
NAS-Bench-360: Benchmarking Diverse Tasks
for Neural Architecture Search

Renbo Tu
Carnegie Mellon University

renbo@cmu.edu

Mikhail Khodak
Carnegie Mellon University

khodak@cmu.edu

Nicholas Roberts
Carnegie Mellon University
ncrobert@andrew.cmu.edu

Maria-Florina Balcan
Carnegie Mellon University

ninamf@cs.cmu.edu

Ameet Talwalkar
Carnegie Mellon University and Determined AI

talwalkar@cmu.edu

Abstract

Most existing neural architecture search (NAS) benchmarks and algorithms priori-1

tize performance on well-studied tasks, focusing on computer vision datasets such2

as CIFAR and ImageNet. However, the applicability of NAS approaches in other3

areas is not adequately understood. In this paper, we present NAS-Bench-360,4

a benchmark suite for evaluating state-of-the-art NAS methods on less-explored5

datasets. To do this, we organize a diverse array of tasks, from classification of6

simple deformations of natural images to predicting protein folding and partial7

differential equation solving. Our evaluation pipeline compares architecture search8

spaces of different flavors, and reveals varying performance on different tasks,9

providing baselines for further use. All data and reproducible evaluation code are10

open-source and publicly available. The results of our evaluation show that current11

state-of-the-art NAS methods often struggle to compete with simple baselines and12

human-designed architectures on the majority of tasks in our benchmark. At the13

same time, they can be quite effective on a few individual, understudied tasks. This14

demonstrates the importance of evaluation on diverse tasks to better understand the15

usefulness of different approaches to architecture search and automation.16

1 Introduction17

Neural architecture search (NAS) aims to automate the design of deep neural networks, ensuring18

performance on par with hand-crafted architectures while reducing human labor devoted to tedious19

architecture tuning [8]. With the growing number of application areas of ML, and thus of use-cases20

for automating it, NAS has experienced an intense amount of study, with significant progress in21

search space design [3, 20, 32], search efficiency [22], and search algorithms [16, 27, 28]. While the22

use of NAS techniques may be especially impactful in under-explored or under-resourced domains23

where less expert help is available, the field has largely been dominated by methods designed for24

and evaluated on benchmarks in computer vision [6, 20, 29]. There have been a few recent efforts25

to diversify these benchmarks to settings such as vision-based transfer learning [7] and speech and26

language processing [13, 21]; however, evaluating NAS methods on such well-studied tasks using27

traditional, domain-specific search spaces does not give a good indication of their utility on more28

far-afield applications, which have often necessitated the design of custom neural operations [4, 19].29

We aim to rectify this issue by introducing a suite of diverse benchmark tasks drawn from various30

data domains that we collectively call NAS-Bench-360. This benchmark consists of an organized31

setup of five suitable datasets that can both (a) be evaluated in a unified way using existing NAS32
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methods and (b) come from a variety of different application areas, including numerical analysis,33

organic chemistry, and medical imaging. We also include standard image classification evaluations as34

a point of comparison, as many new methods continue to be designed for such tasks.35

Following our construction of this benchmark, we evaluate three different search spaces using36

strong methods for searching each of them and compare the results to expert-driven domain-specific37

architecture design. The first search space is a simple baseline built around Wide ResNet (WRN) [30],38

while the other two are well-studied modern NAS search spaces: DARTS [20] and DenseNAS [9].39

We find that the NAS-based spaces struggle to beat even the simple WRN comparator on the majority40

of tasks in the benchmark. On two of the tasks—classifying electromyography signals and solving41

partial differential equations—NAS methods do significantly worse. NAS lags even further behind42

when we include domain-specific expert-designed architectures, where it lags far behind on even43

CIFAR-100 when disallowing extra augmentation or pre-training on ImageNet [25]. On the other44

hand, DARTS cells perform relatively well on two tasks that a priori seem more challenging: spherical45

image classification and protein-distance prediction. These observations and other empirical insights46

demonstrate the necessity of a benchmark that provides a diverse array of data domains for evaluating47

NAS methods.48

To ensure the availability and impact of this benchmark, the associated datasets and eval-49

uation pipelines will remain open-source and accessible at https://rtu715.github.io/50

