ImGS(x− iϵ)

)
li =

2N∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
r⊺i sk

)(
l⊺i sk

)
+

x+ iϵ

x2 + ϵ2

N+M∑

k=2N+1

(
r⊺i sk

)(
l⊺i sk

)

(57)
Given the structure of sk’s in (56), we have:662

(
r⊺i sk

)(
l⊺i sk

)
=





1
2

(
u⊺
ky

(l)
i

)(
v⊺
ky

(r)
i

)
for 1 ≤ k ≤ N

− 1
2

(
u⊺
k−Ny

(l)
i

)(
v⊺
k−Ny

(r)
i

)
for N + 1 ≤ k ≤ 2N

0 for 2N + 1 ≤ k ≤ N +M
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In the limit of large N, the latter quantity is also self-averaging, due to the fact that as N → ∞, these663

overlaps exhibit asymptotic independence, enabling the law of large numbers to be applied here. We664

can thus state that:665

r⊺i
(
ImGS(x− iϵ)

)
li

N→∞−−−−→
∫

R

ϵ

(x− t)2 + ϵ2
OY (t, σi)µ̄S(t) dt (58)

where the overlap function OY (t, λi) is extended (continuously) to arbitrary values within the support666

of µ̄S with the property that OY (−t, λi) = −OY (t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find667

r⊺i
(
ImGS(x− iϵ)

)
li ≈ πµ̄S(x)OY (x, σi) (59)

In the next section, we establish a connection between the resolvent GS(z) and the signal Y , which668

enables us to determine the overlap and consequently the optimal singular values values ξ̂∗yi in terms669

of the singular values of the observation matrix S.670

D.2 Resolvent relation for Y671

In this section, we consider estimating Y , and treat both X and W as noise. We consider the model672

to be:673

S = OXO⊺Y +UWV ⊺ (60)

where X = X⊺ ∈ RN×N ,W ∈ RN×M are fixed matrices with limiting eigenvalue/singular value674

distribution ρX , µW , and O,U ∈ RN×N ,V ∈ RM×M are independent random Haar matrices. For675

simplicity of notation, we use T ≡ OXO⊺Y , and T ∈ R(N+M)×(N+M) the hermitization of T .676

And W̃ denotes the hermitization of the matrix UWV ⊺.677

As in the case for X , we express the entries of G(z) ≡ GS(z) using Gaussian integral representation,678

and after applying the replica trick (28), we find:679

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

〈
exp

{
− 1

2

n∑

τ=1

η(τ)⊺(zI − S)η(τ)
}〉

O,U ,V

= lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− z

2

n∑

τ=1

η(τ)⊺η(τ)
}

×
〈
exp

{1
2

n∑

τ=1

η(τ)⊺T η(τ)
}〉

O

〈
exp

{1
2

n∑

τ=1

η(τ)⊺W̃η(τ)
}〉

U ,V

(61)

Split each replica η(τ) into two vectors a(τ) ∈ RN , b(τ) ∈ RM , η(τ) =

[
a(τ)

b(τ)

]
. The exponent in680

the first bracket in (61) can be written as :681

η(τ)⊺T η(τ) = a(τ)⊺OXO⊺Y b(τ) + b(τ)
⊺
Y ⊺OXO⊺a(τ)

= TrOXO⊺(Y b(τ)a(τ)⊺ + a(τ)b(τ)
⊺
Y ⊺

︸ ︷︷ ︸
Ỹ (τ)

) (62)

where Ỹ (τ) is a symmetric N × N matrix with two non-zero eigenvalues a(τ)⊺Y b(τ) ±682

∥a(τ)∥∥Y b(τ)∥ by lemma 3.683

Using the formula for the spherical integral [19] (see Theorem 1 in H.1), we find:684

〈
exp

{1
2

n∑

τ=1

TrOXO⊺Ỹ (τ)
}〉

O
≈ exp

{
N

2

n∑

τ=1

PρX

( 1

N

(
a(τ)⊺Y b(τ) + ∥a(τ)∥∥Y b(τ)∥

))

+ PρX

( 1

N

(
a(τ)⊺Y b(τ) − ∥a(τ)∥∥Y b(τ)∥

))}

(63)
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By the same computation as previous section, for the second bracket we have:685

〈
exp

{ n∑

τ=1

Tr b(τ)a(τ)⊺UWV ⊺}〉
U ,V

≈ exp
{N

2

n∑

τ=1

Q(α)
µW

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)}
(64)

From (61), (63), (64), we find:686

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
− 1

2

n∑

τ=1

[
z∥η(τ)∥2 −NQ(α)

µW

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)

−NPρX

( 1

N

(
a(τ)⊺Y b(τ) + ∥a(τ)∥∥Y b(τ)∥

))

−NPρX

( 1

N

(
a(τ)⊺Y b(τ) − ∥a(τ)∥∥Y b(τ)∥

))]
}

(65)

Now, we introduce delta functions (for brevity we drop the limit term):687

⟨Gij(z)⟩ =
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)( n∏

τ=1

dp
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4

)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
q
(τ)
1 − 1

N
∥a(τ)∥2

)
δ
(
q
(τ)
2 − 1

M
∥b(τ)∥2

)

× δ
(
q
(τ)
3 − 1

N
∥Y b(τ)∥2

)
δ
(
q
(τ)
4 − 1

N
a(τ)⊺Y b(τ)

)

× exp
{
− 1

2

n∑

τ=1

z∥η(τ)∥2 −NQ(α)
µW

(q
(τ)
1 q

(τ)
2 )

−NPρX

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
−NPρX

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)}

(66)

In the next step, we replace each delta with its Fourier transform. Note that for the parameters688

q1, q2, q3 we use δ
(
qτ1 − 1

N ∥aτ∥2
)
∝

∫
dβτ

1 exp
{
− N

2 β
τ
1

(
qτ1 − 1

N ∥aτ∥2
)}

, and for q4 we use689

δ
(
q
(τ)
4 − 1

N a(τ)⊺Y b(τ)
)
∝

∫
dβτ

1 exp
{
− Nβτ

1

(
q
(τ)
4 − 1

N a(τ)⊺Y b(τ)
)}

. After rearranging, we690

find:691

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dq
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4 dβ

(τ)
1 dβ

(τ)
2 dβ

(τ)
3 dβ

(τ)
4

)

× exp
{N

2

n∑

τ=1

Q(α)
µW

(q
(τ)
1 q

(τ)
2 ) + PρX

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
+ PρX

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)

− β
(τ)
1 q

(τ)
1 − 1

α
β
(τ)
2 q

(τ)
2 − β

(τ)
3 q

(τ)
3 − 2β

(τ)
4 q

(τ)
4

}

×
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑

τ=1

z∥η(τ)∥ − β
(τ)
1 ∥a(τ)∥2 − β

(τ)
2 ∥b(τ)∥2

− β
(τ)
3 ∥Y b(τ)∥2 − 2β

(τ)
4 a(τ)⊺Y b(τ)

}

(67)
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The inner integral is a Gaussian integral, and can be written as:692

