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Abstract

Distributionally Robust Optimization (DRO) serves as a robust alternative to em-
pirical risk minimization (ERM), which optimizes the worst-case distribution in an
uncertainty set typically specified by distance metrics including f -divergence and
the Wasserstein distance. The metrics defined in the ostensible high dimensional
space lead to exceedingly large uncertainty sets, resulting in the underperformance
of most existing DRO methods. It has been well documented that high dimen-
sional data approximately resides on low dimensional manifolds. In this work,
to further constrain the uncertainty set, we incorporate data geometric properties
into the design of distance metrics, obtaining our novel Geometric Wasserstein
DRO (GDRO). Empowered by Gradient Flow, we derive a generically applicable
approximate algorithm for the optimization of GDRO, and provide the bounded
error rate of the approximation as well as the convergence rate of our algorithm. We
also theoretically characterize the edge cases where certain existing DRO methods
are the degeneracy of GDRO. Extensive experiments justify the superiority of our
GDRO to existing DRO methods in multiple settings with strong distributional
shifts, and confirm that the uncertainty set of GDRO adapts to data geometry.

1 Introduction

Machine learning algorithms with empirical risk minimization often suffer from poor generalization
performance under distributional shifts in real applications due to the widespread latent heterogeneity,
domain shifts, and data selection bias, etc. It is demanded for machine learning algorithms to
achieve uniformly good performances against potential distributional shifts, especially in high-stake
applications. Towards this goal, distributionally robust optimization (DRO) [32, 27, 34, 5, 17, 15],
stemming from the literature of robust learning, has been proposed and developed in recent years.
It optimizes the worst-case distribution within an uncertainty set P(Ptr) lying around the training
distribution Ptr. When the testing distribution Pte is contained in P(Ptr), DRO could guarantee the
generalization performance on Pte.

In principle, the effectiveness of DRO heavily depends on the rationality of its uncertainty set P(Ptr)
which is commonly formulated as a ball surrounding the training distribution endowed with a certain
distance metric. An ideal uncertainty set should be constituted by all realistic distributions that may be
encountered in test environments. However, existing DRO methods adopting the Wasserstein distance
(i.e. WDRO methods [32, 34, 5, 17]) or f -divergence distance (i.e. f -DRO methods [27, 15]) tend to
generate over-flexible uncertainty sets that incorporate unrealistic distributions far beyond the ideal
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(a) Comparison of metrics on data manifold. (b) Comparison of uncertainty sets.

Figure 1: Toy illustrations. Figure (a) illustrates the transportation paths and corresponding costs of
the distance metrics. (b) depicts the uncertainty set of WDRO and GDRO compared with an ideal
uncertainty set in Wasserstein space, where each point denotes a distribution.

uncertainty set [19, 17]. As such unrealistic distributions must violate the underlying predicting
mechanism, they are prone to be the worst-case and attract much optimization energy in the DRO
framework, making the learned model deviate from the true predicting mechanism.

Here we argue that the unrealistic distributions mentioned above originate from the distance metrics’
inherent ignorance of data geometry, as illustrated in Figure 1. The Euclidean-norm transportation
cost measured by the L2-Wasserstein metric leads to a straight-line transportation path as shown
in Figure 1(a) (red dotted line) which deviates from the data manifold (blue region). Therefore,
WDRO methods tend to create unrealistic samples beyond the underlying data manifold, resulting
in unrealistic distributions. f -divergence can also be interpreted as a data geometry-independent
measure of the transportation cost confined in the support of Ptr. Taking χ2-divergence for example,
the cost is a constant to transfer per unit of probability weights between samples, like a virtual tunnel
(yellow dotted line in Figure 1(a)). In such a case, the noisy samples (e.g. outliers or samples with
label noises) are more prone to be the worst-case and thus gather much larger weights than normal
samples. The resultant distribution is obviously unrealistic.

To mitigate the problem, it is imperative to introduce a new distance metric incorporating data
geometry to further constrain the uncertainty set and avoid the undesired cases. As illustrated
in Figure 1(a), considering the common assumption that data lie on a low-dimensional manifold
[29, 35, 2], we expect the probability density transportation path (the blue dotted line) is restricted
within the data manifold (the blue region). In this way, the uncertainty set (i.e. the Geometric
Wasserstein Set as shown in Figure 1(b)) could inherently exclude the distributions beyond the data
manifold. Furthermore, it is harder to gather probability weights on isolated noisy samples, which
also mitigate the undesired cases in f -DRO.

In this work, we propose a novel Geometric Wasserstein DRO (GDRO) method by exploiting the
discrete Geometric Wasserstein distance [7] which measures the transportation cost of probability
density along the geodesic in a metric space. As the Geometric Wasserstein distance does not
enjoy an analytical expression, we derive an approximate algorithm from the Gradient Flow in
the Finsler manifold endowed with Geometric Wasserstein Distance (in section 3.2). We further
theoretically specify an exponentially vanishing error rate of our approximation as well as a O(1/

√
T )

convergence rate of our algorithm, and characterize the edge cases where GDRO will degenerate to
f -DRO or Wasserstein DRO (in section 3.3 and 3.4). Comprehensive experiments encompassing
various distributional shifts, including sub-population shifts and class difficulty shifts, validate the
effectiveness of our proposed GDRO (in section B). We also observe a lower Dirichlet Energy (i.e.
higher smoothness) of GDRO’s estimated worst-case distribution w.r.t the data manifold compared
with existing DRO methods, justifying its adaptability to data geometry.

2 Preliminaries on Distributionally Robust Optimization

Notations. X ∈ X denotes the covariates, Y ∈ Y denotes the target, fθ(·) : X → Y is the predictor
parameterized by θ ∈ Θ. Ptr(X,Y ) and Pte(X,Y ) abbreviated with Ptr and Pte respectively
represent the joint training distribution and test distribution. The random variable of data points is
denoted by Z = (X,Y ) ∈ Z .
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Distributionally Robust Optimization (DRO) is formulated as:
θ∗ = argmin

θ∈Θ
sup

P∈P(Ptr)

EP [ℓ(fθ(X), Y )], (1)

where ℓ is a loss function, P(Ptr) = {P : Dist(P, Ptr) ≤ ϵ} characterizes the uncertainty set
surrounding the training distribution restricted by a radius ϵ, and Dist is a distance metric between
probability distributions. Most works specify the Dist metric as the f -divergence [27, 15] or the
Wasserstein distance [32, 34, 5, 31, 16].

f -divergence DRO (abbr. f -DRO) f -divergence is defined as Df (P∥Q) =
∫
f(dP/dQ)dQ,

where f(·) is a convex function and f(1) = 0. Two typical instances of f -divergences are KL-
divergence (f(t) = t log t) and χ2-divergence (f(t) = (t − 1)2). [27] theoretically demonstrates
the equivalence between χ2-DRO and the variance-regularized empirical risk minimization (ERM)
problem, and [15] derives the optimization algorithm for a family of f -DRO. However, as proven in
[19], f -DRO faces the over-pessimism problem and ends up giving a classifier only fitting the given
training distribution, which we attribute to the ignorance of data geometry. As shown in Figure 1(a),
f -divergence only cares about the probability of each sample (only dP, dQ occur). However, data
geometry information is crucial for a reasonable uncertainty set, since it is well-accepted that data
lie on a low-dimensional manifold and adjacent data points have similar degrees of importance. For
example, for heterogeneous data, while one hopes to focus on some sub-population (e.g., put more
weights on a group of data), without data geometric information, the distribution in the f -divergence
ball is prone to only focus on some isolated samples with higher noises (as shown in Figure 5(a)).
And in Figure 5(b), we find the worst-case distribution of f -DRO (with KL-divergence) is not smooth
(with larger Dirichlet Energy) w.r.t. the data manifold.

Wasserstein DRO (abbr. WDRO) Compared with the f -divergence ball that does not extend the
support of the training distribution, the uncertainty set built with Wasserstein distance allows for the
extension of the support [32, 34, 5]. [31, 16, 5] convert the original problem into a regularized ERM
problem, but it is suitable only for a limited class of loss functions and transportation cost functions.
[34] proposes an approximate optimization method for Wasserstein DRO that could be applied to
deep neural networks, which protects models from adversarial attacks. However, the flexibility of the
Wasserstein ball also causes an over-pessimistic estimation under strong distributional shifts [17],
where the created samples are too noisy to obtain a confident model. As demonstrated in Figure 5(a),
WDRO adds much more noises to the data and thus hurts the generalization performances in practice.

Therefore, to mitigate the over-pessimism problem of DRO, we propose to incorporate the geometric
properties into the uncertainty set. Compared with traditional shape-constrained methods [21, 20]
for multivariate extreme event analysis that use the unimodality to constitute the uncertainty set, our
proposed method characterizes the data manifold in a data-driven way and incorporates it into the
DRO framework intrinsically via the Geometric Wasserstein distance metric, which is also compatible
with manifold learning and graph learning methods.