NAS-Bench-360/. Reproducibility is assured from open-sourcing all relevant code for the end-to-51

end procedure, including data processing, architecture search, model retraining, and hyper-parameter52

tuning frameworks.53

2 Related Work54

Benchmarks have been very important to the development of NAS in recent years. This includes55

standard evaluation datasets and protocols, of which the most popular are the CIFAR-10 and ImageNet56

routines used by DARTS [20]. Another important type of benchmark has been tabular benchmarks57

such as NAS-Bench-101 [29], NAS-Bench-201 [6], and NAS-Bench-1Shot1 [31]; these benchmarks58

exhaustively evaluate all architectures in their search spaces, which is made computationally feasible59

by defining simple searched cells. Consequently, these benchmark cells are less expressive than the60

DARTS cell [20], often regarded as the most powerful search space in the cell-based regime. Notably,61

our benchmark is not a tabular benchmark, i.e. we do not evaluate every architecture from a fixed62

search space; rather, the focus is on the organization of a suite of tasks to evaluate both NAS methods63

and search spaces, which would necessarily be restricted if we first fixed a search space to construct a64

tabular benchmark from.65

While NAS methods and benchmarks have generally been focused on computer vision, recent work66

such as AutoML-Zero [23] and XD operations [24] has started moving towards a more generically67

applicable set of tools for AutoML. However, even more recent benchmarks that do go beyond the68

most popular vision datasets have continued to focus on well-studied tasks, including vision-based69

transfer learning [7], speech recognition [21], and natural language processing [13]. Our aim is to70

go beyond such areas in order to evaluate the potential of NAS to automate the application of ML71

in truly under-explored domains. One analogous work to ours in the field of meta-learning is the72

Meta-Dataset benchmark of few-shot tasks [26], which similarly aimed to establish a wide-ranging73

set of evaluations for that field.74

3 NAS-Bench-360: A Suite of Diverse and Practical Tasks75

In this section, we introduce the NAS setting being targeted by our benchmark, our motivation for76

organizing a new set of diverse tasks as a NAS evaluation suite, and our task-selection methodology.77

We report evaluations of specific algorithms on this new benchmark in the next section.78

3.1 Neural Architecture Search: Problem Formulation and Baselines79

For completeness and clarity, we first formally discuss the architecture search problem itself, starting80

with the extended hypothesis class formulation [16]. Here the goal is to use a dataset of points x ∈ X81

to find parameters w ∈ W and a ∈ A of a parameterized function fw,a : X 7→ R≥0 that minimize82
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the expectation Ex∼Dfw,a(x) for some test distribution D over X ; here X is the input space,W is83

the space of model weights, and A is the set of architectures. For generality, we do not require the84

training points to be drawn from D to allow for domain adaptation, as is the case for one of our tasks,85

and we do not require the loss to be supervised. Note also that the goal here does not depend on the86

issue of computational or memory efficiency, which we do not focus on in our evaluations; there our87

restriction is only that the entire pipeline can be run on an NVIDIA V100 GPU.88

Notably, this formulation makes no distinction between the model weights w and architectures a,89

treating both as parameters of a larger model. Indeed, the goal of NAS may be seen as similar to90

model design, except now we include the design of an (often-discrete) architecture space A such that91

it is easy to find an architecture a ∈ A and model weights w ∈ W whose test loss EDfw,a is low.92

This can be done in a one-shot manner—simultaneously optimizing a and w—or using the standard93

approach of first finding an architecture a and then keeping it fixed while training model weights w94

for it using a pre-specified algorithm such as tuned stochastic gradient descent (SGD).95

This formulation also includes non-NAS methods by allowing the architecture search space to be a96

singleton. When the sole architecture is a standard and common network such as WRN [30], this97

yields a natural baseline method. On the other hand, when A contains a single domain-specific98

architecture, such as a spherical convolutional neural network (CNN) [4], it yields the “human99

baseline” competitor approach. We make comparisons to both methods in our empirical results.100