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp
{ n∑

τ=1

−1

2
η(τ)⊺

[
(z − β

(τ)
1 )IN −β

(τ)
4 Y

−β
(τ)
4 Y ⊺ (z − β

(τ)
2 )IM − β

(τ)
3 Y ⊺Y

]
η(τ)

} (68)

Denote the matrix in the exponent by C
(τ)
Y . Using the formula for determinant of block matrices (see693

proposition 2.8.4 in [48]), we have::694

detC
(τ)
Y = det

[
(z − β

(τ)
1 )IN − β

(τ)
4

2
Y
(
(z − β

(τ)
2 )IM − β

(τ)
3 Y ⊺Y

)−1
Y ⊺

]

× det
[
(z − β

(τ)
2 )IM − β

(τ)
3 Y ⊺Y

]

=
N∏

k=1

[
z − β

(τ)
1 − β

(τ)
4

2 σ2
k

z − β
(τ)
2 − β

(τ)
3 σ2

k

] N∏

k=1

(
z − β

(τ)
2 − β

(τ)
3 σ2

k

) (
z − β

(τ)
2

)M−N

=
(
z − β

(τ)
2

)M−N
N∏

k=1

[
(z − β

(τ)
1 )(z − β

(τ)
2 − β

(τ)
3 σ2

k)− β
(τ)
4

2
σ2
k

]

=
(
z − β

(τ)
2

)M−N
N∏

k=1

[
(z − β

(τ)
1 )(z − β

(τ)
2 )−

(
β
(τ)
4

2
+ β

(τ)
3 (z − β

(τ)
1 )

)
σ2
k

]

where σk’s are the singular values of Y . So computing the Gaussian integrals, (67) can be written as:695

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dq
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4 dβ

(τ)
1 dβ

(τ)
2 dβ

(τ)
3 dβ

(τ)
4

)(
C

(1)
Y

−1)
ij

× exp
{
− Nn

2
FY
0 (q1, q2, q3, q4,β1,β2,β3,β4)

}

(69)

with696

FY
0 (q1, q2, q3, q4,β1,β2,β3,β4) =

1

n

n∑

τ=1

[( 1
α
− 1

)
ln(z − β

(τ)
2 )

+
1

N

N∑

k=1

ln
(
(z − β

(τ)
1 )(z − β

(τ)
2 )−

(
β
(τ)
4

2
+ β

(τ)
3 (z − β

(τ)
1 )

)
σ2
k

)

−Q(α)
µW

(q
(τ)
1 q

(τ)
2 )− PρX

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
− PρX

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)

+ β
(τ)
1 q

(τ)
1 +

1

α
β
(τ)
2 q

(τ)
2 + β

(τ)
3 q

(τ)
3 + 2β

(τ)
4 q

(τ)
4

]

(70)

We will evaluate the integral (67) using saddle-points of the function FY
0 . From the replica symmetric697

ansatz at the saddle-point we have:698

∀τ ∈ {1, · · · , n} :

{
qτ1 = q1, qτ2 = q2, qτ3 = q3, qτ4 = q4
βτ
1 = β1, βτ

2 = β2, βτ
3 = β3, βτ

4 = β4
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Finally, we find the solution to be:699





β∗
1 =

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 = α

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 =
(z−β∗

2 )β
∗
4
2

Z2(z)2
GρY

(Z1(z)
Z2(z)

)
+

β∗
3

Z2(z)

q∗2 = α
z−β∗

1

Z2(z)
GρY

(Z1(z)
Z2(z)

)
+ 1−α

z−β∗
2

q∗3 =
(z−β∗

1 )Z1(z)
Z2(z)2

GρY

(Z1(z)
Z2(z)

)
− z−β∗

1

Z2(z)

q∗4 =
β∗
4Z1(z)
Z2(z)2

GρY

(Z1(z)
Z2(z)

)
− β∗

4

Z2(z)

with
{
Z1(z) = (z − β∗

1)(z − β∗
2)

Z2(z) = β∗
4
2 + β∗

3(z − β∗
1)

(71)
where ρY is the limiting eigenvalue distribution of Y Y ⊺.700

The relation (69) and the solutions (71) hold for arbitrary indices i, j, so we can state the relation in701

the matrix form. Computing the inverse of C∗
Y
−1 (see section H.2), we have:702

〈
GS(z)

〉
O,U ,V

=

〈[
1
zIN + 1

zSGS⊺S(z
2)S⊺ SGS⊺S(z

2)
GS⊺S(z

2)S⊺ zGS⊺S(z
2)

]〉

=

[
1

z−β∗
1
IN +

β∗
4
2

(z−β∗
1 )Z2(z)

Y GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ β∗

4

Z2(z)
Y GY ⊺Y

(Z1(z)
Z2(z)

)
β∗
4

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ z−β∗

1

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
]

(72)

With this relation, we can further simplify the solution (71).703

We start with comparing the trace of upper-left block in (72). The normalized trace of the first block704

in
〈
GS(z)

〉
O,U ,V

is computed in (43) to be Gµ̄S
(z). The normalized trace of the upper-left block in705

C∗
Y
−1 is:706

1

N
Tr

[
(z − β∗

1)
−1IN+

β∗
4
2

(z − β∗
1)Z2(z)

Y GY ⊺Y

(Z1(z)

Z2(z)

)
Y ⊺

]

=
1

N

1

z − β∗
1

N∑

k=1

[
1 +

β∗
4
2

Z2(z)

σ2
k

Z1(z)
Z2(z)

− σ2
k

]

=
1

N

1

z − β∗
1

N∑

k=1

[β∗
4
2Z1(z)

Z2
2 (z)

1
Z1(z)
Z2(z)

− σ2
k

+ 1− β∗
4
2

Z2(z)

]

=
1

N

1

z − β∗
1

β∗
4
2Z1(z)

Z2
2 (z)

N∑

k=1

1
Z1(z)
Z2(z)

− σ2
k

+
1

z − β∗
1

β∗
3(z − β∗

1)

Z2(z)

=
(z − β∗

2)β
∗
4
2

Z2(z)2
GρY

(Z1(z)

Z2(z)

)
+

β∗
3

Z2(z)

= q∗1

(73)

Thus, q∗1 = Gµ̄S
(z).707
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The normalized trace of the lower-right block of
〈
GS(z)

〉
O,U ,V

is αGµ̄S
(z) + (1− α) 1z (see (44)).708

The normalized trace of the lower-right block in C∗
Y
−1 is:709

1

M
Tr

[z − β∗
1

Z2(z)
GY ⊺Y

(Z1(z)

Z2(z)

)]
=

1

M

z − β∗
1

Z2(z)

N∑

k=1

1
Z1(z)
Z2(z)

− σ2
k

+
M −N

M

z − β∗
1

Z2(z)

Z2(z)

Z1(z)

=
N

M

1

N

z − β∗
1

Z2(z)

N∑

k=1

1
Z1(z)
Z2(z)

− σ2
k

+
M −N

M

z − β∗
1

Z1(z)

= α
z − β∗

1

Z2(z)
GρY

(Z1(z)

Z2(z)

)
+

1− α

z − β∗
2

= q∗2

(74)

