Published as a conference paper at ICLR 2025

How TO EVALUATE REWARD MODELS FOR RLHF

Evan Frick Tianle Li Connor Chen Wei-Lin Chiang Anastasios N. Angelopoulos
Jiantao Jiao Banghua Zhu Joseph E. Gonzilez Ion Stoica

UC Berkeley

ABSTRACT

We introduce a new benchmark for reward models that quantifies their ability to
produce strong language models through RLHF (Reinforcement Learning from
Human Feedback). The gold-standard approach is to run a full RLHF training
pipeline and directly probe downstream LLM performance. However, this pro-
cess is prohibitively expensive. To address this, we build a predictive model of
downstream LLM performance by evaluating the reward model on proxy tasks.
These proxy tasks consist of a large-scale human preference and a verifiable cor-
rectness preference dataset, in which we measure 12 metrics across 12 domains.
To investigate which reward model metrics are most correlated to gold-standard
RLHF outcomes, we launch an end-to-end RLHF experiment on a large-scale
crowd-sourced human preference platform to view real reward model downstream
performance as ground truth. Ultimately, we compile our data and findings into
Preference Proxy Evaluations (PPE), the first reward model benchmark explicitly
linked to post-RLHF real-world human preference performance, which we open-
source for public use and further development at |github.com/lmarena/PPE|

1 INTRODUCTION

The ultimate test of a reward model is as follows:
Does the reward model lead to good post-RLHF language model performance?

In other words, because the reward model will be used as a reference signal for LLM training,
in principle, only the downstream LLM performance matters. However, to evaluate downstream
performance, we must train a new LLM using the reward model and evaluate the resulting LLM—a
prohibitively expensive and time-consuming process (Figure I). The long development-feedback
cycle of reward models poses a significant challenge, limiting achievable reward model quality and,
consequently, limiting the effectiveness of the entire RLHF process.
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Figure 1: Overview of the RLHF pipeline. Reward models feed into the very beginning of the RLHF
pipeline, making iterative improvements prohibitively slow. PPE enables a fast feedback loop that
is correlated to downstream outcomes.

This paper introduces a cost-effective method for approximating the effect of a reward model on
downstream LLM performance. Specifically, we measure reward model performance using a large-
scale, crowdsourced pairwise human preference evaluation dataset, as well as a high-quality, pro-
grammatically verifiable correctness preference dataset. To avoid introducing bias, we do not utilize
LLM judges or expert annotators to provide ground-truth references. Instead, we focus on real-
world preference data that reflects organic LLM usage. Additionally, we aim our evaluation tasks
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to closely resemble real-world RLHF training, making the assessment more aligned with practical
use cases. Moreover, to bridge the existing knowledge gap between reward model evaluations and
actual post-RLHF outcomes, we experimentally correlate our evaluation metrics with real human
preferences on RLHF-ed LLMs. To achieve this, we used select reward models within a full RLHF
training pipeline, each producing a fine-tuned LLM. These RLHF-tuned models are then deployed
on a crowd-sourced human preference platform where we directly measure their downstream hu-
man preference scores. Through this end-to-end analysis, we identify which metrics across diverse
domains show the strongest correlation with real-world post-RLHF performance. By validating this
correlation, we ensure that iterative improvements on our evaluation will lead to tangible gains in
downstream performance.

Additionally, we release PPE, a crowdsourced collection of 16,038 labeled human preference pairs
containing responses from 20 different top LLMs and over 121 languages as well as a dataset of
2,555 prompts, each with 32 different sampled response options, totaling 81,760 responses across 4
different models, all grounded with verifiable correctness labels. PPE evaluates reward models on
12 different metrics and 12 different domains, such as their accuracy in selecting human-preferred
or verifiably correct responses. Notably, PPE is the only reward model benchmark directly linked to
downstream RLHF outcomes.

To summarize, our work makes the following contributions:

1. We analyze how reward model metrics correlate with real downstream human preference
performance post-RLHF.

2. We fully open-source PPE, a comprehensive benchmark for reward models with metrics
directly linked to downstream RLHF outcomes.

2 RELATED WORK

2.1 HUMAN PREFERENCE AND REWARD MODELS

Human preference has emerged as one of the gold standards for LLM training and evaluation. Sev-
eral large-scale human preference datasets have been developed, including Stanford Human Prefer-
ence (SHP) (Ethayarajh et al., 2022), Chatbot Arena (Chiang et al., [2024)), and Anthropic HH (Bai
et al 2022a)), among others. Researchers requiring human preference proxies have pursued two
main approaches in this area. First, they have trained reward models based on real or synthetically
generated human preference data to approximate human preferences for LLM training. Second, they
have employed LLMs as judges for evaluating other LLMs.