3 Proposed Method
In this work, we propose Distributionally Robust Optimization with Geometric Wasserstein distance
(GDRO). In the following of this section, we first introduce the Geometric Wasserstein distance and
propose the overall objective of GDRO; then we derive an approximate algorithm for optimization
utilizing Gradient Flow; finally, some theoretical properties are proved and connections with existing
DRO methods are demonstrated.

3.1 Discrete Geometric Wasserstein Distance GWG0
and GDRO

We firstly introduce the Discrete Geometric Wasserstein distance, which extends the Benamou-Brenier
formulation of the optimal transport problem to a metric space. The first step is to define a discrete
velocity field and its discrete divergence, which we mainly follow the construction by Chow et al. [7].

Consider a given weighted finite graph G0 = (V,E,w) with n nodes, where V = {1, 2, . . . , n}
is the vertex set, E is the edge set and w = (wij)i,j∈V is the weight of each edge. A velocity
field v = (vij)i,j∈V ∈ Rn×n on G0 is defined to be a skew-symmetric matrix on the edge set
E such that vij = −vji if (i, j) ∈ E. The probability set (simplex) P(G0) supported on V
is defined as P(G0) = {(pi)ni=1 ∈ Rn|

∑n
i=1 pi = 1, pi ≥ 0, for any i ∈ V } and its interior
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is denoted by Po(G0). κij is a predefined "cross-sectional area" typically interpolated with the
associated nodes’ densities pi, pj . The direct approach is to take the arithmetic average such that
κij(p) = (pi + pj)/2. However, to ensure the positiveness of p during optimization, we adopt
the upwind interpolation:κij(p) = I(vij > 0)pj + I(vij ≤ 0)pi. One could thereafter define the
product pv ∈ Rn×n, called flux function on G0, by pv := (vijκij(p))(i,j)∈E . The divergence of pv is
divG0(pv) := −(

∑
j∈V :(i,j)∈E

√
wijvijκij(p))

n
i=1 which is a vector in Rn. The divergence vector

is supposed to lie in the tangent space of Po(G0), summing over all the in-fluxes and out-fluxes
along edges of a certain node, with each edge transporting a probability density √

wijvijκij(p). Now
we are ready to define Geometric Wasserstein distance in Equation 2.
Definition 3.1 (Discrete Geometric Wasserstein Distance GWG0

(·, ·) [7]). Given a finite graph G0,
for any pair of distributions p0, p1 ∈ Po(G0), define the Geometric Wasserstein Distance:

GW2
G0

(p0, p1) := inf
v


∫ 1

0

1

2

∑
(i,j)∈E

κij(p)v
2
ijdt :

dp

dt
+ divG0(pv) = 0, p(0) = p0, p(1) = p1

 , (2)

where v ∈ Rn×n denotes the velocity field on G0, p is a continuously differentiable curve p(t) :
[0, 1] → Po(G0), and κij(p) is a pre-defined interpolation function between pi and pj .

Intuitively v is a velocity field continuously transporting masses to convert the density distribution
from p0 to p1 along a curve in the Wasserstein space [36]. Equation 2 measures the shortest (geodesic)
length among all possible plans, which is calculated by integrating a total "kinetic energy" of the
velocity field over the transportation process. Compared with the Benamou-Brenier formulation of
continuous L2-Wasserstein distance, it ensures that the transportation path stays within the manifold
(as the blue dotted line shown in Figure 1(a)), and it induces a smoother estimate of the worst-case
probability distribution w.r.t the data structure since weights are exchanged just between neighbors.

Then we present the overall objective function of Distributionally Robust Optimization with Geometric
Wasserstein distance (GDRO). Given the training dataset Dtr = {(xi, yi)}ni=1 and its empirical
marginal distribution P̂tr = 1

n

∑
i δ(xi), along with a manifold structure represented by graph G0,

we intend to obtain a distributionally robust predictor parameterized by θ∗ such that for certain ϵ > 0:

θ∗ = argmin
θ∈Θ

sup
P :GW2

G0
(P̂tr,P )≤ϵ

{
Rn(θ, p) =

n∑
i=1

piℓ(fθ(xi), yi)− β

n∑
i=1

pi log pi

}
. (3)

We add a minor entropy-regularization with a small β as proposed in the entropy-balancing literature
[18] to avoid singular cases and ensure the convergence of our optimization in section 3.2. Owing
to the Geometric Wasserstein distance, the uncertainty set of GDRO excludes those distributions
supported on points beyond the data manifold and the Geometric Wassserstein Ball is directional in
Wasserstein space as it stretches along the data structure, as depicted in Figure 1(b).

How is G0 estimated? To characterize the data manifold, the G0 used in GDRO is constructed as a
k-nearest neighbor (kNN) graph from the training data only, as the kNN graph is shown to have a
good approximation of the geodesic distance within local structures on the manifold [25, 9]. Note
that our GDRO is compatible with any manifold learning and graph learning methods.

3.2 Optimization

In this subsection, we derive the optimization algorithm for GDRO. Due to the lack of an analytical
form of the Geometric Wasserstein distance, we give up providing a prescribed amount ϵ of robustness

Algorithm 1 Geometric Wasserstein Distributionally Robust Optimization (GDRO)
Input: Training Dataset Dtr = {(xi, yi)}ni=1, learning rate αθ , gradient flow iterations T , entropy term β,
manifold representation G0 (learned by kNN algorithm from Dtr).
Initialization: Sample weights initialized as (1/n, . . . , 1/n)T . Predictor’s parameters initialized as θ(0).

for i = 0 to Epochs do
1. Simulate gradient flow for T time steps according to Equation 5∼18 to learn an approximate worst-case
probability weight pT .
2. θ(i+1) ← θ(i) − αθ∇θ(

∑
i p

T
i ℓi(θ))

end for
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in Equation 3 and propose an alternate optimization algorithm as an approximation. For fixed
probability weights p, the parameter θ could be optimized via gradient descents for Rn(θ, p) w.r.t.
θ in parameter space Θ. The inner supremum problem can be approximately solved via gradient
ascents for Rn(θ, p) w.r.t. p in the Geometric Wasserstein space (Po(G0),GWG0

). And the cost
measured by GW2

G0
(P̂tr, ·) could be approximated with the length of the gradient flow, which is a

curve in (Po(G0),GWG0
).

Here we clarify some notations. p : [0, T ] 7→ Po(G0) denotes the continuous gradient flow, and
the probability weight of the i-th sample at time t is abbreviated as pi(t). The time-discretized
gradient flow corresponding with the time step τ is denoted as p̂τ : [0, T ] 7→ Po(G0), and p̂τ (t) is
abbreviated as p̂tτ . For the optimization, we adopt the time-discretized definition of Gradient Flow
[36] for −Rn(θ, p) in the Geometric Wasserstein space (Po(G0),GWG0

) as: (with the time step τ )

p̂τ (t+ τ) = arg max
p∈Po(G0)

Rn(θ, p)−
1

2τ
GW2

G0
(p̂τ (t), p). (4)

When τ → 0, the time-discretized gradient flow p̂τ becomes the continuous one p. Note that
Equation 4 describes the Gradient Flow as a steepest ascent curve locally optimizing for a maximal
objective within an infinitesimal Geometric Wasserstein ball, and it coincides with the Lagrangian
penalty problem of Equation 3. In theorem 3.1 we would prove that Equation 4 finds the exact
solution to a local GDRO at each time step.

Following Chow et al. [7], the analytical solution to Equation 4 as τ → 0 could be derived as:
dpi
dt

=
∑

j:(i,j)∈E

wijκij(ℓi − ℓj) + β
∑

j:(i,j)∈E

wijκij(log pj − log pi), (5)

where pi denotes the time-dependent probability function of the i-th sample, li denotes the loss of the
i-th sample and we take an upwind interpolation of κ: κij(p) = I(vij > 0)pj + I(vij ≤ 0)pi, so that
the probability density transferred on an edge equals the density from the origin node associated with
the velocity field. The upwind interpolation guarantees that the probability weight p stays positive
along the Gradient Flow in Equation 5. Then we discretize equation 5 with Forward Euler Method:

pi(t+ α) = pi(t) + αdpi(t)/dt, (6)

where α is a learning rate. For our algorithm, we control the maximum time step as t ≤ T in
Equation 18 to approximately restrict the radius of the Geometric Wasserstein ball. We prove in
theorem 3.2 that for the final time step t = T , the probability weights p(T ) learned by Equation 18
guarantees a global error rate e−CT from the worst-case risk Rn(θ, p

∗) constrained in an ϵ(θ)-radius
ball where ϵ(θ) = GW2

G0
(P̂tr, p(T )) and p∗ = arg supp{Rn(θ, p) : GW2

G0
(P̂tr, p) ≤ ϵ(θ)}. The

result is similar to conventions in WDRO [34], which gives up providing a prescribed radius of its
uncertainty set but turns to an approximation with a intermediate hyperparameter. Pseudo-code of the
whole algorithm is shown in Algorithm 1. The whole derivations are in Appendix.