So, q∗2 = αGµ̄S
(z) + (1− α) 1z .710

With a bit of algebra, we can express the parameters q∗3 , q
∗
4 in terms of q∗1 , β

∗
1 , β

∗
4 :711

q∗3 =
(z − β∗

1)
2

β∗
4
2 q∗1 − z − β∗

1

β∗
4
2 , q∗4 =

z − β∗
1

β∗
4

q∗1 − 1

β∗
4

(75)

Therefore, the solution can be written without involving GρY
, as:712





β∗
1 =

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 = α

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 = Gµ̄S
(z)

q∗2 = αGµ̄S
(z) + (1− α) 1z

q∗3 =
(z−β∗

1 )
2

β∗
4
2 Gµ̄S

(z)− z−β∗
1

β∗
4
2

q∗4 =
z−β∗

1

β∗
4

Gµ̄S
(z)− 1

β∗
4

(76)

Remark 5. The simplifications in (75) are derived with the assumption that β∗
4 ̸= 0. However, in713

the initial set of equations (71), if ρX is symmetric measure then β∗
4 = q∗4 = 0 is a solution. If ρX is714

symmetric, then RρX
(−z) = −RρX

(z), and plugging q∗4 = 0 in the expression for β∗
4 in (71), we715

find that β∗
4 = 0.716

D.3 Overlaps and the optimal singular values717

From (59), (72), we find:718

OY (γ, σi) ≈
1

πµ̄S(γ)
Im lim

z→γ−i0+

β∗
4

Z2(z)
y
(r)
i

⊺
GY ⊺Y

(Z1(z)

Z2(z)

)
Y ⊺y(l)

i

=
1

πµ̄S(γ)
Im lim

z→γ−i0+
β∗
4

σi

Z1(z)− Z2(z)σ2
i

(77)
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From the overlap, we can compute the optimal singular values:719

ξ̂∗yi ≈
1

N

N∑

j=1

σjOY (γi, σj)

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

β∗
4

σ2
j

Z1(z)− Z2(z)σ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

β∗
4

Z2(z)

N∑

j=1

σ2
j

Z1(z)
Z2(z)

− σ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

β∗
4

Z2(z)

N∑

j=1

[ Z1(z)
Z2(z)

Z1(z)
Z2(z)

− σ2
j

− 1

]

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

β∗
4Z1(z)

Z2(z)2
GρY

(Z1(z)

Z2(z)

)
− β∗

4

Z2(z)

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
q∗4

(78)

where in the last equality we used the solution we have found in (71). Note that, based on (76), we do720

not need to have any knowledge about ρY to compute q∗4 . In the end, we need to divide the estimator721

by
√
κ as we have absorbed it into Y .722

D.3.1 Recovering the rectangular RIE for a denoising problem723

Note that if in the model (60), we put X = I the model reduces to the additive denoising of Y , and724

we recover the estimator recently proposed in [18] for the rectangular case.725

For X = I , RρX
(z) = 1, so (76) reduces to:726





β∗
1 =

C(α)
µW

(q∗1q
∗
2 )

q∗1
, β∗

2 = α
C(α)
µW

(q∗1q
∗
2 )

q∗2
, β∗

3 = 0, β∗
4 = 1

q∗1 = Gµ̄S
(z), q∗2 = αGµ̄S

(z) + (1− α) 1z
q∗3 = (z − β∗

1)
2Gµ̄S

(z)− (z − β∗
1), q∗4 = (z − β∗

1)Gµ̄S
(z)− 1

(79)

From (78), we have:727

ξ̂∗yi =
1

πµ̄S(γi)
Im lim

z→γi−i0+
q∗4

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− β∗
1Gµ̄S

(z)− 1

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− C(α)
µW (q∗1q

∗
2)

q∗1
Gµ̄S

(z)− 1

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− C(α)
µW

(q∗1q
∗
2)− 1

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− C(α)
µW

(
Gµ̄S

(z)
(
αGµ̄S

(z) + (1− α)
1

z

))
− 1

(a)
=

1

πµ̄S(γi)
Im

[
γiGµ̄S

(γi − i0+)− C(α)
µW

(
1

γi
Gµ̄S

(γi − i0+)
(
1− α+ αγiGµ̄S

(γi − i0+)
))]

(b)
= γi −

1

πµ̄S(γi)
Im C(α)

µW

(
1− α

γi
πH[µ̄S ](γi) + α

(
πH[µ̄S ](γi)

)2 − α
(
πµ̄S(γi)

)2

+ iπµ̄S(γi)
(1− α

γi
+ 2απH[µ̄S ](γi)

))

(80)

where in (a) we used the analyticity of rectangular R-transform [44], and in (b), we used Plemelj728

formula (6). Note that, the final estimator should be divided by the
√
κ.729
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D.4 Examples730

Throughout the numerical experiments, we consider the matrix W to have i.i.d. Gaussian entries731

with variance 1/N , so C(α)
µW (z) = 1

αz. And, X = F + cI where F = F ⊺ ∈ RN×N has i.i.d. entries732

with variance 1/N , and c ̸= 0 is a real number, so RρX
(z) = z + c. With these choices, the solution733

(76) simplifies to:734





β∗
1 = 1

αq
∗
2 + q∗3 , β∗

2 = q∗1 , β∗
3 = q∗1 , β∗

4 = q∗4 + c

q∗1 = Gµ̄S
(z), q∗2 = αGµ̄S

(z) + (1− α) 1z
q∗3 =

(z−β∗
1 )

2

β∗
4
2 Gµ̄S

(z)− z−β∗
1

β∗
4
2 , q∗4 =

z−β∗
1

β∗
4

Gµ̄S
(z)− 1

β∗
4

(81)

Note that in (81), q∗1 , q
∗
2 are given in terms of the observation, so to find the solution we only need to735

find the parameters q∗3 , q
∗
4 . In (81), one can see that we have the relation q∗3 =

z−β∗
1

β∗
4

q∗4 . Writing the736

parameters β∗
1 , β

∗
4 in terms of q∗2 , q

∗
3 , q

∗
4 , after a bit of algebra we have the following relation:737

q∗3 =
z − 1

αq
∗
2

2q∗4 + c
q∗4 (82)

In the expression for q∗4 in (81), using (82) we can rewrite β∗
1 , β

∗
4 in terms of q∗2 , q

∗
4 . After some738

manipulations we find that q∗4 is the solution to the following cubic equation:739

2x3+3c x2+
[
c2+2−

(
z−Gµ̄S

(z)−1− α

α

1

z

)
Gµ̄S

(z)
]
x−c

[(
z−Gµ̄S

(z)−1− α

α

1

z

)
Gµ̄S

(z)−1
]
= 0

(83)
Based on our numerical simulations, we pick the following root for q∗4 :740

q∗4 = − c

2
− 12− 3c2 + 6A

3 3
√
B

+
3
√
B

12
(84)

with741

A = Gµ̄S
(z)