3.2 Motivation and Task Selection Methodology101

Curating a diverse, practical set of tasks for the study of NAS is our primary motivation behind this102

work. We observe that past NAS benchmarks focused on the creation of larger search spaces and103

more sophisticated search methods for neural networks. However, the utility of these search spaces104

and methods are only evaluated on canonical computer vision datasets. Whether these new methods105

can improve upon non-NAS baselines remains an open question. This calls for the introduction of106

new datasets lest NAS research overfits to the biases of CIFAR-10 and ImageNet. By identifying107

these possible biases, future directions in NAS research can be better primed to suit the needs of108

practitioners, thereby incentivizing the deployment of NAS techniques on real applications.109

NAS-Bench-360 comprises tasks from existing datasets and some variants of them that we’ve110

generated, summarized in Table 1. This work focuses exclusively on datasets with 2d input data111

because they are directly comparable to the classical vision datasets. During the selection of tasks,112

breadth is our main consideration. First, we formalize the categorization of tasks into point and113

grid, respectively referring to tasks with scalar outputs and 2d matrix outputs. In other words,114

point tasks are classification tasks, and grid tasks are regression tasks. The heavy bias of previous115

NAS research towards point tasks motivates the inclusion of grid tasks in our benchmark. Second,116

breadth is achieved by selecting tasks from various subjects and applications of deep learning, where117

introducing NAS could improve upon the performance of handcrafted neural networks.118

3.3 List of Tasks from Diverse Data Sources119

In lieu of providing raw data, we perform data pre-processing locally and store the processed data on120

a public Amazon Web Service’s S3 data bucket with download links available on our website. Our121

data treatment largely follows the procedure defined by the researchers who provided them. This122

would enhance the reproducibility of results by ensuring the uniformity of input data for different123

pipelines. Specific pre-processing and augmentation steps are described below.124

3.3.1 CIFAR-100: Standard Image Classification125

As a starting point of comparison to existing benchmarks, we include the CIFAR-100 task [14], which126

contains RGB images from natural settings to be classified into 100 fine-grained categories. CIFAR-127

100 is preferred over CIFAR-10 because it is more challenging and suffers less from over-fitting in128

previous research.129

Data pre-processing: while the 10,000 testing images are kept aside only for evaluating architec-130

tures, the 50,000 training images are randomly partitioned into 40,000 for architecture search and131

10,000 for validation. On all of the 50,000 training images, we apply standard CIFAR augmentations132

including random crops and horizontal flipping, and finally normalize them using a pre-calculated133

3



Table 1: Information of tasks in NAS-Bench-360

Task name Dataset size Type Learning objective New to NAS

CIFAR-100 60K Point Classify natural images into 100 classes

Spherical 60K Point Classify spherically projected images Xinto 100 classes

NinaPro 3956 Point Classify sEMG signals into 18 classes Xcorresponding to hand gestures

Darcy Flow 1100 Grid Predict the final state of a fluid from its Xinitial conditions according to a PDE

PSICOV 3606 Grid Predict pairwise distances between resi- Xduals from 2d protein sequence features

mean and standard deviation of this set. On the 10,000 testing images, we only apply normalization134

with the same constants.135

3.3.2 Spherical: Classifying Spherically Projected CIFAR-100 Images136

To test NAS methods applied to natural-image-like data, we consider the task of classifying spherical137

projections of the CIFAR-100 images, which we call the Spherical task. In addition to scientific138

interest, spherical image data is also present in a variety of applications, such as omnidirectional139

vision in robotics and weather modeling in meteorology, as sensors usually produce distorted image140

signals in real-life settings. To create a spherical variant of CIFAR, we project the planar signals of141

the CIFAR images to the northern hemisphere and add a random rotation to produce spherical signals142

for each individual channel following the procedure specified in [4]. The resulting images are 60*60143

pixels with RGB channels.144

Data pre-processing: with the same split ratios CIFAR-100, the generated spherical image data is145

directly used for training and evaluation without data augmentation and pre-processing.146

3.3.3 NinaPro: Classifying Electromyography Signals147

Our final classification task, NinaPro, moves away from the image domain to classify hand gestures148

indicated by electromyography signals. For this, we use a subset of the NinaPro DB5 dataset [2]149

in which two thalmic Myo armbands collect EMG signals from 10 test individuals who hold 18150

different hand gestures to be classified. These armbands leverage data from muscle movement, which151

is collected using electrodes in the form of wave signals. Each wave signal is then sampled using a152

wavelength and frequency prescribed in [5] to produce 2d signals.153

Data pre-processing: Containing less than 4,000 samples, the data is comprised of single-channel154

signals with an irregular shape of 16*52 pixels. This task also differs from CIFAR for its class155

imbalance, as over 65% of all gestures are the neutral position. We split the data using the same ratio156

as CIFAR, resulting in 2638 samples for training, and 659 samples for validation and testing each.157