3.3 Theoretical Properties

In this section, we prove the equivalence between our Gradient-Flow-based algorithm and a local
GDRO problem, and the bound of its global error rate as well as the convergence rate is derived. We
first provide the robustness guarantee for the Lagrangian penalty problem in Equation 4.
Theorem 3.1 (Local Robustness Guarantees of Lagrangian Penalty Problem). For any τ >
0, t > 0 and given θ, denote the solution of Equation 4 as p∗(θ) = arg supp∈P(G0) Rn(θ, p) −
1
2τ GW

2
G0

(p̂tτ (θ), p). Let ϵτ (θ) = GW2
G0

(p̂tτ (θ), p
∗(θ)), we have

sup
p∈Po(G0)

Rn(θ, p)−
1

2τ
GW2

G0
(p̂tτ (θ), p) = sup

p:GW2
G0

(p̂tτ (θ),p)≤ϵτ (θ)

Rn(θ, p). (7)

Theorem 3.1 proves that at each time step our Lagrangian penalty problem is equivalent to a local
GDRO within the ϵτ (θ)-radius Geometric Wasserstein ball. It further shows that with τ → 0 in
Equation 4, our gradient flow constantly finds the steepest descent direction. Then we theoretically
analyze the global error rate brought by our approximate algorithm.
Theorem 3.2 (Global Error Rate Bound). Given the model parameter θ, denote the approximate
worst-case by gradient descent in Equation 18 after time t as pt(θ), and ϵ(θ) = GW2

G0
(P̂tr, p

t(θ))

denotes the distance between our approximation pt and the training distribution P̂tr. Then denote
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the real worst-case distribution within the ϵ(θ)-radius discrete Geometric Wasserstein-ball as p∗(θ),
that is,

p∗(θ) = arg sup
p:GW2

G0
(P̂tr,p)≤ϵ(θ)

n∑
i=1

piℓi − β

n∑
i=1

pi log pi. (8)

Here we derive the bound w.r.t. the error ratio of objective function Rn(θ, p) (abbr. R(p)). For
θ ∈ Θ, there exists C > 0 such that

Error Rate =
(
R(p∗)−R(pt)

)
/
(
R(p∗)−R(P̂tr)

)
< e−Ct, (9)

and when t → ∞, Error Rate → 0. The value of C depends on ℓ, β, n.

Theorem 3.2 theoretically characterizes ’how far’ our approximation pt is from the real worst-case p∗
in terms of the drop ratio of the objective function R(p). At last we derive the convergence rate of
our Algorithm 1.
Theorem 3.3 (Convergence of Algorithm 1). Denote the objective function for the predictor as:

F (θ) = sup
GW2

G0
(P̂tr,p)≤ϵ(θ)

Rn(θ, p), (10)

which is assumed as L-smooth and Rn(θ, p) satisfies Lp-smoothness such that ∥∇pRn(θ, p) −
∇pRn(θ, p

′)∥2 ≤ Lp∥p − p′∥2. ϵ(θ) follows the definition in Theorem 3.2. Take a constant
∆F ≥ F (θ(0)) − infθ F (θ) and set step size as α =

√
∆F /(LK). For t ≥ T0 where T0 is a

constant, denote the upper bound of ∥pt − p∗∥22 as γ and train the model for K steps, we have:

1

K
E

[
K∑

k=1

∥∇θF (θ(k))∥22

]
−

(1 + 2
√

L∆F /K)

1− 2
√

L∆F /K
L2

pγ ≤
2∆F√

∆FK − 2L∆F

. (11)

Here we make a common assumption on the smoothness of the objective function as in [34]. As K →
∞, ∇θF (θ(k)) will achieve a square-root convergence only if γ is controlled by the exponentially
vanishing error rate in Theorem 3.2. And the accuracy parameter γ remains a fixed effect on
optimization accuracy.

3.4 Connections with Conventional DRO Methods

In Theorem 3.4, we illustrate the connections of our GDRO with f -DRO.
Theorem 3.4 (Connection with f -DRO with KL-diveregence (KL-DRO).). Relax the discrete
Geometric Wasserstein-ball regularization (set ϵ → ∞) and set the graph G0 to a fully-connected
graph, and then the solution of GDRO is equivalent to the following form of KL-DRO:

min
θ∈Θ

sup
p:DKL(p∥P̂tr)≤ϵ̂(θ)

n∑
i=1

piℓ(fθ(xi), yi), with ϵ̂(θ) = DKL(p
∗(θ)∥P̂tr), (12)

where p∗(θ) = argmaxp
∑n

i=1 piℓ(fθ(xi), yi)− β
∑n

i=1 pi log pi.

Remark (Connections with WDRO). Since conventional WDRO allows distributions to extend
training support, our proposed GDRO is intrinsically different from WDRO. Intuitively, for infinite
samples, if the graph G0 is set to a fully-connected graph with edge weights wij = ∥zi − zj∥2 and β
is set to 0, our GDRO resembles support-restricted version of WDRO.

4 Experiments

In this section, we investigate the empirical performance of our proposed GDRO on different simula-
tion and real-world datasets under various kinds of distributional shifts, including sub-population
shifts and class difficulty shifts. As for baselines, we compare with empirical risk minimization
(ERM), WDRO [5, 34] and two typical f -DRO methods [15], including KL-DRO (f(t) = t ln t) and
χ2-DRO (f(t) = (t− 1)2).

Implementation Details For all experiments, G0 is constructed as a k-nearest neighbor graph from
the training data only at the initialization step. Specifically, we adopt NN-Descent [14] to efficiently
estimate the k-nearest neighbor graph for the large-scale dataset Colored MNIST while performing
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Figure 2: Visualization of learned kNN graph with different k of the regression data, which is projected
on the plane spanned by the unit vector of V axis and θS with a projection matrix

[
01,5 01,4 1

θT
S 01,4 0

]
.

an exact search for k-nearest neighbors in the other experiments. We adopt MSE as the empirical
loss function for regression tasks and cross-entropy for classification tasks. We use MLPs for the
Colored MNIST and Ionosphere datasets, and linear models in the other experiments. Besides, we
find that the two-stage optimization is enough for good performances, as mentioned in [23], and we
use it in our experiments. Note that GDRO is compatible with any parameterized models including
deep models. The simulation of gradient flow in Equation 18 is implemented by message propagation
with DGL package [38], which scales linearly with sample size and enjoys parallelization by GPU.

4.1 Simulation Data

In this subsection, we use simulations to verify that our GDRO could deal with sub-population shifts
and to some extent resist the label noises. And we also visualize the effects of the kNN algorithm as
well as the sensitivity of GDRO to the parameter k.

Table 1: Results on the Selection Bias Experiments. We report the root mean square errors.

Simulation 1: regression data without label noises
Train(major) Train(minor) Test Parameter

Est ErrorBias Ratio r r = 1.9 r = −1.3 r = −1.5 r = −1.7 r = −1.9 r = −2.3 r = −2.7 r = −3.0
ERM 0.339 0.876 0.892 0.884 0.864 0.880 0.843 0.888 0.423
WDRO 0.339 0.877 0.894 0.885 0.865 0.882 0.844 0.890 0.424
χ2-DRO 0.411 0.744 0.757 0.741 0.733 0.742 0.714 0.755 0.367
KL-DRO 0.370 0.713 0.728 0.716 0.708 0.713 0.685 0.724 0.319
GDRO 0.493 0.492 0.508 0.489 0.501 0.483 0.486 0.496 0.033

Simulation 2: regression data with label noises
ERM 0.335 0.845 0.885 0.879 0.874 0.884 0.882 0.876 0.422
WDRO 0.335 0.896 0.887 0.880 0.875 0.886 0.884 0.877 0.423
χ2-DRO 0.375 0.866 0.855 0.856 0.843 0.860 0.854 0.845 0.408
KL-DRO 0.393 0.879 0.868 0.866 0.856 0.876 0.866 0.861 0.391
GDRO 0.542 0.537 0.553 0.549 0.534 0.539 0.555 0.550 0.058

Simulation 3: vary k under Simulation 1
GDRO (k = 5) 0.493 0.492 0.508 0.489 0.501 0.483 0.486 0.496 0.033
GDRO (k = 20) 0.518 0.507 0.521 0.502 0.514 0.497 0.504 0.508 0.036
GDRO (k = 100) 0.379 0.673 0.688 0.676 0.670 0.672 0.647 0.683 0.286

1. Regression: Sub-population Shifts via Selection Bias Mechanism

Data Generation The input features X = [S,U, V ]T ∈ R10 are comprised of stable features
S ∈ R5, noisy features U ∈ R4 and the spurious feature V ∈ R:

S ∼ N (0, 2I5) ∈ R5, U ∼ N (0, 2I4) ∈ R4, Y = θTSS + 0.1 · S1S2S3 +N (0, 0.5), (13)

V ∼ Laplace(sign(r) · Y, 1

5 ln |r| ) ∈ R, (14)

where θS ∈ R5 is the coefficient of the true model. |r| > 1 is a factor for each sub-population. S
are stable features with the invariant relationship with Y . U are noisy features such that U ⊥ Y .
And V is the spurious feature whose relationship with Y is unstable and is controlled by the factor r.
Intuitively, sign(r) controls whether the spurious correlation between V and Y is positive or negative.
And |r| controls the strength of the spurious correlation: the larger |r| is, the stronger the spurious
correlation is.
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Simulation Setting 1 In training, we generate 10000 points, where the major group contains 95%
data with r = 1.9 (i.e. strong positive spurious correlation) and the minor group contains 5% data
with r = −1.3 (i.e. weak negative spurious correlation). As shown in Figure 2, the training data
is the union of two sub-spaces. In testing, we vary r ∈ {−1.5,−1.7,−1.9,−2.3,−2.7,−3.0} to
simulate stronger negative spurious correlations between V and Y . Notably, the testing data also lie
on the same manifold as the training. We use the linear model and calculate the root-mean-square
errors (RMSE) and the parameter estimation errors Est Error = ∥θ̂ − θ∗∥2 of different methods
(θ∗ = [θS , 0, . . . , 0]

T ). The results are shown in the Simulation 1 in Table 7.