2 − Gµ̄S
(z)

z

(
1− 1

α

)
− Gµ̄S

(z)z

B = −216cA+ 4

√
4
(
12− 3c2 + 6A

)3
+ 542c2A2

Once we have q∗4 , we can find q∗3 using (82). In the end, β∗
1 , · · · , β∗

4 can be evaluated. Note that, for742

the RIE, only q∗4 is required. Other parameters are used to evaluate the resolvent relation (72) and the743

overlap (77).744

D.4.1 Resolvent relation745

We take κ = 1. In model (60), without loss of generality we can consider Y to be diagonal.746

In figure 12, Y is the diagonal matrix obtained from the singular values of a Gaussian matrix with747

i.i.d. entries of variance 1/N . In figure 13, the non-zero entries (on main diagonal) of Y are uniformly748

distributed in [1, 3]. As in previous cases, µS ,Gµ̄S
(z) are estimated numerically using Cauchy kernel,749

from which the parameters β∗
1 , · · · , β∗

4 are computed.750

D.4.2 Overlap751

To illustrate the formula for the overlap (77), we fix the matrix Y and run experiments over various752

realization of the model (60). For each experiment, we record the overlap of k-th singular vectors left753

and right) of S and singular vectors of Y . To compute the theoretical prediction, we evaluate the754

parameters β∗
1 , β

∗
2 , β

∗
3 , β

∗
4 , for z = γ̄k − i0+ where γ̄k is the average of k-th singular value of S in755

the experiments.756

In figure 14a, the overlap is shown for Y with i.i.d. Gaussian entries of variance 1
N , so µY is the757

Marchenko-Pastur law with aspect-ratio α. In figure 14b, matrix Y is constructed as Y = UY ΣV ⊺
Y ,758

where UY ∈ RN×N ,VY ∈ RM×M are Haar distributed orthogonal matrices, and singular values759

σ1, · · · , σN are chosen independently uniformly from [1, 3], so µY = U
(
[1, 3]

)
.760
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Figure 12: Illustration of (72). Y ∈ RN×M is a diagonal matrix obtained from the singular values of a
N ×M matrix with i.i.d. entries of variance 1/N, X = X⊺ is shifted Wigner matrix with c = 3, and Z is a

Gaussian matrices with. The empirical estimate of GS(z) (dashed blue line) is computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N , for N = 2000,M = 4000. Theoretical one (solid orange line) is computed from the rhs of
(72) with parameters computed from the generated matrix. Note that, the theoretical one has also fluctuations
because the parameters β∗

1 , · · ·β∗
4 are computed from the numerical estimate of Gµ̄S (z).
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Figure 13: Illustration of (72). Y ∈ RN×M is a diagonal matrix with (main) diagonal entries uniformly
distributed in [1, 3], X = X⊺ is shifted Wigner matrix with c = 3, and Z is a Gaussian matrices with.

The empirical estimate of GS(z) (dashed blue line) is computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N , for
N = 2000,M = 4000. Theoretical one (solid orange line) is computed from the rhs of (72) with parameters
computed from the generated matrix. Note that, the theoretical one has also fluctuations because the parameters
β∗
1 , · · ·β∗

4 are computed from the numerical estimate of Gµ̄S (z).
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Figure 14: Computation of the rescaled overlap. X is a shifted Wigner matrix with c = 3, and W has i.i.d.
Gaussian entries of variance 1/N , and N/M = 1/2. The simulation results are average of 1000 experiments
with fixed Y , and N = 1000,M = 2000. Some of the simulation points are dropped for clarity.
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Figure 15: Estimating Y . MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner matrix
with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to
N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

Y (S) and Oracle estimator is also reported.

D.4.3 RIE performance761

In this section, we investigate the performance of our proposed estimators for Y . To construct the762

RIE for Y , we only need q∗4 which we use (84). We compare performances of the optimal RIE (78)763

with the one of oracle estimator (5).764

In figures 15,16, the MSE of RIE and the oracle estimator is plotted for three cases of priors: Y with765

Gaussian entries, Y with uniform spectral density, and Y with Bernoulli spectral density. In all cases,766

observe that the RIE has the same performance as the oracle estimator.767

Effect of aspect-ratio α. In Figure 17, we take Y to have Gaussian entries (with variance 1
N ),768

and the MSE is depicted for various values of the aspect-ratio α. We see that as M increases (α769

decreases) the estimation error (of Y ) decreases.770

Sparse Y : a non-rotation invariant example. We consider Y to have i.i.d. entries from the771

Bernoulli-Rademacher distribution,772

Yi,j =





+ 1√
N

with probability 1−p
2

0 with probability p

− 1√
N

with probability 1−p
2

, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤ M

With the normalization 1/
√
N, the spectrum of Y does not grow with the dimension and has a finite773

support, thus we can apply our estimator to reconstruct Y . Note that the prior of Y is not rotationally774

invariant, and neither the oracle estimator nor the RIE are optimal. Therefore, taking the prior into775
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Figure 16: Estimating Y with Bernoulli spectral prior. MSE is normalized by the norm of the signal, ∥Y ∥2F.
Y has Bernoulli spectral distribution with parameter p. X is a shifted Wigner matrix with c = 3, and W has
i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and
the results are averaged over 10 runs (error bars are invisible).Average relative error between RIE Ξ̂∗

Y (S) and
Oracle estimator is also reported.

0.40.60.81

0.07

0.08

0.09

0.1
0.21%

0.25%

0.29%

0.36%

0.43%

0.5%

0.59%

α

M
S
E

Oracle estimator, Ξ∗
Y (S)

RIE, Ξ̂∗
Y (S)

Figure 17: MSE of estimating Y as a function of aspect-ratio α, Y has Gaussain entries of variance 1/N, and
κ = 5. MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and
W has i.i.d. Gaussian entries of variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

Y (S) and Oracle
estimator is also reported.

account, we apply a thresholding function on the entries of the matrix obtained from the RIE, Ξ̂∗
Y (S).776

We apply the following function on each entry of the estimator:777

fh(x) =





+ 1√
N

if x > h√
N

0 if |x| ≤ h√
N

− 1√
N

if x < − h√
N

, for h ∈ [0, 1]

In figure 18, the MSE of the oracle estimator, RIE, and RIE+fp(x) (with h = p) is plotted. A few778

remarks on this figure are in order. First, RIEs are not limited to rotationally invariant priors and can779

give non-trivial estimates for non-rotationally invariant priors, although they are sub-optimal. The780

RIE’s output can be refined, or used as a warmed-up initialization for other algorithms to get a better781

estimate.782

In figure 19, for one experiment, the MSE is plotted for RIE and RIE+f(x) with the best h among783

{0, 0.1, · · · , 1}. We observe that for the particular case of Bernoulli-Rademacher prior, the thresh-784

olding stage can improve the MSE when SNR is greater than 1, however the parameter h should be785

chosen properly.786
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Figure 18: Estimating Y with Bernoulli-Rademacher entries. MSE is normalized by the norm of the signal,
∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the results are averaged over 10 runs (error
bars are invisible).
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Figure 19: Estimating Y with Bernoulli-Rademacher entries. MSE is normalized by the norm of the signal,
∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and thresholding function is applied with the best
h among {0, 0.1, · · · , 1}. Results are averaged over 10 runs (error bars are invisible).
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Figure 20: MSE of factorization problem. MSE is normalized by the norm of the signal. X is a shifted Wigner
matrix with c = 1, and both Y and W are N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000. In each run, the observation matrix S is generated
according to (1), and the factors X , Y are estimated simultaneously from S. Results are averaged over 10 runs
(error bars are invisible). Average relative error between RIEs and Oracle estimators is also reported.