No additional pre-processing is performed.158

3.3.4 Darcy Flow: Solving Partial Differential Equations159

Our first regression task, Darcy Flow, focuses on learning a map from the initial conditions of a PDE160

to the solution at a later timestep. This application aims to replaced traditional solvers with learned161

neural networks, which can output a result in a single forward pass. The input is a 2d grid specifying162

the initial conditions of a fluid and the output is a 2d grid specifying the fluid state at a later time,163

with the ground truth being the result computed by a traditional solver.164

Data pre-processing: we use scripts provided by [19] to generate the PDEs and their solutions,165

for a total of 900 data points for training, 100 for validation, and 100 for testing. All input data166

is normalized with constants calculated on the training set before fed into the neural network and167
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de-normalized following an encode-decode scheme. The solutions, or labels, for the training set are168

also encoded and decoded this way. The test labels are not processed. We report the mean square169

error (MSE or `2).170

3.3.5 PSICOV: Protein Distance Prediction171

Our final task, PSICOV, studies the use of neural networks in the protein folding prediction pipeline,172

which has recently received significant attention to the success of methods like AlphaFold [12]. While173

the dataset and method they use are too large-scale for our purposes, we consider a smaller set of174

protein structures to tackle the specific problem of inter-residual distance predictions outlined in [1].175

2d large-scale features are extracted from protein sequences, resulting in input feature maps with a176

massive number of channels. Correspondingly, the labels are pairwise-distance matrices with the177

same spatial dimension.178

Data pre-processing: we adopt the chosen subset of DeepCov proteins in [1], consisting of 3,456179

proteins each with 128*128 feature maps across 57 channels. 100 proteins from this set are used for180

validation and the rest for training. Test data for final evaluation is gathered from another set of 150181

proteins, PSICOV. Since these produce feature maps that are larger (512*512), we run the prediction182

network over all of its non-overlapping 128*128 patches. The evaluation metric is mean absolute183

error (MAE or `1) computed on distances below 8 Å, referred to as MAE8.184

3.4 Ethics and Responsible Use185

Within our array of tasks, the only dataset containing human-derived data is NinaPro. Our chosen186

subset of NinaPro contains only muscle movement data from 10 healthy individuals, without any187

exposure of personal information from clinical data. The original experiments to acquire NinaPro188

data are approved by the ethics commission of the state of Valais, Switzerland [2]. For other datasets,189

we have listed the data licenses in the appendix for responsible usages of data. While we do not190

view the specific datasets we use in this benchmark as potential candidates for misuse, the broader191

goal of applying NAS to new domains comes with inherent risks that may require mitigation on an192

application-by-application basis.193

4 Using NAS-Bench-360 to Study Architecture Search Methods194

Having detailed our construction of NAS-Bench-360, we now demonstrate its usefulness on (a)195

comparing and evaluating state-of-the-art architecture search methods on powerful search spaces and196

(b) discovering new insights on their performance on under-explored domains. In this section, we197

first specify the different NAS algorithms and baselines we compare, followed by the experimental198

and reproducibility setup we follow. Finally, we report our main comparisons and analyze the results.199

4.1 Baselines and Search Procedures200

From the discussion in Section 3, the two non-NAS baseline methods we consider—applying a tuned201

WRN to all tasks and using a fixed, domain-specific architecture—can be viewed via the NAS setup202

as having a singleton architecture search space. As for NAS algorithms themselves, we focus on203

two well-known paradigms for search: cell-based NAS (using DARTS [20]) and macro NAS (using204