Simulation Setting 2 Then to test whether GDRO could resist label noises, we randomly sample
20 points and add label noises to them via Ỹ = Y + Std(Y ) where std(Y ) denotes the standard
derivation of the marginal distribution of Y . The results are shown in the Simulation 2 in Table 7.
And we visualize the learned worst-case distribution of three methods in Figure 5(a) and 5(b).

Analysis (1) From the results of Simulation 1 and Simulation 2 in Table 7, GDRO outperforms all
the baselines in terms of low prediction error on the minor group under different strengths of spurious
correlations. (2) From Simulation 2 in Table 7, compared with KL-DRO and χ2-DRO, GDRO is
only slightly affected by the label noises. Also, from Figure 5(a), compared with GDRO, KL-DRO
puts much heavier weights on the noisy points (red points of f -DRO are much larger). And GDRO
focuses more on the minor group (blue points), which results in their different performances under
Simulation 2. Further, to investigate this phenomenon, we quantify the smoothness via Dirichlet
Energy. In Figure 5(b), we plot the Dirichlet Energy w.r.t the relative entropy KL(P̂∥P̂tr) between
the learned distribution P̂ and training distribution P̂tr, which proves that the learned weights of
GDRO are much smoother w.r.t. the data manifold. And this property helps GDRO to resist the label
noises, since GDRO does not allow extremely high weights on the isolated points. (3) The third
sub-figure in Figure 5(a) verifies our analysis on WDRO that it introduces much more label noises
(red points).

Discussion on kNN To test whether GDRO is sensitive to the parameter k of the kNN graph G0,
we vary k ∈ {5, 20, 100} and test the performances of our GDRO under simulation setting 1. We
also visualize the kNN graphs in Figure 2, which show that kNN consistently manages to fit the
data manifold well until k = 100. And empirical results of Simulation 3 in Table 7 prove that with
k < 100, GDRO performs stably better than the baselines with small and moderate k, except that
smaller k leads to slower convergence since sparse graphs restrain the flow of probability weights.
Still, we present an extreme failure case where KNN achieves a poor approximation of the data
manifold. When k increases to an extremely large number as k = 100, the neighborhood of kNN
diffuses and two manifolds start to merge on the graph, in which case GDRO could not distinguish
between two sub-populations and its performance degrades as shown in the Table 7. Actually, in
Theorem 3.4 of this paper, we have proved that with an infinitely large k, GDRO could be reduced to
KL-DRO, which completely ignores data geometry. Still, we have to clarify that kNN and GDRO
perform stably well for a large range of k.

(a) Visualization of learned weights of f -DRO and GDRO.
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(b) Weight smoothness.

Figure 3: Explanatory studies of Simulation 2 for the regression data. Figure (a) visualizes the
learned worst-case distribution of f -DRO, GDRO, and WDRO on kNN, and the size of each node is
proportional to its sample weight or its label noise ratio. Figure (b) plots the Dirichlet Energy w.r.t
the relative entropy, which measures the smoothness of learned weights given the same DKL(p∥P̂tr).

2. Classification: Sub-population Shifts with High-dimensional Manifold Data
Data Generation In this setting, data are high-dimensional but with a low-dimensional structure.
The data generation is similar to [30] and is a typical classification setting in OOD generalization.
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We introduce the spurious correlation between the label Y = {+1,−1} and the spurious attribute
A = {+1,−1}. We firstly generate low-dimensional data Xlow = [S, V ]T ∈ R10 as:

S ∼ N (Y 1, σ2
sI5), V ∼ N (A1, σ2

vI5), where A =

{
Y ,with probability r,

−Y ,with probability 1− r.
(15)

Intuitively, r ∈ [0, 1] tunes the proportions of sub-populations and controls the spurious correlation
between A and Y . When r > 0.5, the spurious attribute A is positively correlated with Y ; and when
r < 0.5, the spurious correlation becomes negative. And larger |r − 0.5| results in stronger spurious
correlation between A and Y . Then to convert the low-dimensional data to high-dimensional space,
Xlow is multiplied by a column full rank matrix H as:

Xhigh = (HXlow) ∈ R300, (16)

where H ∈ R300×10 is full column rank, and we randomly choose H in each run.

Simulation Setting For both the training and testing data, we set σ2
s = 1.0 and σ2

v = 0.3. We use
linear models with cross-entropy loss for all methods. In training, we set r = 0.85 (A is positively
correlated with Y ). In testing, we design two environments with r1 = 0.5 (A ⊥ Y ) and r2 = 0.0
(A is negatively correlated with Y ) to introduce distributional shifts. Apart from the natural setting
without label noises, we also test the performances under label noises. Specifically, we add 4% label
noises in the training data by flipping the label Y . We run the experiments 10 times, each time with
one random matrix H . We report the mean accuracy in Table 6.

Analysis From the results in Table 6, our GDRO outperforms all baselines under the sub-population
shifts, and it is not affected much by the label noises, which validates the effectiveness of our GDRO.

4.2 Real-World Data

We evaluate our method on four real-world datasets. Due to space limits, we place two of them here,
with various kinds of distributions, including sub-populations shifts and class difficulty shifts, and the
others can be found in Appendix. We use MLPs with cross-entropy loss in these experiments.

Colored MNIST: Sub-population Shifts & Label Noises Following Arjovsky et al. [1], Colored
MNIST is a binary classification task constructed on the MNIST dataset. Firstly, a binary label Y
is assigned to each image according to its digit: Y = 0 for digit 0 ∼ 4 and Y = 1 for digit 5 ∼ 9.
Secondly, we induce noisy labels Ỹ by randomly flipping the label Y with a probability of 0.2. Then
we sample the color id C spuriously correlated with Ỹ as C =

{
+Ỹ , with probability 1 − r,

−Ỹ , with probability r.

Intuitively, r controls the spurious correlation between Y and C. When r < 0.5, C is positively
correlated with Y ; and when r > 0.5, the spurious correlation becomes negative. And |r − 0.5|
controls the strength of the spurious correlation. In training, we randomly sample 5000 data points
and set r = 0.85 (strong negative spurious correlation between C and Y ) and in testing, we set r = 0
(strong positive spurious correlation), inducing strong shifts between training and testing. Results
are shown in Table 8.

Ionosphere Radar Classification: Class Difficulty Shifts Ionosphere Radar Dataset [11] consists
of return signals from the ionosphere of a phased array radar system in Google Bay, Labrador. The
electromagnetic signals were processed by an auto-correlation function to produce 34 continuous
attributes. The task is to predict whether the return signal indicates specific physical structures in
the ionosphere (good return) or not (bad return). However, the prediction difficulty of two classes is
quite different, and ERM was found to achieve a much lower accuracy on bad returns than good ones
[33]. In this experiment, both the training and testing sets consist of samples with balanced label
distribution. But due to the disparity of class difficulty, the prediction accuracy of two classes is quite
different, while DRO methods are expected to achieve similar prediction accuracy for both classes.
Therefore, in testing, we report the testing accuracy for the easy class and the hard class respectively,
as well as the AUC score of the testing set. Results are shown in Table 8.

Analysis From the results on real-world data, we find that all DRO methods (WDRO and f -DROs)
show significant promotions to ERM, reflecting the reasonability of our experimental settings. And
our proposed GDRO outperforms all baselines significantly when dealing with sub-population shifts
and class difficulty shifts, which validates the effectiveness of our GDRO.
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Table 2: Results of the classification simu-
lated experiment.