E Comparison of RIEs for MF and denoising787

For estimating X , we have derived the estimator (49) for general priors ρX , µY , µW . This estimator788

simplifies greatly, with parameters in (52), when both µY , µW are Marchenko-Pastur distribution,789

i.e. both Y ,W having i.i.d. Gaussian entries of variance 1/N. Similarly, although the RIE for Y790

in (78) is derived for the general priors, it reduces to a rather simple estimator if ρX , µW are taken791

to be shifted Wigner, and Marchenko-Pastur distribution, respectively. Therefore, in our numerical792

examples on factorization problem, we consider X to be a shifted Wigner matrix, and Y ,W to be793

Gaussian matrices.794

In each experiment, the factors X , Y are estimated simultaneously using RIE from the observation795

matrix S. In addition to the MSE of estimating each factor, we also compute the MSE of estimating796

the product XY . We compare the MSE of the product with the MSE of the oracle estimator and797

the RIE introduced in [18] for the denoising problem. The oracle estimator for the denoising is798

constructed as:799

Ξ∗
XY (S) =

N∑

i=1

ξ∗xyi uiv
⊺
i , ξ∗xyi = u⊺

i XY vi (85)

where ui,vi’s are left/right singular vectors of S. In the RIE proposed in [18], the singular values800

are estimated by (see section D.3.1)801

ξ̂∗xyi =
1√
κ

[
γi −

1

πµ̄S(γi)
Im C(α)

µW

(
1− α

γi
πH[µ̄S ](γi) + α

(
πH[µ̄S ](γi)

)2 − α
(
πµ̄S(γi)

)2

+ iπµ̄S(γi)
(1− α

γi
+ 2απH[µ̄S ](γi)

))
]

(86)

Note that, in general the MSE of the denoising RIE Ξ̂∗
XY (S), is less than the MSE of the prdouct of802

the estimated factors Ξ̂∗
X(S)Ξ̂∗

Y (S).803

In figures 20,21, the MSE of estimating the factors is illustrated for c = 1 and c = 3 respectively.804

The MSE of estimating the product is shown in figure 22.805
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Figure 21: MSE of factorization problem. MSE is normalized by the norm of the signal. X is a shifted Wigner
matrix with c = 3, and both Y and W are N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000. In each run, the observation matrix S is generated
according to (1), and the factors X , Y are estimated simultaneously from S. Results are averaged over 10 runs
(error bars are invisible). Average relative error between RIEs and Oracle estimators is also reported.
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Figure 22: MSE of the product of the factors. MSE is normalized by the norm of the signal ∥XY ∥2F. X is a
shifted Wigner matrix with c = 1, c = 3, and both Y and W are N ×M matrices with i.i.d. Gaussian entries
of variance 1/N , and N/M = 1/2. The RIE is applied to N = 2000,M = 4000. Results are averaged over
10 runs (error bars are invisible).
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F Case of α ≥ 1806

In this section we consider the case where M ≤ N and N/M → α ≥ 1 as N → ∞. Throughout this807

section Γ ∈ RN×M is a (tall) matrix with ΓM in its upper M ×M block, and the rest zero entries.808

ΓM is diagonal matrix constructed from γ ∈ RM which are the singular values of S.809

Similar to the case of α ≤ 1, resolvent of the matrix S ∈ R(N+M)×(N+M) plays a central role in810

deriving the RIEs. For the case of M ≥ N , with S = USΓV
⊺
S , the matrix S has the following811

eigen-decomposition:812

S =

[
Û

(1)
S −Û

(1)
S U

(2)
S

V̂S −V̂S 0

][ ΓM 0 0
0 −ΓM 0
0 0 0

] [
Û

(1)
S −Û

(1)
S U

(2)
S

V̂S −V̂S 0

]⊺
(87)

with US =
[
U

(1)
S U

(2)
S

]
in which U

(1)
S ∈ RN×M . And, Û (1)

S = 1√
2
U

(1)
S , V̂S = 1√

2
VS . The813

resolvent of S can be written as:814

GS(x− iϵ) =
2M∑

k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
sks

⊺
k +

x+ iϵ

x2 + ϵ2

M+N∑

k=2M+1

sks
⊺
k

where γ̃k are the eigenvalues of S, which are in fact the (signed) singular values of S, γ̃1 =815

γ1, . . . , γ̃M = γM , γ̃M+1 = −γ1, . . . , γ̃2M = −γM .816

F.1 Estimating X817

The RIE for X is constructed in the same way as in the case of α ≤ 1, (2). However, in the present818

case the observation matrix S has M (non-trivially zero) singular values and we need to estimate N819

eigenvalues for the RIE. As it will be clear, the N −M eigenvalues are chosen to be equal.820

F.1.1 Relation between overlap and the resolvent821

Define the vectors x̃i = [x⊺
i ,0M ]⊺ for xi eigenvectors of X . We have822

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i =

2M∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
x̃⊺
i sk

)2
+

ϵ

x2 + ϵ2

M+N∑

k=2M+1

(
x̃⊺
i sk

)2
(88)

Given the structure of sk’s in (87), we have:823

(
x̃⊺
i sk

)2
=





1
2

(
x⊺
i uk

)2
for 1 ≤ k ≤ M

1
2

(
x⊺
i uk−M

)2
for M + 1 ≤ k ≤ 2M(

x⊺
i uk−M

)2
for 2M + 1 ≤ k ≤ M +N

We assume that in the limit of large N this quantity concentrates on OX(γj , λi) and depends only on824

the singular values and eigenvalue pairs (γj , λi). This assumption implies that the singular vectors825

associated with 0 singular values (uj for M + 1 ≤ j ≤ N ) all have the same overlap with the826

eigenvectors of X , OX(0, λi). We thus have:827

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i

N→∞−−−−→ 1

α

∫

R

ϵ

(x− t)2 + ϵ2
OX(t, λi)µ̄S(t) dt+

(
1− 1

α

) ϵ

x2 + ϵ2
OX(0, λi)

(89)
where the overlap function OX(t, λi) is extended (continuously) to arbitrary values within the828

support of µ̄S (the symmetrized limiting singular value distribution of S) with the property that829

OX(t, λi) = OX(−t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find830

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i →

1

α
πµ̄S(x)OX(x, λi) +

(
1− 1

α

)
πδ(x)OX(x, λi) (90)
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F.1.2 Resolvent relation831

We derive the resolvent relation for the same model as in (29). The derivation is similar to the832

procedure explained in section C.1, and we omit here. The final resolvent relation is the same as (42),833

with parameters satisfying:834 



ζ∗1 = 1
α

C(1/α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = 1
p∗
2

(
C(1/α)
µW (p∗1p

∗
2) + C(1/α)