DenseNAS [9]). We detail these four approaches below.205

Wide ResNet with Hyperparameter Tuning The residual network (ResNet) and its derivative206

architectures are canonical for classic computer vision, and we investigate their ability to generalize to207

our selection of tasks. A more powerful adaptation of ResNet, the Wide ResNet [30] is chosen as the208

backbone architecture. For automated training, we wrap the training procedure with a hyperparameter209

tuning algorithm, ASHA [15], an asynchonous version of Hyperband [18]. Given a range for each210

hyperparameter, either discrete or continuous, ASHA uniformly samples configurations and uses211

brackets of elimination: at each round, each configuration is trained for some epochs, before the212

algorithm selects the best-performing portion based on validation metrics. Since we use the Wide213

ResNet backbone for all tasks, our tuning budget is fixed and uniform.214
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Expert-Designed Networks We also include expert-driven design of architectures in specific215

domains as a more rigorous comparator for NAS methods on our tasks. Frequently this includes216

not only hand-designed topologies and operation patterns but custom neural operations themselves,217

which are often crucial for success on domains beyond computer vision. Below we briefly summarize218

the architectures chosen for each task.219

• CIFAR-100: While this task is very heavily studied and one can achieve very high accuracies220

using optimization tricks and transfer from ImageNet, we restrict our selection to existing221

results that use only the simple (standard) data augmentation we allow for the evaluation222

phase. Here the best result found is using DenseNet-BC [10].223

• Spherical: This task is often regarded as a canonical example where a specific neural224

operation, specifically spherical convolutions, are the “right” operation to substitute for225

the convolution due to data-specific properties. Our result is from a wide variation of the226

spherical CNN in [4], with a max width of 256 channels from 64.227

• NinaPro: As the original paper studying NinaPro used fairly weak networks that achieve a228

much higher error, here we simply report the performance of our tuned WRN baseline.229

• Darcy Flow: Here we report the performance of a four-layer network that replaces convo-230

lutions with Fourier Neural Operators (FNOs) [19], which were specially designed for the231

PDE task. Note that our reproduced result attains slightly better MSE than the numbers232

reported by the authors.233

• PSICOV: We report the reproduced performance of the ResNet-256 network used by the234

PDNET, a deeper, narrow, and dilated version of the standard ResNet used for ImageNet;235

note our reproduction attains much better MAE8 than the authors report [1].236

Cell-based Search Using DARTS The first state-of-the-art NAS paradigm within our consideration237

is cell-based NAS. Cell-based methods first search for a genotype, which is a cell containing neural238

operations such as convolution and pooling. During evaluation, a neural network is constructed by239

replicating the searched cell and stacking them together. The most popular search space for this240

approach is the one used by the DARTS space [20], consisting of assigning one of eight operations to241

six edges in two types of cells: “normal” cells preserve the shape of the input representation while242

“reduction” cells downsample it. Note that for the grid tasks we do not use the reduction cell so as to243

not introduce a bottleneck.244

Finally, to adhere to standard ML practices we do not adapt the standard DARTS pipeline, which245

uses test performance to select from multiple random seeds. This, in addition to not using other246

evaluation-time enhancements such—specifically auxiliary towers and the cutout data augmentation—247

leads to lower performance on CIFAR-100 than is reported in the literature. As this search space has248

been heavily studied since its introduction, we use as a search routine a recent approach—GAEA249

PC-DARTS—that achieves some of the best-known results on CIFAR-10 and ImageNet for this250

benchmark [16].251

Macro NAS Using DenseNAS The second NAS paradigm we consider is macro NAS. Instead of252

building from a fixed cell, macro NAS requires the specification of a super network with different253

inter-connected network blocks. These blocks and connections are then pruned during the search254

phase to construct the output neural net for evaluation. For this benchmark, we also choose a recent255

search space in this NAS paradigm, DenseNAS [9], which similarly to the DARTS space has near256

state-of-the-art results on ImageNet.257

DenseNAS searches for architectures with densely-connected, customizable routing blocks to emulate258

DenseNet [10]. In our experiments, we use the ResNet-based search space, DenseNAS-R1, with259

all of WRN’s neural operations for better comparison with the baseline backbone. For point tasks260

and grid tasks, we adapt two super networks from the one used for ImageNet as inputs to the search261

algorithm. The grid task super network maintains the same spatial dimensions without downsampling262

to avoid bottlenecks, and we use a lower learning rate for evaluating architectures on grid tasks to263

prevent divergence. Other training and evaluation procedures are identical to those in the original264

paper and uniform across all tasks.265
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Table 2: Comparing NAS methods with baseline and expert-designed methods on NAS-Bench-360.
All automated results (WRN, DenseNAS, and GAEA PC-DARTS) are averages of three random
seeds. See Appendix for standard deviations.