For the training side, the line of work on Reinforcement Learning from Human Feedback (RLHF)
focuses on the family of algorithms that first train a reward model as a proxy of human preferences,
and then use the reward model as the signal to fine-tune the language model with reinforcement
learning (Christiano et al.| 2023} |Bai et al.,[2022a;|Ouyang et al.| 2022} Touvron et al.,|2023;|OpenAl,
2022; Bai et al., [2022b; [Lee et al., [2023} (OpenAlL [2023aib; Zhu et al.|, |[2024).

This paper studies one of the critical problems in the RLHF process: how do we evaluate reward
models and select the best one for downstream performance?

2.2 REWARD MODEL BENCHMARKS

RewardBench is the first and only previous RLHF reward model benchmark (Lambert et al., [2024).
RewardBench has 4 main tasks: Chat, Chat Hard, Safety, and Reasoning. The authors source consid-
erable ground truth preference pairs from MT-Bench (Zheng et al., [2023) and AlpacaEval (Dubois
et al., 2023), though preference labels are also hand-verified. RewardBench also uses adversarial
examples from LLMBar (Zeng et al., [2024), coding example pairs with correct vs buggy imple-
mentations, and safety pairs with should-refusals and should-not-refusals. Overall, RewardBench
is designed to evaluate across an array of tasks posited as relevant to RLHF. RewardBench takes a
crucial first step toward reward model evaluations. However, the authors assert that more research
must be done to understand how to correlate performance to RLHF success. In this paper, our ex-
periments show that as reward models have improved, we now see a negative correlation between
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| Diverse Human Pref. | # Prompts | # Responses | Verified RLHF Outcomes
RewardBench'[| No 2,985 5,970 | No
PPE (Ours) Yes 18,593 113,836 | Yes

Table 1: Comparison of PPE to existing work.

RewardBench evaluation score on top models and downstream RLHF performance. We aim to
improve upon this gap with the our findings.

3 SOURCING GROUND TRUTH PREFERENCE LABELS

Previous work on sourcing preference ground truth labels often relies upon LLM judge preference
labels in conjunction with manual verification from individuals, introducing potential preference
biases. Alternatively, rejected responses are often curated synthetically by unnaturally perturbing
the chosen output or modifying the prompt to produce forced errors, introducing bias on how errors
look and occur. These preference pairs are not representative of the distribution of responses seen by
reward models when providing learning signals for RLHF. We offer a brief comparison to previous

work in [Table 11

Thus, we ground our preference labels with the following methodology: (1) Utilize crowdsourced
diverse prompts and responses with human preference labels. (2) Utilize existing benchmarks with
verifiable correctness checks on LLM-generated responses.

The methodology (1) provides an unbiased estimate of real-world human preference through the ag-
gregation of many diverse human preferences. We use a large crowdsourced preference set of 16,038
preference labels to mitigate individual label noise and avoid over-fitting to any single individual’s

preference, details in|subsection 4.

Methodology (2) curates an objective correctness signal naturally unbiased by response style. We
use the second approach to label the correctness of many sampled responses from an LLM, mimick-
ing rollouts or best-of-k exploration strategies seen in RLHF training processes. As a result, we draw
preference pairs from more naturally occurring distributions (eg. real LLM responses and errors),
better align with the expected environment reward models operate in.

For an overview of the curated benchmark datasets in PPE based on these two methodologies, please
see Appendix

4 HUMAN PREFERENCE METRICS

To benchmark whether a reward model aligns with human preference directly, we utilize a human
preference dataset collected from a large-scale human preference annotation platform that allows
users to vote on pairwise comparisons between responses generated from two anonymized and
randomly selected LLMs. Our human preference dataset contains human-labeled preferences for
16,038 pairwise comparisons between 20 selected top modelsﬂ These models were selected based
on their strong performance on Chatbot Arena and overall popularity (Chiang et al., 2024). We em-
phasized selecting models that have already undergone some form of RLHF, anticipating that these
models would be more challenging for reward models to evaluate.

Since the human preference set is crowd-sourced, we can repeat the collection process at any time
to obtain an updated set that better reflects the current array of available models and any changes
in human preference. Additionally, a newly updated human preference set would largely mitigate
benchmark leakage that may have occurred with the previous set. Consequently, this human prefer-
ence metric can remain consistently up-to-date with fresh, relevant data.

'RewardBench is currently the only other evaluation scheme for RLHF reward models (Lambert et al.l
2024).

“mistral-large-2402, phi-3-medium-4k-instruct, gpt-4-1106-preview, claude-3-opus-20240229, gemini-1.5-
pro-api-0514, gpt-4-0314, claude-3-haiku-20240307, gpt-4-0613, claude-3-sonnet-20240229, yi-1.5-34b-chat,
llama-3-8b-instruct, gemini-1.5-flash-api-0514, llama-3-70b-instruct, gpt-40-2024-05-13, command-r-plus,
gpt-4-turbo-2024-04-09, qwen2-72b-instruct, command-r, qwen1.5-72b-chat, starling-lm-7b-beta
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Figure 2: Model accuracies on predicting human preference labels on PPE’s human preference
benchmark dataset. Accuracies are measure on the “Overall” category.