µY (p∗2p
∗
3)
)
, ζ∗3 = 1

α

C(1/α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = 1
ζ∗
3
GρX2

( z−ζ∗
1

ζ∗
3

)
, p∗2 = 1

z−ζ∗
2
, p∗3 =

z−ζ∗
1

ζ∗
3
2 GρX2

( z−ζ∗
1

ζ∗
3

)
− 1

ζ∗
3

(91)

Again, with the same procedure as (43),(44), the saddle point equations (91) can be rewritten in a835

simplified form, which does not involve ρX2 , as:836 



ζ∗1 = 1
α

C(1/α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = z − 1
Gµ̄S

(z) , ζ∗3 = 1
α

C(1/α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z , p∗2 = Gµ̄S

(z), p∗3 =
z−ζ∗

1

αζ∗
3
Gµ̄S

(z) +
z−ζ∗

1

ζ∗
3

(
1− 1

α

)
1
z − 1

ζ∗
3

(92)
with µ̄S the limiting ESD of non-trivial singular values of S. Note that ζ∗1 , ζ

∗
2 can be computed from837

the observation matrix, and we only need to find ζ∗3 satisfying the following equation:838

(z−ζ∗1 )
[ 1
α
Gµ̄S

(z)+
(
1− 1

α

)1
z

]
−1 =

1

α
C(1/α)
µY

( 1

ζ∗3
Gµ̄S

(z)(z−ζ∗1 )
[ 1
α
Gµ̄S

(z)+
(
1− 1

α

)1
z

])
(93)

Note that both sets of equations (90), (92) and (47), (45) match for α = 1.839

F.1.3 Overlaps and optimal eigenvalues840

From (90), (42), for γ a non-trivially zero singular value of S we find:841

OX(γ, λi) ≈
α

πµ̄S(γ)
Im lim

z→γ−i0+
x⊺
i ζ

∗
3
−1GX2

(z − ζ∗1
ζ∗3

)
xi

=
α

πµ̄S(γ)
Im lim

z→γ−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(94)

And, in the case of M > N , for zero singular values we have:842

OX(0, λi) ≈
α

(α− 1)π
Im lim

z→−i0+
x⊺
i ζ

∗
3
−1GX2

(z − ζ∗1
ζ∗3

)
xi

=
α

(α− 1)π
Im lim

z→−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(95)

Finally, the optimal eigenvalues can be derived in the same way as in (49). For 1 ≤ i ≤ M , we have:843

ξ̂∗xi =
α

2κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

ζ∗3

[
GρX

(√z − ζ∗1
κζ∗3

)
+ GρX

(
−
√

z − ζ∗1
κζ∗3

)]}
(96)

And, for all M + 1 ≤ i ≤ N :844

ξ̂∗xi =
α

2κ(α− 1)π
Im lim

z→−i0+

{
1

ζ∗3

[
GρX

(√z − ζ∗1
κζ∗3

)
+ GρX

(
−
√

z − ζ∗1
κζ∗3

)]}
(97)

F.1.4 Numerical Examples845

For matrices Y ,W ∈ RN×M with i.i.d. Gaussian entries of variance 1/N and M > N , we have that846

C(1/α)
µY (z) = C(1/α)

µW (z) = z which leads to a simplification of equations (92):847 



ζ∗1 = 1
αp

∗
2, ζ∗2 = z − 1

Gµ̄S
(z) , ζ∗3 = 1

αp
∗
2

p∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z , p∗2 = Gµ̄S

(z), p∗3 =
z−ζ∗

1

αζ∗
3
Gµ̄S

(z) +
z−ζ∗

1

ζ∗
3

(
1− 1

α

)
1
z − 1

ζ∗
3

(98)
Therefore, ζ∗1 = ζ∗3 = 1

αGµ̄S
(z).848

In Figure 23, the MSE of the Oracle estimator and the RIE (96), (97) is illustrated for shifted Wigner849

X with c = 3, and Wishart with aspect-ratio α′ = 1/4.850
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Figure 23: Estimating X . The MSE is normalized by the norm of the signal, ∥X∥2F. Both Y and W are
N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 2. The RIE is applied
to N = 2000,M = 1000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

X(S) and Oracle estimator is also reported.
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Figure 24: MSE of estimating X as a function of aspect-ratio α > 1, prior on X is shifted Wigner with c = 3,
and κ = 5. MSE is normalized by the norm of the signal, ∥X∥2F. Both Y and W are N ×M matrices with i.i.d.
Gaussian entries of variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results are averaged
over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

X(S) and Oracle estimator is also
reported.

Effect of aspect-ratio α. In Figure 24, we take X to be a shifted Wigner matrix with c = 3, and851

the MSE is depicted for various values of the aspect-ratio α > 1. We see that as M decreases (α852

increases) the estimation error (of Y ) increases.853

F.2 Estimating Y854

F.2.1 Relation between overlap and the resolvent855

For the vectors ri =
[

0N

y
(r)
i

]
, li =

[
y
(l)
i

0M

]
with y

(r)
i ,y

(l)
i right/ left singular vectors of Y , we856

have857

r⊺i
(
ImGS(x− iϵ)

)
li =

2M∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
r⊺i sk

)(
l⊺i sk

)
+

ϵ

x2 + ϵ2

M+N∑

k=2M+1

(
r⊺i sk

)(
l⊺i sk

)

(99)
Given the structure of sk’s in (87), we have:858

(
r⊺i sk

)(
l⊺i sk

)
=





1
2

(
u⊺
ky

(l)
i

)(
v⊺
ky

(r)
i

)
for 1 ≤ k ≤ M

− 1
2

(
u⊺
k−My

(l)
i

)(
v⊺
k−My

(r)
i

)
for M + 1 ≤ k ≤ 2M

0 for 2M + 1 ≤ k ≤ N +M

Therefore, in the limit N → ∞, we have:859

r⊺i
(
ImGS(x− iϵ)

)
li

N→∞−−−−→ 1

α

∫

R

ϵ

(x− t)2 + ϵ2
OY (t, σi)µ̄S(t) dt (100)
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where the overlap function OY (t, λi) is extended (continuously) to arbitrary values within the support860

of µ̄S with the property that OY (−t, λi) = −OY (t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find861

r⊺i
(
ImGS(x− iϵ)

)
li ≈

1

α
πµ̄S(x)OY (x, σi) (101)

F.2.2 Resolvent relation862

The resolvent relation for the model (60) with M < N is the same as in (72) with parameters863

satisfying:864





β∗
1 = 1

α

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 =

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 = 1
α

(z−β∗
2 )β

∗
4
2

Z2(z)2
GρY

(Z1(z)
Z2(z)

)
+ 1

α
β∗
3

Z2(z)
+ α−1

α
1

z−β∗
1

q∗2 =
z−β∗

1

Z2(z)
GρY

(Z1(z)
Z2(z)

)

q∗3 = 1
α

(z−β∗
1 )Z1(z)

Z2(z)2
GρY

(Z1(z)
Z2(z)

)
− 1

α
z−β∗

1

Z2(z)

q∗4 = 1
α

β∗
4Z1(z)
Z2(z)2

GρY

(Z1(z)
Z2(z)