Search space Search method CIFAR-100 Spherical NinaPro Darcy Flow PSICOV
(0-1 err.) (0-1 err.) (0-1 err.) MSE MAE8

WRN baseline ASHA 24.89 88.45 6.88 0.041 5.71
expert design∗ hand-tuning 17.17 64.42 6.88 0.0096 3.50

DenseNAS-R1 DenseNAS 27.44 72.99 10.17 0.10 3.84
DARTS Cell GAEA PC-DARTS 24.19 52.90 11.43 0.056 2.80
∗ Chosen according to best-effort literature search and implementation; c.f. Section 4.1.

4.2 Experimental Setup266

Our main experiments consist of 3 evaluation trials for every combination of method and task, fixing267

one random seed for each trial. We present these results in Table 2 and discuss the specific procedure,268

reproducibility, and extension experiments in the following subsections.269

Using validation data For best practices in NAS, we argue for the separation of the final testing270

set and the validation set, which is specifically for selecting neural architectures and hyperparameters.271

After this process, we combine training and validation data to perform retraining and evaluation on272

the test set. This result is reported as final and is not used in any way to further optimize the model.273

Hyperparameter tuning In experiments with hyperparameter tuning, we consistently use the274

same hyperparameter ranges and fix the tuning budget, in terms of the number of configurations and275

maximum training epochs, across all tasks. The tuning budget is selected to be 2.5 to 3 times the276

backbone training time. This is to eliminate inductive biases for specific tasks. Details on the tuning277

procedure are in the appendix.278

Software and hardware We adopt the free, open-source software Determined1 for experiment279

management, hyperparameter tuning, AWS cloud deployment with docker containers. All experi-280

ments are performed on a single p3.2xlarge instance with one Nvidia V100 GPU. The computation281

cost in GPU hours of individual experiments using this setup can be found in the appendix.282

Reproducibility The following measures in our experimental pipeline are taken to ensure the283

reproducibility of our results:284

1. We perform most data pre-processing steps beforehand and store the processed data in the285

cloud for download. A data splitting scheme, once randomly selected, is then fixed for all286

experiments on that task, i.e. the same training, validation, and testing sets fed into the287

dataloader are always the same.288

2. Experimentation code is always executed in a fixed docker container using a pre-built docker289

image on Docker Hub. This guarantees a uniform execution environment and saves users290

from the manual labor of configuring dependencies.291

3. Via the specification of a random seed, Determined controls several important sources of292

randomness during code execution, including hyperparameter sampling and training data293

shuffling.294

4. During training, we always validate on the full validation set, not on a mini-batch, to avoid295

stochasticity in the results.296

4.3 Comparing NAS Approaches Using NAS-Bench-360297

Generalization of NAS to other domains Our experiments demonstrate that state-of-the-art NAS298

approaches in classic vision are unable to outperform human-designed neural networks on 3 out of 5299

1GitHub repository: https://github.com/determined-ai/determined
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Figure 1: Comparison of the same
CIFAR-100 image before and after the
spherical transformation.

Figure 2: Distribution of random architectures and
hyperparameters’ performance on NinaPro and Darcy
Flow.

Table 3: Experiment runtimes of NAS-Bench-360 (GPU hours)

Task GAEA PC-DARTS DenseNAS WRN

CIFAR-100 33 2 8

Spherical CIFAR-100 39 2.5 8.5

NinaPro 2 0.5 1

Darcy Flow 15 0.5 2

PSICOV 59.5 23 61

tasks in NAS-Bench-360. They do especially poorly on the Darcy Flow task and fall short of matching300

both non-NAS comparators by a large margin. Perhaps most surprisingly, neither the DARTS space301

nor DenseNAS, both very recent search spaces with strong results on ImageNet (and CIFAR-10 for302

the former) are able to outperform the reported performance of a fairly basic architecture (DenseNet)303

on CIFAR-100; this is especially interesting as DenseNAS was built around this architecture. Overall304

the results suggest that NAS is not yet fully generalizable to various applications of deep learning.305