4.1 CURATION

Specifically, we curate our human preference data from crowd-sourced battles. A “battle” consists
of a user-provided prompt, two models and their responses to the prompt, and the user’s preference
vote for the responses. We perform a random sample weighted by model occurrence to obtain 50,000
collected battles between selected models such that models are represented at a uniform frequency,
then de-duplicate and remove any samples containing P.I.I information using Azure Al. We use
OpenAl’s moderation API to flag and remove potentially harmful conversations from the sample.
Finally, we subsample 16,038 pairs from the remaining battles to construct the human preference
benchmark dataset.

The human preference benchmark dataset, at a glance: (1) Includes 4,583 instruction-following
prompts, 5,195 hard prompts, 2,564 math prompts. Prompts may exist in multiple categories. (2)
Includes user queries from over 121 languages. Top languages include English (8,842), Chinese
(1,823), Russian (1,779), German (568), Korean (338), Japanese (321), etc. (3) Includes preferences
crowdsourced from 6,120 individuals.

4.2 SCORING

We conduct several statistical metrics described below to evaluate different aspects of a given reward
model.

1. Accuracy. We compute pairwise ranking accuracy against a human preference label for each re-
ward model, excluding battles in which the human rater selected a “tie”. This measures the granular
case-by-case similarity to a real human preference signal. [Figure 2] visualizes accuracy scores on the
overall human preferences.

2. Correlation. Since each battle contains information on model identities, each reward model pro-
duces a ranking and a pairwise win-rate matrix for the 20 selected models. We compute Spearman
and Kendall correlation between model ranking produced by each reward model against ground truth
ranking. In addition, we compute row-wise Pearson Correlation between the win-rate matrix pro-
duced by each reward model against the ground truth win-rate matrix. We intuit that these aggregate
correlation metrics measure overall similarity to real human preference.

3. Confidence. To weight stability in assigning preferences, we follow the metrics proposed in
Arena-Hard-Auto 2024b), where we measure each reward models’s Separability with
Confidence Interval, Confidence Agreement, and Brier Score against ground truth ranking. These
metrics are designed to measure uncertainties and over-confidence within a reward model.

Furthermore, we can calculate all the above scores conditioned on any subset of prompts in the
evaluation data, specifically capturing 7 different domains. For example, we can observe these
metrics on only math prompts or only instruction following prompts. We expect that strong reward
models should score high regardless of the selected domain. Scores for all subsets are detailed in
Appendix[A:2] Score distribution statistics for each metric are detailed in Appendix [A2.1]
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5 CORRECTNESS METRICS

To measure a reward model’s ability to distinguish between different samples drawn from the same
distribution, we utilize correctness metrics on established, reputable benchmarks with verifiable
ground truths (e.g. |Austin et al.| (2021)’s MBPP-Plus). We construct a benchmark dataset wherein
each prompt is associated with 32 different responses sampled from the same LLM. Additionally,
since we use benchmarks with verifiable ground truths, we can score the correctness (a binary label)
of each response according to the original static benchmark’s verification function (e.g. code unit
tests or Regex matching).

To assess the performance of reward models (and LLMs-as-judges), we obtain rewards/preferences
for the sampled responses and evaluate how well these align with the verifiable correctness signal,
with the general assumption that expert humans would always prefer correct answers over incor-
rect ones. Our response sampling strategy ensures that the preference labeler must disentangle the
correctness signal from potentially very similar or even adversarial outputs, thereby increasing task
difficulty. Moreover, this method naturally samples “unforced” errors as they would appear in real
training or evaluation schemes, rather than synthetically constructing preference pairs that may con-
tain underlying confounding biases.

5.1 CURATION

For the correctness metrics, we selected standard, widely used, reputable, and verifiable benchmarks:
MMLU Pro (Wang et al.,2024b), MATH (Hendrycks et al.,2021), GPQA (Rein et al.,[2023)), MBPP
Plus (Austin et al.,2021)), and IFEval (Zhou et al.,[2023)). Each benchmark covers a different domain:
general knowledge, mathematics, STEM, coding, and instruction following, respectively. While
we initially curate PPE with these five benchmarks, it should be noted that any desired verifiable
benchmark can be added to the correctness measurement paradigm by repeating the process outlined
below, thereby providing a framework for customization towards specific evaluation needs.

For each benchmark, we sample LLM responses for 500 randomly selected prompts, each 32 times,
for a total of 16,000 completions. If a benchmark has fewer than 500 prompts, we use all avail-
able prompts. We choose a large K of 32 to allow models to generate more diverse responses,
covering a larger input domain for the human preference proxy and testing greater robustness to
over-optimization. We note that this sampling strategy actually yields very similar KL-Divergence
shifts as would be seen in RLHF training methods such as Proximal Policy Optimization (PPO)
(Gao et al.,[2022; |Schulman et al., 2017).