)
− 1

α
β∗
4

Z2(z)

with
{
Z1(z) = (z − β∗

1)(z − β∗
2)

Z2(z) = β∗
4
2 + β∗

3(z − β∗
1)

(102)
With the same procedure as (73),(74), the saddle point equations (102) can be rewritten in a simplified865

form:866





β∗
1 = 1

α

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 =

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z

q∗2 = Gµ̄S
(z)

q∗3 =
(z−β∗

1 )
2

β∗
4
2 q∗1 − z−β∗

1

β∗
4
2

q∗4 =
z−β∗

1

β∗
4

q∗1 − 1
β∗
4

(103)

Note that both sets of equations (101), (103) and (59), (76) match for α = 1.867

F.2.3 Overlaps and optimal singular values868

From (72), (101), we have:869

OY (γ, σi) ≈
α

πµ̄S(γ)
Im lim

z→γ−i0+

β∗
4

Z2(z)
y
(r)
i

⊺
GY ⊺Y

(Z1(z)

Z2(z)

)
Y ⊺y(l)

i

=
α

πµ̄S(γ)
Im lim

z→γ−i0+
β∗
4

σi

Z1(z)− Z2(z)σ2
i

(104)

Similar to (78), we can compute the optimal singular values to be:870

ξ̂∗yi =
α

πµ̄S(γi)
Im lim

z→γi−i0+
q∗4 (105)

F.2.4 Numerical examples871

We consider the matrix W to have i.i.d. Gaussian entries with variance 1/N, so C(1/α)
µW (z) = z. And,872

X = F + cI where F = F ⊺ ∈ RN×N has i.i.d. entries with variance 1/N, and c ̸= 0 is a real873
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Figure 25: Estimating Y . MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner
matrix with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and N/M = 2. The RIE is applied to
N = 2000,M = 1000, and the results are averaged over 10 runs (error bars are invisible).
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Figure 26: MSE of estimating Y as a function of aspect-ratio α > 1, Y has Gaussain entries of variance 1/N,
and κ = 5. MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and
W has i.i.d. Gaussian entries of variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

Y (S) and Oracle
estimator is also reported.

number, so RρX
(z) = z + c. With these choices, the solution (103) simplifies to:874





β∗
1 = 1

αq
∗
2 + q∗3 , β∗

2 = q∗1 , β∗
3 = q∗1 , β∗

4 = q∗4 + c

q∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z , q∗2 = Gµ̄S

(z)

q∗3 =
(z−β∗

1 )
2

β∗
4
2 q∗1 − z−β∗

1

β∗
4
2 , q∗4 =

z−β∗
1

β∗
4

q∗1 − 1
β∗
4

(106)

After a bit of algebra, we find that q∗4 is the solution to the following qubic equation:875

2x3 + 3c x2 +
[
c2 + 2−

(
z − 1

α
Gµ̄S

(z)
)( 1

α
Gµ̄S

(z) +
α− 1

αz

)]
x

− c
[(
z − 1

α
Gµ̄S

(z)
)( 1

α
Gµ̄S

(z) +
α− 1

αz

)
− 1

]
= 0

(107)

In figure 25 the MSE of RIE and the oracle estimator is plotted for two cases of priors: Y with876

Gaussian entries and Y with uniform spectral density.877

Effect of aspect-ratio α. In Figure 26, we take Y to have Gaussian entries (with variance 1
N ), and878

the MSE is depicted for various values of the aspect-ratio α > 1. We see that as M decreases (α879

increases) the estimation error (of Y ) increases.880
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G Details on numerical implementations881

G.1 Numerical approximation of Gµ̄S
(z)882

The first step to construct the RIEs is to compute the Stieltjes transform of the observation matrix883

S. In section 19.5 of [45], several approaches have been proposed to approximate the Stieltjes884

transform of the spectral density of a given matrix. In our implementations, we use the Cauchy kernel885

method in which for a given matrix A with N singular values (or eigenvalues)
(
σi

)
1≤i≤N

, GµA
(z)886

is approximated as:887

GµA
(z) ≈ 1

N

N∑

i=1

1

z − σi − iηi

with ηi’s the "widths" of the kernel at each singular value (more precisely the imaginary part is a sum888

of Lorentzians with width ηi around peaks at σi). The construction of the RIEs uses the Stieltjes889

transform of the limiting symmetrized measure of S. In the numerical experiments we approximate890

this quantity as:891

Gµ̄S
(z) ≈ 1

2N

N∑

i=1

(
1

z − γi − iη
+

1

z + γi − iη

)
(108)

with a fixed width η =
√

1/2N. Note that for the case of α > 1 (M < N ), S has M non-trivially892

zero singular values, and in the approximation above N should be replaced by M .893

G.2 Construction of the RIEs894

In the RIEs derived in [14,18], the final estimator for optimal singular values (eigenvalues) was rather895

simple and only required to compute the Stieltjes transform on the real line which can be easily and896

safely performed using the approximation above (see remark 2 in section 19.5.2 in [45]). However, in897

the RIEs of this work, we need to solve a system of equations in the limit ϵ → 0 (z close to the real898

line). For this, to compute the optimal singular value ξ̂∗yi (or optimal eigenvalues ξ̂∗xi), we evaluate899

Gµ̄S
(z) for z = γi − i ε√

2N
. In this way, the other parameters (e.g. q∗4) are evaluated for z very close900

to the real line, and the theoretical limit limϵ→0 in (49), (78) can be estimated numerically. Moreover,901

as we considered a fixed width in our numerical approximation of Stieltjes transform (108), ε should902

be chosen to compensate the width for the cases where the support of µ̄S is wider. For example, for903

fixed N , as we increase SNR (from 1 to 5) the support of µ̄S grows, however we still have N singular904

values and the kernel’s width in (108) is fixed, so ε should be larger for higher SNRs to get a more905

accurate approximation of Gµ̄S
(z).906

G.3 Mismatch between RIEs and Oracle estimators907

The RIEs are conjectured to have the same performance as the Oracle estimators in the limit N → ∞.908

Therefore, we believe that the mismatch between the proposed RIEs and the Oracle estimators is a909

finite size effect. Moreover, this finiteness affects the accuracy of estimated parameters, since Gµ̄S
(z)910

is approximated numerically and we do not use random matrix theory to find its exact form.911

Generically, the mismatch between the RIE and Oracle estimator is larger for the case of estimating912

X . We expect that this is because of the extra approximation step in the derivation of the optimal913

eigenvalues. In the fifth line of (49), the sums are approximated by an integral which is the Stieltjes914

transform of ρX . This approximation does not appear in derivation of the optimal singular values for915

Y , see (78).916

All in all, the small relative error (less than 1%) between RIEs and Oracle estimators in our numerical917

results validates our optimality conjecture and demonstrates that RIEs can be successfully used in918

practice.919
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H Spherical integrals and matrix lemmas920

H.1 Spherical Integrals921

For two symmetric matrices A,B ∈ RN×N , the spherical integral is defined as:922

IN (A,B) =
〈
exp

{N
2
TrAUBU⊺}〉

U

where the average is w.r.t. the Haar measure over the group of (real) orthogonal N ×N matrices.923