Computational cost In some time-sensitive applications of NAS, both efficiency and perfor-306

mance are criteria for NAS method selection. Our choice of methods exemplifies a tradeoff307

between these two factors. As a more computationally heavy method, GAEA PC-DARTS308

beats the more lightweight DenseNAS on most of the tasks except for NinaPro, where they309

achieve similar accuracies. On certain tasks, such as NinaPro and PSICOV, DenseNAS would310

be the more cost-effective option than GAEA PC-DARTS to have decent performance on par311

with handcrafted neural architectures. Note that the computation cost of the WRN baseline can312

vary due to randomness inherent in ASHA’s asynchrony. We report all experiment runtimes in Table 3.313

314

CIFAR-100 vs. Spherical The Spherical task can be directly compared to CIFAR-100 to assess315

how well NAS methods could handle image distortions. With the same setup across tasks, both316

the DARTS space and DenseNAS have reasonably good numbers on CIFAR-100, but their results317

significantly deteriorate on the spherical variant. Both obtain much worse error when the images318

are spherically projected, but a much larger gap emerges between the two methods, with DenseNAS319

performing quite badly. On the other hand, the searched DARTS Cell not only performs 20-36% better320

than the other convolutional approaches but even beats our best-effort adaptation of the spherical321

CNN approach to this task [4], in which we expanded the size of that network. This is surprising322

because spherical convolutions were designed specifically for such data. We believe these results323

indicate that the spherical dataset may be a useful but simple way for distinguishing NAS approaches324

when they are overfitting to standard computer vision domains; Figure 1 provides an example of the325

distortion.326

WRN as a baseline Viewing the WRN baseline as a singleton architecture search space, we327

compare this baseline to more sophisticated NAS search spaces. On our set of new tasks, NAS does328
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Table 4: `1 error of supernet and searched architectures (discretized) on grid tasks

DARTS DenseNAS

Task Supernet Discretized Supernet Discretized

Darcy Flow 0.031± 0.001 0.057± 0.012 0.041± 0.002 0.10± 0.010
PSICOV 3.87± 0.12 2.80± 0.057 7.96± 0.20 3.84± 0.15

not perform better than Wide ResNet with hyperparameter tuning on CIFAR-100, NinaPro, and329

Darcy Flow but excels on the rest. Hyperparameter optimization can boost the backbone performance330

considerably to rival the performance of NAS methods. Most non-Bayesian hyperparameter tuning331

algorithms, such as random search [17], population-based training [11], and Hyperband [18], are332

also straightforward to apply with any neural network backbone. Therefore, we argue for the use of333

hyperparameter-tuned backbones to assess the effectiveness of NAS approaches and encourage their334

inclusion in NAS benchmarks.335

4.4 In-Depth Studies Using NAS-Bench-360336

Supernet performance on grid tasks During architecture search, our NAS methods on the DARTS337

and DenseNAS search spaces train the supernets to find optimal neural operations on the validation338

set. Surprisingly, the validation error of the supernet is sometimes lower than that of the final searched,339

discretized neural network. Therefore, we evaluate the supernet of DARTS and DenseNAS on the340

testing set, and we compare its performance with that of the final neural network in Table 4. The341

supernet outperforms the final network on Darcy Flow for both methods, but the reverse is true for342

the PSICOV task and all point tasks. The supernet is not in the search space and so we report the343

discretized result; nevertheless, this fact suggests that performance on a task like Darcy Flow might344

benefit from a better search space.345

Evaluating random architectures and hyperparameters The power of an architecture or hyper-346

parameter space can also be characterized by the performance of its random elements. We assess both347

the average and variance of the results. To do this, we randomly sample 8 network architectures each348

from the search spaces of DARTS and DenseNAS, and we test their performance on the NinaPro349

and Darcy Flow tasks, one for classification and the other for regression. For comparison, we also350

randomly sample 8 hyperparameter configurations to train the backbone Wide-ResNet in Figure 2.351