We repeat this process for four different models: Llama-3-8B-Instruct, Gemma-2-9b-it, Claude-3-
Haiku, and GPT-40-mini-2024-07-18 (AI@Meta, 2024} Team et al., 2024} |Anthropic, 2024} |Ope-
nAl, 2024). Each model samples prompts randomly with different seeds. We reason that different
model response distributions may have different difficulties. For example, an already extremely
high-performing model like GPT-40-mini-2024-07-18 may be more challenging for reward models
to evaluate correctness.

We then score all responses using the benchmark’s verification methods. Using the correctness labels
for all responses, we discard any rows in which the model got every single response wrong or every
single response right, as it is impossible for the reward model to select a better generation in these
cases. Additionally, we discard any row where less than 10% or greater than 90% of the responses
were correct, with exceptions made for benchmarks with very few valid options. This step helps
avoid vacuously correct responses, such as an LLM randomly guessing the correct multiple-choice
answer with completely nonsensical reasoning, as well as prompts that are too easy.

From the remaining data, we randomly sample 128 responses from each model, totaling 512 sam-
ples. If a benchmark is too small and some models have fewer than 128 viable samples, we adjust
the sampling accordingly. More details on curation can be found in Appendix [A.3.1]

5.2 SCORING

We score the reward models on the correctness metrics in ways that target a reward model’s ro-
bustness, granularity, and theoretical roof-line performance. Details on reward model and 1lm-judge
scores can be found in Appendix Score distribution statistics can be found in Appendix
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Figure 3: Best of K curves showing reward model score vs K. The blacked dashed line is the theo-
retical optimal curve, closer to this curve implies a better score. The left graph shows each reward
model’s curve averaged across all correctness PPE benchmarks. The right graph shows each reward
model’s curve on just the MBPP-Plus set where over-optimization behavior is seen in some reward
models, characterized by curves that decrease with respect to increases in K.

Reward Model MMLU-Pro | MATH | GPQA | MBPP-Plus | IFEval | Mean
Athene-RM-70B 0.77 0.79 0.59 0.68 0.62 0.69
Claude 3.5 (ArenaHard)" 0.81 0.86 0.63 0.54 0.58 0.68
Llama-3-OffsetBias-RM-8B 0.62 0.68 0.55 0.74 0.62 0.64
GPT-40-mini (ArenaHard)" 0.71 0.81 0.57 0.54 0.56 0.63
Llama-3.1-70B (ArenaHard)" 0.73 0.73 0.56 0.58 0.56 0.63
internLM2-20B-Reward 0.68 0.70 0.57 0.58 0.62 0.63
Athene-RM-8B 0.68 0.71 0.55 0.62 0.57 0.62
ArmoRM-Llama3-8B-v0.1 0.66 0.71 0.57 0.54 0.58 0.61
Skywork-Reward-Llama-3.1-8B 0.64 0.70 0.57 0.52 0.61 0.61
Nemotron-4-340B-Reward 0.70 0.65 0.57 0.49 0.63 0.61
internLM2-7B-Reward 0.67 0.73 0.55 0.44 0.64 0.60
Llama-3.1-70B (Alpaca)’ 0.66 0.66 0.56 0.52 0.56 0.59
Claude 3.5 (Alpaca)® 0.66 0.63 0.56 0.52 0.57 0.59
Skywork-Reward-Gemma-2-27B 0.54 0.63 0.53 0.59 0.54 0.56
GPT-40-mini (Alpaca)’ 0.57 0.64 0.53 0.52 0.56 0.56
NaiveVerbosityModel 0.48 0.50 0.48 0.31 0.52 0.46

Table 2: Reward model and LLM-as-a-judge scores on the correctness accuracy metric. LLM-as-a-
judge is marked with .

5.2.1 BEST OF K CURVES

A best of K curve shows on average how the reward model’s selected “best” answer’s ground truth
score changes vs K. When plotted against the ground truth curve, we can observe the gap between
the reward model’s ability to select the “best” answer given a set of K responses, and the “gold
standard” best score. More formally, let Si be a size K random sample of responses from a model,

g : Sk — {0, 1} be the ground truth scoring function, and R : Si — R be the reward model proxy

score. Then, Eg, [g(argmax g, R(s))] is the expected ground truth score of the select response
by the reward model given K sampled responses. We then sweep across K = 1,..., 32 to obtain a
curve. More details on these curves and derived metrics can be found in Appendix[A:3.2] Best of K
scores for various reward models are detailed in Appendix

5.2.2 AREA UNDER RECEIVER OPERATOR CHARACTERISTICS (ROC) CURVE

Since the ground truth verification outputs a binary label, we can check each reward model’s strength
as a binary correctness classifier by calculating the area under the ROC curve. We first normalize the
scores in each row with min-max normalization. Then we calculate the binary classification ROC
curve using the normalized scores as “probabilities”. AUC scores are detailed in Appendix [Table 31}
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5.2.3 ACCURACY