The spherical integrals can also be defined w.r.t. the unitary or symplectic group. These integrals924

are often referred to as Harish Chandra-Itzykson-Zuber (HCIZ) integrals in mathematical physics925

literature. The study of these objects dates back to the work of mathematician Harish Chandra [49]926

and they have since been extensively studied and developed in both physics and mathematics. In927

particular, [19] studied the limit of the integral in the case where one of the matrices, say A, has finite928

rank.929

Theorem 1 (Rank-one spherical integral, Guionnet and Maïda [19]). Let θ be the only non-zero930

eigenvalue of A (so it is rank one), and the empirical eigenvalue distribution of B converge weakly931

towards ρB . Then, for θ sufficiently small (see details in Theorem 2 in [19]), we have:932

lim
N→∞

1

N
ln IN (A,B) =

1

2

∫ θ

0

RρB
(t) dt ≡ 1

2
PρB

(θ) (109)

When A has higher (but finite) rank, theorem 7 in [19] states that the limit is the sum over eigenvalues933

of the expression on the rhs of (109).934

Non-symmetric case. In the non-symmetric case the rectangular spherical integral is defined, for935

the matrices A ∈ RM×N ,B ∈ RN×M , as:936

JN (A,B) =
〈
exp

{√
NM TrAUBV

}〉
U ,V

where U ∈ RN×N ,V ∈ RM×M , and the expectation is w.r.t. the Haar measure over orthogonal937

matrices of size N ×N and M ×M .938

Theorem 2 (Rank-one rectangular spherical integral, Benaych-Georges [20]). Let N/M → α ∈939

(0, 1], and θ be the only non-zero singular value of A, and the empirical singular value distribution940

of B converges weakly towards µB . Then, for θ sufficiently small (see details in Theorem 2.2 in [20]),941

we have:942

lim
N→∞

1

N
lnJN (A,B) =

∫ θ

0

C(α)
µB (t2)

t
dt =

1

2

∫ θ2

0

C(α)
µB (t)

t
dt ≡ 1

2
Q(α)

µB
(θ2) (110)

In our derivation, we use a generalization of this formula, namely when A has higher (but fixed) rank,943

the limit is the sum over singular values of the expression on the rhs of (110). Although we are not944

aware if this generalization has been proved, we believe that the ideas found in [50] can be applied to945

show it holds.946

Remark 6. It is known that additional terms may be present on the rhs of (109) and (110) when947

the parameter θ is "large". This has been rigorously proved at least in the case of symmetric A and948

B (see theorem 6 in [19]). In the replica calculation the order of magnitude of this parameter is949

determined by the solutions of the saddle point equations, but it is difficult to fully control its order950

of magnitude. However the numerics show very good agreement between our explicit RIEs and the951

Oracle estimator, which strongly suggests it is sound to use (109) and (110).952

H.2 Matrix analysis tools953

Proposition 3 (Inverse of a block matrix, Bernstein [48]). For a block matrix F =

[
A B
C D

]
with954

A ∈ RN×N ,B ∈ RN×M ,C ∈ RM×N ,D ∈ RM×M , if A and D −CA−1B, are non-singular,955

then,956

F−1 =

[
A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

]
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Block structure of GS(z) The matrix GS(z) is:957

GS(z) =
(
zI − S

)−1
=

[
zIN −S
−S⊺ zIM

]−1

Using Proposition 3, first we need to compute the inverse matrix
(
zIM − (−S⊺)(zIN )−1(−S)

)−1
958

which simply reads:959

(
zIM − 1

z
S⊺S

)−1
= z

(
z2IM − S⊺S

)−1
= zGS⊺S(z

2)

Consequently, we find:960

GS(z) =

[
1
zIN + 1

zSGS⊺S(z
2)S⊺ SGS⊺S(z

2)
GS⊺S(z

2)S⊺ zGS⊺S(z
2)

]
(111)

Inverse of C∗
X For C∗

X since the blocks B,C are zero, the inverse is simply:961

C∗
X

−1 =

[ [
(z − ζ∗1 )IN − ζ∗3X

2
]−1

0

0
[
(z − ζ∗2 )IM

]−1

]

=

[
1
ζ∗
3

[ z−ζ∗
1

ζ∗
3

IN −X2
]−1

0

0 1
z−ζ∗

2
IM

]

=

[
1
ζ∗
3
GX2

( z−ζ∗
1

ζ∗
3

)
0

0 1
z−ζ∗

2
IM

]
(112)

Inverse of C∗
Y Let the block structure of C∗

Y be as in Proposition 3, then962

(D −CA−1B)−1 =
(
(z − β∗

2)IM − β∗
3Y

⊺Y − β∗
4
2

z − β∗
1

Y ⊺Y
)−1

=
(
(z − β∗

2)IM −
(
β∗
3 +

β∗
4
2

z − β∗
1

)
Y ⊺Y

)−1

= (z − β∗
1)
(
Z1(z)IM − Z2(z)Y

⊺Y
)−1

=
z − β∗

1

Z2(z)

(Z1(z)

Z2(z)
IM − Y ⊺Y

)−1

=
z − β∗

1

Z2(z)
GY ⊺Y

(Z1(z)

Z2(z)

)

where GY ⊺Y is the resolvent of the matrix Y ⊺Y . So, we have963

C∗
Y
−1 =

[
(z − β∗

1)
−1IN +

β∗
4
2

(z−β∗
1 )Z2(z)

Y GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ β∗

4

Z2(z)
Y GY ⊺Y

(Z1(z)
Z2(z)

)
β∗
4

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ z−β∗

1

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
]

Lemma 3. Consider two vectors x,y ∈ RN . The symmetric matrix xy⊺ + yx⊺ has rank at most964

two with non-zero eigenvalues x⊺y ± ∥x∥∥y∥.965

Proof. Construct the matrices A ∈ R2×N ,B ∈ RN×2 as follows:966

A =

[
x⊺

y⊺

]
, B = [ y x ]

Then, we have that xy⊺ + yx⊺ = BA. Using the lemma 4, we have that:967

z2 det
(
zIN −BA

)
= zN det

(
zI2 −AB

)

So, the characteristic polynomial of xy⊺ + yx⊺ is zN−2 det
(
zI2 −AB

)
, which implies that the968

xy⊺ + yx⊺ has eigenvalue 0 with multiplicity N − 2, plus the eigenvalues of the 2× 2 matrix AB.969

The matrix AB is:970

AB =

[
x⊺y ∥x∥2
∥y∥2 x⊺y

]

which has two eigenvalues x⊺y ± ∥x∥∥y∥.971
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Lemma 4. For matrices A ∈ RM×N ,B ∈ RN×M , we have:972

zM det
(
zIN −BA

)
= zN det

(
zIM −AB

)

Proof. Construct the matrices C,D ∈ R(M+N)×(M+N) as follows:973

C =

[
zIM A
B IN

]
, D =

[
IM 0M×N

−B zIN

]

We have:974

detCD = zN det
(
zIM −AB), detDC = zM det

(
zIN −BA

)

The result follows from the fact that detCD = detDC.975
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