While rather successful on NinaPro, the random architectures have a high average error and vary in352

performance on the PDE solving task. Random hyperparameters are more unstable on NinaPro, but353

its median performance is better than NAS.354

Utility of hyperparameter tuning The final experiment examines whether hyperparameter tuning355

improves the performance of WRN on various tasks. During hyperparameter search, we compare the356

validation metrics of training using default hyperparameters and using tuned ones from ASHA to357

select final hyperparameters for retraining. Despite the small tuning budget allocated to ASHA, tuned358

hyperparameters could outperform the default setting on all tasks except for CIFAR-100. Our results359

suggest that wide ResNet’s standard set of hyperparameters are only optimized for conventional image360

classification. On other tasks, hyperparameter optimization is helpful for boosting performance.361

5 Conclusion362

NAS-Bench-360 is a benchmarking suite with a novel, diverse set of tasks. The tasks are derived from363

various fields of academic research, leading to different potential applications. Our selection of NAS364

approaches achieves state-of-the-art performances on most tasks, which points to new possibilities365

of incorporating NAS into new research domains. All datasets and reproducible experiment code366

are open-sourced, and we welcome researchers to use these tasks and further iterate on them with367

new NAS methods. Finally, a possible extension to generalize this set of tasks is datasets with 1d or368

3d inputs, such as audio. We hope our work can encourage the NAS community to move towards369

tackling more diverse problems in the real world.370
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Table 5: Results with standard deviations

Search space CIFAR-100 Spherical NinaPro Darcy Flow PSICOV
(0-1 loss) (0-1 loss) (0-1 loss) MSE MAE8

WRN baseline 24.89± 0.23 88.45± 0.60 6.88± 0.40 0.041± 0.0012 5.71± 0.15
DenseNAS-R1 27.44± 0.65 72.99± 0.95 10.17± 1.31 0.10± 0.010 3.84± 0.15
DARTS Cell 24.19± 2.12 52.90± 4.08 11.43± 0.61 0.056± 0.012 2.80± 0.057

A Experiment Details510

A.1 Hyperparameter Tuning and Backbone511

We use a wide residual network with 16 layers and a widening factor of 4 (WRN-16-4) for point512

tasks, and a network with 10 layers and widening factor of 4 (WRN-10-4) for grid tasks.513

For tuning hyperparameters, we use ASHA’s default elimination schedule and search over 16 randomly514

sampled hyperparameter configurations. The maximum epochs that a single configuration could be515

trained is equal to that of Wide ResNet’s default, 200.516

We have selected the following hyperparameter ranges for tuning the Wide ResNet backbone:517

• log10(learning rate): Unif[-4, 0]518

• momentum: Unif{0.0, 0.9}519

• log10(weight decay): Unif[-5, -1]520

• dropout: Unif{0.0, 0.3}521

• batch size: 128 (all point tasks), 4 (Darcy Flow), 8 (PSICOV)522

A.2 Standard Deviations for Main Results523

See Table 5.524

A.3 Reference Runtimes525

Using a Nvidia V100 GPU, we have recorded the following runtimes for each experiment in this526

benchmark in Table 3. Overall, GAEA PC-DARTS is more costly than backbone with hyperparameter527

optimization, which is more costly than DenseNAS. The protein tasks requires heavy computation528

since the data is not static but generated during training.529

A.4 Adjustments for Grid Tasks530

On the wide ResNet backbone, we add an adaptive averaging pooling operation to upsample the531

features back to their original dimensions before output. On the DARTS space, we prevent downsam-532

pling and keep spatial dimensions unchanged by disabling reduction cells and replacing them with533

normal cells. On DenseNAS, we configure the super-network to contain only blocks with the original534

spatial dimensions.535

A.5 Random Seeds536

For main experiments, we fix the random seed to be 0,1,2 for each of the 3 trials respectively.537

B Supplementary Materials538

B.1 Code and Datasets539

Our code is available on GitHub: https://github.com/rtu715/NAS-Bench-360540

The datasets, along with their documentation, metadata, etc., can be viewed and downloaded on541

GitHub pages: https://rtu715.github.io/NAS-Bench-360/542
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B.2 Data License543

• CIFAR-100: CC BY 4.0 (on https://www.tensorflow.org/datasets/catalog/544

cifar100)545

• Spherical CIFAR-100: CC BY-SA546

• NinaPro: CC BY-ND547

• Darcy Flow: MIT548

• DeepCov, PSICOV: GPL549
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