Since LLM-as-a-judge cannot easily scale 32-wise judgments, we create a supplemental pairwise
task to evaluate correctness preference accuracy compatible with both reward models and LLM-as-
a-judge. For each row of best of K data, we simply sample 5 pairs of responses such that in each
pair, there is one correct response and one incorrect response. Then, after randomizing positions, the
LLM-as-a-judge picks the preferred response. We then measure the accuracy as the rate in which
the correct response is preferred over the incorrect result. The accuracies for reward models are also
collected for comparison. All scores are documented in Appendix

6 VALIDATING PPE ON POST-RLHF OUTCOMES

By testing a reward model performance on a benchmark, we hope to glean insight towards down-
stream performance on an LLM RLHF-ed using a given reward model. To measure how well dif-
ferent metrics in PPE correlate to post-RLHF LLM performance on real-world human preference,
we conduct an experiment in which we RLHF a given base LLM using different reward models. We
then measure the real-world human preference scores of the resulting LLMs to understand the true
performance of the original reward models.

For our experimental setup, we use each reward model to individually RLHF Llama-3.1-8B-Instruct
through Direct Preference Optimization (DPO) (Rafailov et al., 2023). This way, we can compare
LLMs tuned on identical RLHF pipelines, except for the reward model being measured. Then,
these RLHF-ed LLMs are deployed to to a crowd-sourced annotation platform to collect real-world
human pairwise preferences between model answers. Overall, 12,190 human votes were collected
and compiled into relative rankings between these RLHF-ed LLLMs. Under this controlled RLHF
experiment, the non-noise variance in final human preference rankings attained by these models is
dependent only on the reward model choice, effectively measuring the downstream performance of
these reward models, albeit on a single model base model undergoing off-policy DPO RL training.

6.1 TRAINING PROCEDURE

Nineﬂ reward models were selected to act as preference labels in a full RLHF training pipeline
in which the resulting models were evaluated on real human preference. We constrained this ex-
periment to nine models for cost reasons— the RLHF and human preference evaluation process is
exceedingly expensive. We selected popular, newer, and high-performing reward models from Re-
wardBench. We reason these will be the most difficult reward models to differentiate. We also
require the selected reward models to be general-purpose reward models, and not specifically tuned
to any single domain or task.

We create a training dataset by first including 7,000 prompts sampled from the original 50,000
human preference votes after PII removal, unsafe prompt removal, and de-duplication. We then add
500 random prompts from MMLU-Pro that are not in PPE, and another 500 prompts from MATH
train set (also mutually exclusive from PPE). For each prompt, we sample 16 responses from the
base model, Llama-3.1-8B-Instruct, randomizing the temperature for each generation, drawing from
a triangular distribution (¢ = 0.0,b = 1.0,¢ = 1.3) to promote more diverse exploration. This
process yields 8,000 total prompts, each with 16 different responses, totaling 128,000 responses.

Each reward model then constructs its own preference dataset. First, the reward model gives scores
for each of the 16 responses for each prompt. The “chosen” response is set as the maximum scoring
response. The “rejected” response is sampled as the rank n response, where n is sampled uniformly.
Note that the sample for n is seeded such that it is the same for each across reward models. This pro-
cess yields a dataset of 8,000 rows, each with a prompt, a chosen response, and a rejected response
where both responses are in-distribution for the base model- a requirement for using DPO.

3Selected:  Athene-RM-70B and Athene-RM-8B, InternLM2-20B-Reward, InternLM?2-7B-Reward,
Llama-3-OffsetBias-RM-8B, = ArmoRM-Llama3-8B-v0.1, = Skywork-Reward-Gemma-2-27B, Skywork-
Reward-Llama-3.1-8B, Nemotron-4-340B-Reward (Frick et al.l[2024; |Cai et al.,|2024} [Park et al, 2024} Wang
et al., 2024a; Liu & Zeng| [2024; |Wang et al., 2024c). Evaluated on Preference Proxy Evaluations (PPE),
but not selected: Starling-RM-34B, Starling-RM-7B-Alpha, Eurus-RM-7B, InternLM2-1.8B-Reward, and
NaiveVerbosityModel (Zhu et al.| 2023a; |Yuan et al.,|2024; |Ca1 et al.| [2024)).
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Figure 4: Post DPO performance on real human preference the Overall Category. “Model” is the
reward model used to train the base model unless specified as a reference base model.

We then train Llama-3.1-8B-Instruct on each dataset using DPO producing an LLM associated with
each selected reward model for real-world downstream human preference testing.