No Label Noises Add 4% Label Noises
r1 = 0.5 r2 = 0.0 r1 = 0.5 r2 = 0.0

ERM 0.573 0.153 0.573 0.152
WDRO 0.576 0.159 0.576 0.157
KL-DRO 0.654 0.340 0.625 0.269
χ2-DRO 0.734 0.644 0.666 0.554
GDRO 0.768 0.767 0.760 0.703

Table 3: Results of Colored MNIST data and Ionosphere
data.

Method Colored MNIST Ionosphere
Train Acc Test Acc Easy Class Acc Hard Class Acc AUC Score

ERM 0.867 0.116 0.952 0.481 0.683
WDRO 1.000 0.335 0.944 0.630 0.774
χ2-DRO 0.839 0.420 0.976 0.519 0.756
KLDRO 1.000 0.287 0.984 0.630 0.826
GDRO 0.717 0.696 0.962 0.741 0.883

5 Related Work

Distributionally robust optimization (DRO) directly solves the OOD generalization problem by
optimizing the worst-case error in a pre-defined uncertainty set, which is often constrained by
moment or support conditions [12, 4], shape constraints [26, 21, 20, 6], f -divergence [27, 15] and
Wasserstein distance [31, 34, 5, 16]. [12, 4] set moment or support conditions for the distributions in
the uncertainty set. As for shape constraints, one commonly used is unimodality, and [20] uses the
orthounimodality to constitute the uncertainty set for DRO for multivariate extreme event analysis.
As for f -divergence, [27] theoretically demonstrates that it is equivalent to the variance penalty, and
[15] derives the optimization algorithm from its dual reformulation. Compared with f -divergences
which require the support of distributions in the uncertainty set is fixed, the uncertainty set built with
Wasserstein distance contains distributions with different support and could provide robustness to
unseen data. Despite the capacity of a Wasserstein uncertainty set, the optimization of Wasserstein
DRO is quite hard. [31, 16, 5] convert the original DRO problem into a regularized ERM problem, but
it is suitable only for a limited class of loss functions and transportation cost functions. [34] proposes
an approximate optimization method for Wasserstein DRO and could be applied to deep neural
networks, which protects the models from adversarial attacks. Besides, DRO methods have also been
used for structured data. [22] studies the DRO problem for data generated by a time-homogeneous,
ergodic finite-state Markov chain.

Although DRO methods could guarantee the OOD generalization performances when the testing
distribution is included in the uncertainty set, there are works [19, 17] doubting their real effects in
practice. In order to guarantee the OOD generalization ability, in real scenarios, the uncertainty set
has to be overwhelmingly large to contain the potential testing distributions. Such overwhelmingly
large set makes the learned model make decisions with fairly low confidence, and it is also referred to
as the over-pessimism problem. To mitigate such problem, [17] proposes to incorporate additional
unlabeled data to further constrain the uncertainty set, and [24] learns the transportation cost function
for WDRO with the help of multiple environment data.

6 Conclusion

Through this work, we take the first step to incorporate data geometry information to mitigate the
over-flexibility problem in DRO. In this work, we use the k-nearest-neighbor graph to characterize the
data manifold, while our proposed method is compatible with any manifold learning or graph learning
methods. And we believe that a more accurate estimated data structure with advanced manifold
learning and graph learning algorithms will further boost the performance of GDRO, which we leave
for future work.
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A Appendix

A.1 Related Work

Distributionally robust optimization (DRO), stemming from the robust learning literature, directly
solves the OOD generalization problem by optimizing the worst-case error in a pre-defined uncertainty
set. The choice of the uncertainty set is the key difference of different DRO methods. The uncertainty
set is often constrained by moment or support conditions [12, 4], shape constraints [26, 21, 20, 6],
f -divergence [27, 15] and Wasserstein distance [31, 34, 5, 16].

[12, 4] set moment or support conditions for the distributions in the uncertainty set. As for shape
constraints, one commonly used is unimodality, and [20] uses the orthounimodality to constitute
the uncertainty set for DRO for multivariate extreme event analysis. Compared with the shape
constraints, our proposed GDRO intrinsically considers the data geometric properties via Geometric
Wasserstein distance, and the geometric property is learned in a data-driven way which is compatible
with manifold learning and graph learning methods. As for f -DRO, [27] theoretically demonstrates
that it is equivalent to the variance penalty, and [15] derives the optimization algorithm from its
dual reformulation. Compared with f -divergences which require the support of distributions in the
uncertainty set is fixed, the uncertainty set built with Wasserstein distance contains distributions with
different support and could provide robustness to unseen data. Despite the capacity of a Wasserstein
uncertainty set, the optimization of Wasserstein DRO is quite hard. [31, 16, 5] convert the original
DRO problem into a regularized ERM problem, but it is suitable only for a limited class of loss
functions and transportation cost functions. [34] proposes an approximate optimization method for
Wasserstein DRO and could be applied to deep neural networks, which protects the models from
adversarial attacks. Besides, DRO methods have also been used for structured data. For example,
[22] studies the DRO problem for data generated by a time-homogeneous, ergodic finite-state Markov
chain.

Although DRO methods could guarantee the OOD generalization performances when the testing
distribution is included in the uncertainty set, there are works [19, 17] doubting their real effects in
practice. In order to guarantee the OOD generalization ability, the uncertainty set should be large
enough to capture the potential testing distribution, while in real scenarios, the uncertainty set has to
be overwhelmingly large to achieve this. Such overwhelmingly large set makes the learned model
make decisions with fairly low confidence, and it is also referred to as the over-pessimism problem.
To mitigate such problem, [17] proposes to incorporate additional unlabeled data to further constrain
the uncertainty set, and [24] learns the transportation cost function for WDRO with the help of
multiple environment data. Different from these works that utilize additional information to constrain
the uncertainty set, our proposed GDRO naturally incorporates the data geometric properties into the
design of the uncertainty set by firstly using the new distance metric, Geometric Wasserstein distance.

Apart from DRO methods, there are also multiple branches of methods addressing the problem of
OOD generalization. Domain generalization methods utilize training data from multiple domains to
learn models that generalizes well to unseen domains, and for details of this branch, one can refer
to [37]. Invariant learning methods [1], from the causal inference literature, assume the existence
of invariant representation and leverage multiple environment data to learn such representations.
Compared with DRO methods, they rely on strong assumptions and lack theoretical guarantees.

A.2 Derivations of the Optimization

The whole Forward Euler Method in Section 3.2 is given as:

jij = 1/n(pi(ℓj − ℓi+β(log pi − log pj))+ − pj(ℓj − ℓi + β(log pi − log pj))−), (17)

p
(t+α)
i = p

(t)
i −

α

2

∑
j:(i,j)∈E

(jij − jji)wij , (18)

where (a)+ = max{a, 0} and (a)− = (−a)+.

A.3 Proof of Theorem 3.1

Theorem A.1 (Local Robustness Guarantees of Lagrangian Penalty Problem). For any t > 0,
τ > 0 and given θ, denote the solution of Equation 5 as p∗(θ) = arg supp∈P(G0) Rn(θ, p) −
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1
2τ GW

2
G0

(p̂tτ (θ), p). Let ϵτ (θ) = GW2
G0

(p̂tτ (θ), p
∗(θ)), we have

min
θ∈Θ

sup
p∈Po(G0)

Rn(θ, p)−
1

2τ
GW2

G0
(p̂tτ (θ), p) = min

θ∈Θ
sup

p:GW2
G0

(p̂tτ (θ),p)≤ϵτ (θ)

Rn(θ, p). (19)

Proof. Denote p∗ = arg supp∈Po(G0) Rn(θ, p) − 1
2τ GW

2
G0

(p̂tτ , p), since ϵτ (θ) = GW2
G0

(p̂tτ , p
∗),

here we proof by contradiction. Assume p
′
= arg supp:GW2

G0
(p̂t

τ (θ),p)≤ϵτ (θ) Rn(θ, p), then we have

R(θ, p
′
) ≥ R(θ, p∗) and GW2

G0
(p̂tτ , p

′
) ≤ ϵτ (θ), and therefore GW2

G0
(p̂tτ , p

′
) ≤ GW2

G0
(p̂tτ , p

∗).
Denote L(θ, p) = Rn(θ, p)− 1

2τ GW
2
G0

(p̂tτ (θ), p), then we have L(θ, p∗) ≤ L(θ, p′
). Since p∗ is the

supremum point of L(θ, ·), it must be L(θ, p∗) = L(θ, p′
), which gives that R(θ, p

′
) = R(θ, p∗).

A.4 Proof of Theorem 3.2

The proof is based on the Theorem 5 in [7]. From [7], we have

R(p∞)−R(p(t)) ≤ e−Ct(R(p∞)−R(p0)). (20)

Then denote the real worst-case distribution within the ϵ(θ)-radius discrete Geometric Wasserstein-
ball as p∗, that is,

p∗ = arg sup
p:GW2

G0
(P̂tr,p)≤ϵ(θ)

n∑
i=1

piℓi − β

n∑
i=1

pi log pi, (21)

and we have

R(p∞)−R(p∗) +R(p∗)−R(p(t)) ≤ e−Ct(R(p∞)−R(p∗) +R(p∗)−R(p0)). (22)

Therefore, we have

R(p∗)−R(p(t)) ≤ e−Ct(R(p∗)−R(p0))− (1− e−Ct)(R(p∞)−R(p∗)), (23)

and
R(p∗)−R(p(t))

R(p∗)−R(p0)
≤ e−Ct − (1− e−Ct)

R(p∞)−R(p∗)

R(p∗)−R(p0)
< e−Ct. (24)

(choose P̂tr as p0).