6.2 EVALUATION ON REAL-WORLD HUMAN PREFERENCE

We deploy the trained models to a crowd-sourced human preference platform to undergo blind eval-
uation from real users. We set up a cohort of 13 models which include the trained DPO models as
well as Llama-3.1-8B-Instruct, Llama-3.1-70b-Instruct, and Llama-3-8B-Instruct. All models used
temperature 0.2 (excluding Llama-3-8B-Instruct at temperature 0.7). Model pairs were sampled
evenly with only each other for battles. Battles were collected over a six day period, from Septem-
ber 10th, 2024 to September 16th, 2024. In all battles, the receiving user was selected randomly.
Additionally, the model names (labeled 11ama-3.1-8b-dpo-test—-{1,2..., 9}) were not
revealed to the user until after the vote was given.

Overall, 12,190 human preference votes were collected, with an average of 2,032 battles per model,
and an average of 190 battles per unique model pair. More details on battle statistics and be found
in Appendix [Table 39| of Appendix [A-3] The resulting preference rankings are detailed in
The preference rankings are calculated using the Bradley-Terry model, as proposed in
(2024).

7 STUDYING CORRELATION WITH DOWNSTREAM PERFORMANCE

In this section, we analyze how different metrics correlate with post-RLHF human preference scores
(experimental setup detailed in Section[6.2)). Our main results are displayed in Figure[5] which shows
the correlations of our offline reward model evaluations against the real-world human-preference
ranking from the crowdsourced platform.

On correctness metrics (left plot in we make several observations: (1) Mean across all
domains is well correlated across all metrics, but exhibits higher correlation with AUC and Accuracy
scores. (2) Math is the best individual benchmark domain in terms of predictive power. (3) ROC
AUC score draws higher correlation across all benchmarks, even on benchmarks that are otherwise
uncorrelated.

Turning to the right-hand side of Figure [5] the accuracy of the reward model is the best predictor
of the fine-tuned LLM’s preference score. Row-wise Pearson Correlation, Confidence Agreement,
and Separability show some correlative power to downstream human preference rating but do not
exceed accuracy. Meanwhile, metrics like the Spearman correlation and Kendall correlation have
nearly zero correlation with the final human preference rating achieved by the post-DPO models.
One possible reason for this trend is that accuracy measures expected preference correctness per
preference pair— a much more granular scale. Other metrics involve aggregating reward model
signals over higher-order preferences, such as preference for each model, as measured by correla-
tion metrics. We consider these metrics as low granularity. Medium granularity metrics, such as
Row-wise Pearson Correlation aggregate reward model signal, but do so over smaller subsets of
preferences.
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Figure 5: Pearson correlations of different metrics toward downstream human preference scores.
Left: Pearson correlation between the ranking of models on 5 specific benchmarks and 5 different
metrics and their respective post-DPO rankings on real human preference. Right: Pearson correla-
tion between the ranking of models on 7 categories and 7 metrics on the Human Preference Dataset.
A similar version using style controlled human preference as reference is shown in Appendix [Fig-|
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Figure 6: Pearson correlation between the ranking of models in RewardBench and their respective
post-DPO rankings on real human preference. Style controlled version in Appendix
Comments on these correlations can be found in Appendix [A6.1]

Overall, accuracy on the human preference dataset is more correlated than the correctness metrics.
This is because correctness and human preference do not necessarily align. Moreover, the informa-
tion contained in Loss, Max score, and End score may not prove relevant in DPO, which is off-policy.
Those employing RLHF algorithms that have a higher risk of over-optimization may find these al-
ternative measures helpful. However, when calculating correlation against style controlled ratingsﬂ
we notice a slight decrease in correlations on the human preference dataset. Notably, the correctness
preference measurements show no change, suggesting correctness preference may be more robust
towards reward model preference quality, response style aside. We leave details for Appendix[A.6.2}

Additionally, we observe that measuring the lower bound score may correlate more to downstream
RLHF performance than the average score or upper bound score. In we first re-scale
each category’s scores to be mean 0 and SD 1, then we vary the quantile of the aggregation strategy
across human preference dataset categories seen in Appendix [Table 4](Hard Prompts, Easy Prompts,
etc). In this case, the 0 quantile is the minimum, and the 1 quantile is the maximum. We find that in
nearly every metric, decreasing the quantile increases correlation with downstream ratings. We posit
that the increase in correlation to downstream when using low quantile aggregation across metrics
is because this strategy closer measures the robustness of the reward model. This is in line with
previous theoretical work has suggest that pessimistic measures on reward model performance may

be useful (Zhu et al.| 2023D} [Li et al., [2023). See Appendix[A.6|for more details.
Recommendations for PPE based on these findings can be found in Appendix [A.7]

4Style controlled ratings are calculated as detailed in 2024a).
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Figure 7: Spearman Correlation, Confidence Agreement, and Accuracy metrics: For each metric,
we take the quantiles of category scores (Hard, Easy, Instruction Following, Coding, Math, and
Similar). The Pearson Correlation is calculated relative to Post-RLHF Human Preference ratings for
each quantile. Notably, accuracy peaks at 0.80 correlation at low quantile aggregation.