A.5 Proof of Theorem 3.3

We follow Sinha et al.[34] for proof of the convergence properties of our Algorithm. Denote the
worst-case distribution as:

p∗(θ) = arg max
p:GW2

G0
(p,P̂tr)≤ϵ̂(θ)

n∑
i=1

piℓ(fθ(xi), yi), (25)

and our objective function as:

F (θ) =

n∑
i=1

p∗i (θ)ℓ(fθ(xi), yi), (26)

and our learned distribution after k times gradient flow is denoted as pk. The gradient descent of θ is:

θ(t+1) = θ(t) − αt · g(t), (27)

where g(t) = ∇θ(
∑n

i=1 p̂
∗
i ℓ(fθ(xi), yi)) is the gradient approximately calculated under our learned

distribution p̂∗.

By a Taylor expansion using the L-smoothness of the objective F , we have:

F (θ(t+1)) ≤ F (θ(t)) + ⟨∇θF (θ(t)), θ(t+1) − θ(t)⟩+ L

2
∥θ(t+1) − θ(t)∥22 (28)

= F (θ(t))− α⟨∇θF (θ(t)), g(t)⟩+ Lα2

2
∥g(t)∥22. (29)
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Then denote the gradient error as:

δ(t) = ∇θF (θ(t))− g(t), (30)

thus, g(t) = ∇θF (θ(t))− δ(t), and we have:

F (θ(t+1)) ≤ F (θ(t))− α⟨∇θF (θ(t)), g(t)⟩+ Lα2

2
∥g(t)∥22 (31)

≤ F (θ(t))− α⟨∇θF (θ(t)),∇θF (θ(t))− δ(t)⟩+ Lα2

2
∥∇θF (θ(t))− δ(t)∥22 (32)

= F (θ(t))− α∥∇θF (θ(t))∥22 + α⟨∇θF (θ(t)), δ(t)⟩+ Lα2

2
∥∇θF (θ(t))− δ(t)∥22 (33)

≤ F (θ(t))− α

2
∥∇θF (θ(t))∥22 +

α

2
∥δ(t)∥22 + Lα2

(
∥∇θF (θ(t))∥22 + ∥δ(t)∥22

)
(34)

= F (θ(t))− α

2
(1− 2Lα)∥∇θF (θ(t))∥22 +

α

2
(1 + 2Lα)∥δ(t)∥22. (35)

Therefore, we have:

(1− 2Lα)∥∇θF (θ(t))∥22 − (1 + 2Lα)∥δ(t)∥22 ≤ 2

α

(
F (θ(t))− F (θ(t+1))

)
, (36)

and average from t = 0 to K we have:

(1−2Lα)
1

K

K∑
t=1

∥∇θF (θ(t))∥22−(1+2Lα)
1

K

K∑
t=1

∥δ(t)∥22 ≤ 2

αK

(
F (θ(0))− F (θ(K+1))

)
, (37)

and

1

K

K∑
t=1

∥∇θF (θ(t))∥22 −
(1 + 2Lα)

1− 2Lα

1

K

K∑
t=1

∥δ(t)∥22 ≤ 2

αK(1− 2Lα)

(
F (θ(0))− F (θ(K+1))

)
,

(38)

Take expectations on the both sides like:

1

K
E

[
K∑
t=1

∥∇θF (θ(t))∥22

]
− (1 + 2Lα)

1− 2Lα

1

K

K∑
t=1

∥δ(t)∥22 ≤ 2

αK(1− 2Lα)

(
F (θ(0))− E

[
F (θ(K+1))

])
.

(39)

Then we only have to bound the δ(t). Following Sinha et al.[34], we deal with ∥δ(t)∥22. According to
the assumption on R(θ, p), we have

∥δ(t)∥22 = ∥∇θF (θ(t))− g(t)∥22 = ∥∇θR(θ(t), p∗)−∇θR(θ(t), p̂∗)∥22 (40)

≤ L2
p∥p∗ − p̂∗∥22 (41)

≤ L2
pγ. (42)

A.6 Proofs of Theorem 3.4

When relaxing the constrains of ϵ-radius Geometric Wasserstein ball, the objective function becomes:

min
θ∈Θ

sup
p∈Po(G0)

{
Rn(θ, p) =

n∑
i=1

piℓi − β

n∑
i=1

pi log pi

}
, (43)

which is equivalent to

min
θ∈Θ

sup
p∈Po(G0)

n∑
i=1

piℓi − β · DKL(p∥P̂tr). (44)

Then it naturally gives the results in Theorem 3.4 (the proof is similar to Theorem 3.1 and we omit
here).
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A.7 Relations between GDRO and KL-DRO

Apart from Theorem 3.4, we introduce a more straightforward proposition showing the equivalence
of KL-DRO and GDRO as the entropy regularization β → ∞.

Proposition A.1 (Reduction of GDRO to KL-DRO). The objective function of GDRO in Equation
(4) is equivalent to the following objective of KL-DRO as β → ∞:

min
θ∈Θ

{
GKL

n (θ) = sup
P :DKL(P∥P̂tr)≤ϵ̂(θ)

n∑
i=1

piℓ(fθ(xi), yi)

}
, with ϵ̂(θ) = DKL(p

∗(θ)∥P̂tr),

(45)
where p∗(θ) = argmaxp

∑n
i=1 piℓ(fθ(xi), yi)− β

∑n
i=1 pi log pi.

Proof. We prove the proposition by showing that both the objectives of GDRO and KL-DRO are
reduced to an ERM objective for infinitely large β:

min
θ∈Θ

{
GERM

n (θ) =
1

n

n∑
i=1

ℓ(fθ(xi), yi)

}
. (46)

Rewrite the objective of GDRO in Equation (4) as:

min
θ∈Θ

GGDRO
n (θ) = sup

P :GW2
G0

(P̂tr,P )≤ϵ

n∑
i=1

piℓ(fθ(xi), yi)− β

n∑
i=1

pi log pi

 . (47)

For any P ∈ P0(G0) and P ̸= PU where PU = ( 1n , ...,
1
n ) is a uniform distribution, since∑n

i=1 pi log pi >
∑n

i=1 p
U
i log pUi = − log n and

∑n
i=1 piℓ(fθ(xi), yi) is bounded w.r.t. P , there

exists β0 such that for any β > β0:

n∑
i=1

piℓ(fθ(xi), yi)− β

n∑
i=1

pi log pi <

n∑
i=1

1

n
ℓ(fθ(xi), yi) + β log n. (48)

Therefore, as β → ∞,

sup
P :P∈P0(G0)

n∑
i=1

piℓ(fθ(xi), yi)− β

n∑
i=1

pi log pi =

n∑
i=1

1

n
ℓ(fθ(xi), yi) + β log n. (49)

The supremum is achieved at P = PU . Since PU satisfies GW2
G0

(P̂tr, P ) = 0 ≤ ϵ for any positive
ϵ, the objective of GDRO is reduced to:

GGDRO
n (θ) =

1

n

n∑
i=1

ℓ(fθ(xi), yi) + β log n, as β → ∞, (50)

which is equivalent as GERM
n except for a constant independent of θ.

Next, the objective of KL-DRO GKL
n (θ) could be similarly reformulated as is in the proof of Theorem

3.1:

GKL
n (θ) = sup

P :P∈Po(G0)

n∑
i=1

piℓ(fθ(xi), yi)− β

n∑
i=1

pi log pi. (51)

According to Equation 49, as β → ∞,

GKL
n (θ) =

n∑
i=1

1

n
ℓ(fθ(xi), yi) + β log n = GGDRO

n (θ). (52)
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A.8 Limitations

GDRO handles unseen inside-manifold distributions with various categories of shifts as is stated
in the experiment section, including sub-population shifts and class difficulty shifts. However,
generalization to target data entirely falling out of the training data’s manifold, known as support shift
or non-overlapping support, is intrinsically a hard problem. In standard supervised learning, covariate
shift with arbitrary support is known to be intractable [3]. Some domain adaptation methods, such as
invariant representation learning [39], could empirically validate its effectiveness out of support while
still requiring the target distribution to be close to the source’s. Not to mention that such methods
have utilized unlabeled target data from the unseen support. Therefore, out-of-support generalization
is not the focus of GDRO for lack of additional information and strong structural assumptions. And
we leave it to future work.

B Experiments

In this section, we introduce the details of our experiments.

Dataset Summary In order to comprehensively evaluate the empirical performance of our proposed
GDRO, we experiment on both simulated and real-world datasets with various distributional shift
patterns studied by OOD generalization, including sub-population shifts and label shifts. The
descriptions of our adopted datasets are shown in Table 4.

Table 4: Datasets descriptions.

Dataset Toy Example Manifold Selection Bias Colored MNIST Retiring Adults HIV IonoSphere
Kind Regression Classification Regression Classification Classification Classification Classification
Data Generation Simulation Simulation Simulation Real Real Real Real
Dimension. 2 300 10 2352 10∼19 160 34
Shift Pattern Sub-population Domain Shift Domain Shift Domain Shift Sub-population Label Shift Label Shift
Model Linear Linear Linear MLP Linear MLP MLP

Baselines We compare our GDRO with the following baselines:

• Empirical Risk Minimization (ERM):

min
θ

1

N

N∑
i=1

ℓ(yi, fθ(xi)). (53)

• Wasserstein DRO (WDRO [5, 34]):

min
θ

sup
Q:Wc(Q,P̂N )≤ϵ

EQ[ℓ(Y, fθ(X))]. (54)

• KL-DRO [15]:

min
θ

sup
q:DKL(q∥P̂N )≤ϵ

N∑
i=1

qiℓ(yi, fθ(xi)). (55)

• χ2-DRO [27, 15]:

min
θ

sup
q:Dχ2 (q,P̂N )≤ϵ

N∑
i=1

qiℓ(yi, fθ(xi)). (56)

• Environment Inference for Invariant Learning (EIIL [8]): this method belongs to invariant
learning. As a general OOD generalization method from another branch, we temporarily
add it only in the Colored MNIST experiment.

Implementation Details For all experiments, G0 is constructed as a k-nearest neighbor graph from
the training data only at the initialization step. Specifically, we adopt NN-Descent to estimate the
k-nearest neighbor graph for the large-scale dataset Colored MNIST while performing exact search for
k-nearest neighbors in other experiments. We adopt MSE as the empirical loss function for regression
tasks and cross-entropy for classification tasks. The parameterized model fθ is implemented as
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a MLP with a hidden layer of 64 neurons for the HIV and IonoSphere dataset, a MLP with two
hidden layers of 128 neurons for Colored MNIST, and a linear model in the other experiments. Note
that GDRO is compatible with any parameterized models including DNN. The training of MLP is
performed with a batch size of 1024 and a learning rate at 0.001. The simulation of gradient flow
in Equation 17-18 is implemented by message propagation with DGL package [38], which scales
linearly with sample size and enjoys parallelization by GPU.

B.1 Simulation Data

As for the simulation data, we simulate domain shifts between training data and testing data for both
regression and classification settings. And we also investigate the influence brought by label noises to
demonstrate that our GDRO could to some extent resist label noise.

1. Toy Example: Sub-population Shifts via Anti-Causal Effect
Firstly, inspired by [1], we induce the domain shifts via the anti-causal effect as follows:

S ∼ N (0, 1), Y = αSS + S2 +N (0, 0.1), V = αV Y +N (0, 1), αV =

{
1 with probability 1− r,

−0.1 with probability r,

(57)

where X = [S, V ]T , S serves as a stable feature with an unchanged relationship with Y (thus it
should be used for prediction), but V is a spurious feature with changeable relationships with Y
(thus one should avoid using it), and αS is set to 5.0 for all data. For training data, we sample 10000
points, and design different settings with varying minor group ratios r. For testing data, we simulate
6 domains with strong shifts by varying αV ∈ {−3,−2,−1, 1, 2, 3} (V = αV Y + N (0, 1)) and
calculate the Mean_Error, Std_Error and parameter estimation error Est_Error for each method as:

• Mean Error: Mean_Error = 1
|Etest|

∑
e L

e

• Standard Deviation of Error: Std_Error =
√

1
|Etest|−1

∑
e(Le −Mean_Error)2

• Parameter Estimation Error: Est_Error = |α̂S − αS | + |α̂V |, where α̂S , α̂V denote the estimated
parameters for S and V respectively. Note that the ground-truth αV is 0.

Analysis From the results in Table 5, WDRO performs similarly to ERM, and two f -DRO methods
(KL-DRO and χ2-DRO) outperform ERM and WDRO. Such results verify our analysis that the
Wasserstein uncertainty set cannot be large due to its over-flexibility, which greatly impairs its
performance under strong domain shifts. Our GDRO outperforms all baselines and achieves much
lower prediction errors and estimation errors in all settings, which shows our uncertainty set built on
Geometric Wasserstein distance is much more practical and reasonable. Further, we plot the training
data in Figure 8. From Figure 8, we can see that although the training data is low-dimensional, they
have geometric structures, which are utilized by our GDRO to achieve good OOD generalization
performances.

2. High-dimensional Data with Low-dimensional Structure: Sub-population Shifts

In this setting, data are high-dimensional but with low-dimensional structure. The data generation is
similar to [30] and is a typical classification setting in OOD generalization. We introduce the spurious
correlation between the label Y = {+1,−1} and the spurious attribute A = {+1,−1}. We firstly
generate low-dimensional data Xlow = [S, V ]T ∈ R10 as:

S ∼ N (Y 1, σ2
sI5), V ∼ N (A1, σ2

vI5), (58)

Table 5: Results of the toy example with varying minor probability r. Each result is averaged over 10
runs, and the standard deviation is omitted since it is small for all methods.

Simulation 1: Toy Example (Domain Shift via Anti-Causal Effect)
Minor Probability r = 0.01 r = 0.05 r = 0.1

Mean_Error Std_Error Est_Error Mean_Error Std_Error Est_Error Mean_Error Std_Error Est_Error
ERM 7.144 4.260 3.999 5.594 3.210 2.970 4.521 2.444 2.230
WDRO 5.396 3.480 3.024 4.303 2.656 2.297 3.451 1.974 1.700
KL-DRO 2.672 1.145 1.134 2.678 1.148 1.194 2.531 1.086 1.157
χ2-DRO 3.027 1.323 1.185 2.954 1.262 1.118 2.738 1.079 0.953
GDRO 1.759 0.047 0.287 1.718 0.066 0.043 1.769 0.153 0.072
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Figure 4: Data distribution of the toy example with r = 0.5 (the two sub-populations are balanced).

Table 6: The testing accuracy over 10 runs for the simulated experiments on high-dimensional data.

No Label Noises Add 4% Label Noises
r1 = 0.5 r2 = 0.0 r1 = 0.5 r2 = 0.0

ERM 0.573 0.153 0.573 0.152
WDRO 0.576 0.159 0.576 0.157
KL-DRO 0.654 0.340 0.625 0.269
χ2-DRO 0.734 0.644 0.666 0.554
GDRO 0.768 0.767 0.760 0.703

and

A =

{
Y ,with probability r,

−Y ,with probability 1− r.
(59)

Intuitively, r ∈ [0, 1] controls the spurious correlation between A and Y . When r > 0.5, the spurious
attribute A is positively correlated with Y , and when r < 0.5, the spurious correlation becomes
negative. And larger |r − 0.5| results in stronger spurious correlation between A and Y .

Then to convert the low-dimensional data to high-dimensional space, Xlow is multiplied by a column
full rank matrix H as:

Xhigh = (HXlow) ∈ R300, (60)

where H ∈ R300×10 and each column of H is linearly independent from each other (H is full column
rank). We randomly choose such H in each run to introduce some randomness.

For the both training and testing data, we set σ2
s = 1.0 and σ2

v = 0.3. In training, we set r = 0.85 (A
is positively correlated with Y ). In testing, we design two environments with r1 = 0.5 (A ⊥ Y ) and
r2 = 0.0 (A is negatively correlated with Y ) to introduce distributional shifts.

Apart from the natural setting without label noises, we also test the performances under label noises.
Specifically, we add 4% label noises in the training data by flipping the label Y . We run the
experiments for 10 times, and each time with one random matrix H . The results over 10 runs are
shown in Table 6.

3. Selection Bias: Domain Shift via Selection Bias Mechanism
Secondly, a more complicated mechanism is designed via selection bias as:

S ∼ N (0, 2Ins) ∈ R5, V ∼ N (0, 2Inv ) ∈ R5, Y = βTS + 0.1 · S1S2S3 +N (0, 0.5). (61)

Similar to the toy example above, S are stable features while the relationships between V and Y
are perturbed in different domains. Specifically, a data point is selected with probability P (xi, yi) =

|r|−5∗|yi−sign(r)·vb
i |, which induces the spurious correlation between a certain covariate V b ∈ V and

17



Y . In training, we generate 10000 points, where the major group contains 95% data with r = 1.9
and the minor group contains 5% data with r = −1.3. In testing, we first report the performances
of the two training groups, and then we further vary r ∈ {−1.5,−1.7,−1.9,−2.3,−2.7,−3.0} to
simulate more challenging domain shifts that cannot be obtained by interpolation between training
groups. The average results over ten runs are shown in Table 7 (simulation 2). As for sub-population
shifts, GDRO achieves good tail performance at a slight sacrifice of the performance of the major
group. Further, for more challenging domain shifts, GDRO significantly outperforms all baselines in
all testing distributions, even though the shifts are much stronger than the training.