8 LIMITATIONS

8.1 BENCHMARK LEAKAGE

We acknowledge that benchmark leakage is a very real possibility. We also consider two factors that
help mitigate this issue: (1) The human preference dataset can be updated with new crowdsourced
preference data at any time. This includes adapting to the most recent prompt and response distribu-
tions. (2) The correctness preference datasets can be extended to any other benchmark that becomes
standard enough to be widely used.

8.2 LIMITS ON TESTING DOWNSTREAM PERFORMANCE

Unfortunately, end-to-end evaluation of reward models via post-RLHF LLM performance on human
preference is extremely expensive and time-consuming. As such, we are limited to testing the per-
formance of nine select models, rather than all reward models. In addition, we use DPO, an offline
RL algorithm over PPO, an online algorithm, which may play more into over-optimization issues
or may have different reward model requirements altogether. We encourage future work to study
downstream outcomes under online RL algorithms. Moreover, we note that resource constraints
necessitated experimenting with just Llama-3.1-8B-Instruct as the base policy model; additional
exploration on a diverse set of base models may yield additional novel insights. With these consid-
erations, we note that the downstream performance measured in our work is in the context of the base
model and RLHF learning algorithm used, and is not a unilateral measurement of downstream out-
comes in all possible configurations. Future work should experimentally verify the desired reward
model behavior of other RLHF configurations.

9 CONCLUSION

We present PPE, a reward model benchmark explicitly tied to post-RLHF outcomes based on real
human preferences. Our experiment aims to identify which metrics, applied to specific tasks, cor-
relate most strongly with downstream performance. We find that across the board, granular mea-
surements, such as accuracy, are the best predictors. Additionally, our results suggest that measur-
ing lower bound performance may be more indicative of expected reward model performance in
the RLHF pipeline. Overall, our evaluations achieve a 77% Pearson correlation with downstream
performance, significantly improving upon previous work. Based on these results, we encourage
future research to further investigate reward model quality and downstream RLHF performance un-
der broader conditions. We fully open-source dataset creation, experimental validation, and reward
model evaluation code and methods. We anticipate that the high-quality preference evaluation in
PPE, combined with our post-RLHF analysis of metric predictive power, will significantly advance
vital research into reward models and RLHF.

10
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A APPENDIX

A.1 OVERVIEW OF PPE BENCHMARK DATASETS

Name Num Prompts | Response per Prompt | Preference Type
Human Preference V1 16,038 2 | Real Human
MMLU Pro 512 32 | Correctness
MATH 512 32 | Correctness
GPQA 512 32 | Correctness
IFEval 512 32 | Correctness
MBPP Plus 507 32 | Correctness

Table 3: Released benchmarking datasets in PPE.

A.2 DETAILED SCORES FOR THE HUMAN PREFERENCE EVALUATION DATASET

You may include other additional sections here.

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 68.59 82.49 84.21 96.21 87.37 96.54 0.05
Ensemble-Judges (AlpacaEval) 68.52 81.25 79.47 93.94 85.26 95.04 0.07
GPT-40-2024-08-06 (ArenaHard)" 67.71 81.07 80.53 94.70 86.32 96.24 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard)" 67.33 80.65 79.47 94.70 88.42 96.69 0.06
GPT-40-2024-08-06 (AlpacaEval)® 67.13 77.92 76.32 90.91 84.21 93.23 0.07
Athene-RM-70B 66.56 80.69 84.74 93.94 82.11 93.23 0.07
GPT-40-Mini-2024-07-18 (ArenaHard)" 66.46 78.42 75.26 92.42 83.16 93.08 0.07
Gemini-1.5-Pro-002 (AlpacaEval)* 66.09 82.63 83.16 96.21 86.32 95.19 0.05
Gemini-1.5-Pro-002 (ArenaHard)" 65.71 82.23 83.16 94.70 90.53 96.99 0.04
Claude-3-5-Sonnet-20240620 (AlpacaEval) 65.34 7391 74.21 85.61 71.58 85.26 0.11
Llama-3.1-70B-Instruct (AlpacaEval)* 65.27 74.81 79.47 87.88 72.63 85.56 0.12
Gemini-1.5-Flash-002 (AlpacaEval)’ 65.04 74.29 78.95 88.64 74.74 88.72 0.11
Athene-RM-8B 64.59 76.85 83.68 91.67 77.89 90.53 0.10
Llama-3.1-70B-Instruct (ArenaHard)" 64.29 74.77 75.79 85.61 70.53 87.07 0.12
Gemini-1.5-Flash-002 (ArenaHard)" 63.01 76.12 76.32 90.91 76.84 90.23 0.10
Starling-RM-34B 62.92 70.47 77.37 78.79 67.37 81.20 0.15
GPT-40-Mini-2024-07-18 (AlpacaEval)® 62.75 68.86 70.53 84.09 75.79 88.12 0.10
Gemini-1.5-Pro-001 (ArenaHard)" 62.57 75.92 81.05 93.18 85.26 94.44 0.07
Skywork-Reward-Llama-3.1-8B 62.37 75.51 78.95 87.88 71.58 88.12 0.11
InternLM2-7B-Reward 62.05 68.03 78.42 69.70 56.84 76.09 0.20
Eurus-RM-7B 62.02 60.37 75.26 64.39 51.58 65.26 0.22
InternLM2-20B-Reward 61.00 66.66 74.74 70.45 55.79 76.39 0.20
ArmoRM-Llama3-8B-v0.1 60.57 71.85 76.84 84.85 76.84 89.17 0.10
Naive VerbosityModel 59.81 32.03 76.32 35.61 29.47 33.53 0.33
Nemotron-4-340B-Reward 59.28 66.96 78.95 78.79 68.42 86.02 0.14
Llama-3-OffsetBias-RM-8B 59.12 58.86 65.79 61.36 51.58 69.02 0.20
Starling-RM-7B-Alpha 58.93 58.42 70.00 67.42 50.53 64.66 0.22
InternLM2-1.8B-Reward 57.22 47.11 69.47 41.67 36.84 54.14 0.28
Skywork-Reward-Gemma-2-27B 56.62 69.99 69.47 87.88 84.21 95.49 0.07