Table 7: Results on the Selection Bias Experiments. We report the root mean square errors.

Simulation 2: Selection Bias Experiment without Label Noises
Train(major) Train(minor) Test Parameter

Est_ ErrorBias Ratio r r = 1.9 r = −1.3 r = −1.5 r = −1.7 r = −1.9 r = −2.3 r = −2.7 r = −3.0
ERM 0.339 0.876 0.892 0.884 0.864 0.880 0.843 0.888 0.423
WDRO 0.339 0.877 0.894 0.885 0.865 0.882 0.844 0.890 0.424
χ2-DRO 0.411 0.744 0.757 0.741 0.733 0.742 0.714 0.755 0.367
KL-DRO 0.370 0.713 0.728 0.716 0.708 0.713 0.685 0.724 0.319
GDRO 0.493 0.492 0.508 0.489 0.501 0.483 0.486 0.496 0.033

Simulation 3: Selection Bias Experiment under Label Noises
ERM 0.335 0.845 0.885 0.879 0.874 0.884 0.882 0.876 0.422
WDRO 0.335 0.896 0.887 0.880 0.875 0.886 0.884 0.877 0.423
χ2-DRO 0.375 0.866 0.855 0.856 0.843 0.860 0.854 0.845 0.408
KL-DRO 0.393 0.879 0.868 0.866 0.856 0.876 0.866 0.861 0.391
GDRO 0.542 0.537 0.553 0.549 0.534 0.539 0.555 0.550 0.058

3. Label Noises: Add Label Noises

Since DRO methods are risk-aware, they are prone to be affected by label noises. Though the effect of
label noises cannot be eliminated due to the nature of DRO, our proposed GDRO could significantly
improve the resistance of DRO methods to a minor degree of label noises. Based on the selection bias
experiment, we random sample 20 points and add label noises on them via Ỹ = Y + Std(Y ) where
std(Y ) denotes the standard derivation of the marginal distribution of Y . From results shown in Table
7(simulation 3), both f -DRO methods are significantly affected and perform similarly to ERM under
such a minor degree of label noises. And our GDRO is only slightly affected by the label noises.

Further, to demonstrate the difference between f -DRO, WDRO, and GDRO, for the label noise
experiment, we visualize the learned worst-case distribution of three methods. (1) In the first two
figures in Figure 5(a), we draw the learned sample weights of KL-DRO and GDRO, where red points
represent the noisy samples in training data, and the size of each point is proportional to its sample
weight. We can see that KL-DRO puts heavy weights on the noisy points (the red nodes are much
larger), while our GDRO only slightly increases them and the weights of data in the minor group
are raised, which results in the difference between their performances in the label noise experiment.
The reason for such phenomenon of KL-DRO is that it ignores the data geometry, allowing for
some isolated nodes with much heavier weights than surrounding nodes, which corresponds with our
Theorem 3.4. Since our GDRO intrinsically naturally constrains weight learning on the data manifold,
the learned weights are smooth w.r.t the data manifold. (2) In the third figure in Figure 5(a), the red
points represent the samples, to which WDRO introduces label noises with the ratio larger than 50%,
and the size of each point is proportional to its label noise ratio. We can see that although WDRO
extends the support, the created samples are quite noisy and greatly harm the learning process. (3) To
quantify this property, we measure the smoothness via Dirichlet Energy and plot the Dirichlet Energy
w.r.t the relative entropy KL(p∥P̂tr) between the learned distribution and training distribution in
Figure 5(b), which shows that the learned weights of GDRO are much more smooth on the data
manifold than that of KL-DRO.

B.2 Real-World Data

Finally, towards a comprehensive comparison with existing DRO methods, we evaluate our method
on four real-world datasets with various kinds of distributional shifts, including sub-population shifts,
domain shifts, class-wise shifts, and label noises. All experimental details can be found in Appendix.

1. Retiring Adults: Sub-population Shifts The Retiring Adults dataset [13] is derived from US
Census surveys, where the sub-population shifts are natural since there are geographic variations
across different states. Our experiments involve three prediction tasks defined in [13], including
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(a) Visualization of learned weights of f -DRO and GDRO.
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Figure 5: Explanatory studies for comparison between f -DRO (f(x) = x lnx) and GDRO. Figure
(a) visualizes the learned worst-case distribution of f -DRO, GDRO, and WDRO on kNN, and the
size of each node is proportional to its sample weight or its label noise ratio. Figure (b) plots the
Dirichlet Energy w.r.t the relative entropy, which measures the smoothness of learned weights given
the same DKL(p∥P̂tr).

Figure 6: Results of Retiring Adults Dataset.

Income Prediction, Public Health Insurance Coverage Prediction, and Commuting Time Prediction.
For each task, we randomly sample 2000 points from state A and 2000 · r points from state B, where
r < 1 and the second state is viewed as the minor group. In Figure 6, we report the prediction
accuracy of the minor group for different minority ratios r in three tasks.

2. HIV-1: Sub-population Shifts & Label Imbalance HIV-1 Protease Cleavage Dataset [10]
involves a task to predict whether an octamer would be cleaved by HIV-1 protease, given a 160-
dimensional one-hot vector encoding the sequence of 8 amino acids composing the octamer. The
dataset contains 4 splits, and following [28], we merge ’746’ and ’1625’ as subpopulations A and
view ’Impens’ as B. In training, subpopulations A and B are mixed at a ratio of 1 : r, where r ≤ 1
is the minor group ratio. Coupled with the sub-population shift, class labels are imbalanced with
33% positive in sub-population A and 16% positive in B, which is more challenging. In testing, we
re-balance the two classes and plot the overall accuracy w.r.t. the minor group ratio in Figure 7.

3. Colored MNSIT: Domain Shifts & Label Noises Following Arjovsky et al. [1], we conduct a
binary classification task on the MNIST dataset. Firstly, a binary label Y is assigned to each image
according to its digit: Y = 0 for digit 0 ∼ 4 and Y = 1 for digit 5 ∼ 9. Secondly, we induce noisy
labels Ỹ by randomly flipping the label Y with a probability of 0.2. Then we induce domain shifts by
sampling the color id C spuriously correlated with Ỹ . Specifically, we generate C by flipping Ỹ with
probability r, which can be viewed as the indicator of different domains. In training, we randomly
sample 5000 data points and set r = 0.85 and in testing, we set r = 0, which induces strong domain
shifts between training and testing. Results are shown in Table 8.

4. Ionosphere Radar Classification: Class Difficulty Shifts Ionosphere Radar Dataset [11]
consists of return signals from the ionosphere of a phased array radar system in Google Bay, Labrador.
The electromagnetic signals were processed by an auto-correlation function to produce 34 continuous
attributes. The target is to determine whether the return signal indicates specific physical structures
in the ionosphere (good return) or not (bad return). Due to the disparity between classes, ERM was
found to achieve a much lower accuracy on bad returns than good ones [33]. DRO methods are
expected to achieve higher accuracy in the harder class. Results are shown in Table 8.
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Figure 7: Results of the HIV-1 data.

Table 8: Results of Colored MNIST data and Ionosphere data.

Method Colored MNIST Ionosphere
Train Acc Test Acc Easy Class Acc Hard Class Acc AUC Score

ERM 0.867 0.116 0.952 0.481 0.683
WDRO 1.000 0.335 0.944 0.630 0.774
χ2-DRO 0.839 0.420 0.976 0.519 0.756
KLDRO 1.000 0.287 0.984 0.630 0.826
EIIL 0.740 0.596 - - -
GDRO 0.717 0.696 0.962 0.741 0.883

Analysis From the results on real-world data, we find that in most scenarios, WDRO only slightly
outperforms ERM, and two f -DRO methods show significant promotions to ERM. Our proposed
GDRO outperforms all baselines significantly in all scenarios. (1) The discrepancy between WDRO
(≈ ERM) and f -DRO (> ERM) indicates that the extending the distribution support in practice is
not as promising as might be expected, which we think is because creating new data points is nearly
impossible in real scenarios. (2) The significant discrepancy between GDRO (≫ ERM) and WDRO
(≈ ERM) shows the superiority of restricting the distribution support, which enables DRO to provide
robustness in a much larger uncertainty set without worrying about generating unrealistic samples.
(3) GDRO exhibits significant advantages under strong distributional shifts (small minor ratio in
Figure 6 and Figure 7; strong shifts in Colored MNSIT in Table 8), which shows that by incorporating
geometric properties, our uncertainty set mitigates the over-flexibility problem and our GDRO can
resist stronger distributional shifts.

B.3 Supplementary Figures
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(a) K = 5 (b) K = 10

(c) K = 50 (d) K = 500

Figure 8: KNN graphs for Toy Example under various values of K.
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