Table 4: Reward model and LLM judge performance on Overall subset of the human preference
dataset. LLM-as-a-judge are labeled with system prompt source, and marked with 7.
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 69.46 67.05 74.21 96.88 83.16 94.44 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard)" 69.25 67.96 72.11 97.92 86.32 95.49 0.06
GPT-40-2024-08-06 (ArenaHard)" 68.50 68.17 71.05 97.92 85.26 95.94 0.06
Ensemble-Judges (AlpacaEval) 68.32 66.01 75.26 96.88 83.16 94.59 0.07
GPT-40-Mini-2024-07-18 (ArenaHard)" 66.63 63.55 71.05 95.83 82.11 94.29 0.08
Gemini-1.5-Pro-002 (AlpacaEval)’ 66.53 66.85 72.63 96.88 84.21 95.49 0.06
Athene-RM-70B 66.43 67.01 76.84 96.88 78.95 92.93 0.08
GPT-40-2024-08-06 (AlpacaEval)® 66.30 62.68 69.47 96.88 78.95 93.23 0.09
Gemini-1.5-Pro-002 (ArenaHard)" 65.70 68.57 68.42 95.83 83.16 94.44 0.07
Llama-3.1-70B-Instruct (AlpacaEval)’ 64.96 65.76 65.26 90.62 70.53 87.82 0.11
Llama-3.1-70B-Instruct (ArenaHard)" 64.74 60.00 64.21 89.58 73.68 89.02 0.10
Athene-RM-8B 64.41 62.44 74.21 96.88 74.74 87.97 0.11
Gemini-1.5-Flash-002 (AlpacaEval)’ 64.35 62.30 65.79 94.79 77.89 91.43 0.09
Gemini-1.5-Flash-002 (ArenaHard)" 64.18 60.68 67.37 94.79 81.05 92.18 0.08
Claude-3-5-Sonnet-20240620 (AlpacaEval) 64.14 56.81 65.26 90.62 73.68 88.42 0.11
Starling-RM-34B 63.87 59.33 71.58 89.58 65.26 8241 0.14
Gemini-1.5-Pro-001 (ArenaHard)" 63.53 67.93 68.42 96.88 85.26 95.19 0.05
Eurus-RM-7B 62.75 58.07 69.47 75.00 58.95 72.78 0.19
InternLM2-7B-Reward 62.14 60.77 67.37 85.42 65.26 83.16 0.14
InternLM2-20B-Reward 61.56 59.94 67.37 83.33 71.58 88.87 0.12
GPT-40-Mini-2024-07-18 (AlpacaEval)* 61.56 50.96 59.47 90.62 72.63 89.02 0.11
Skywork-Reward-Llama-3.1-8B 61.15 62.46 68.42 88.54 70.53 86.62 0.11
ArmoRM-Llama3-8B-v0.1 60.99 61.81 61.58 89.58 70.53 87.22 0.11
Naive VerbosityModel 59.67 37.71 66.84 66.67 4421 58.65 0.25
Llama-3-OffsetBias-RM-8B 59.42 56.03 59.47 73.96 62.11 80.15 0.16
Nemotron-4-340B-Reward 59.06 55.82 67.37 87.50 73.68 90.38 0.10
InternLM2-1.8B-Reward 58.49 52.40 61.58 63.54 48.42 63.91 0.21
Starling-RM-7B-Alpha 57.59 51.48 60.53 80.21 61.05 81.05 0.16
Skywork-Reward-Gemma-2-27B 56.21 40.13 38.42 63.54 70.53 89.02 0.11

Table 5: Reward model and LLM judge performance on Hard prompt subset of the human preference
dataset. LL.M-as-a-judge are labeled with system prompt source, and marked with 7.

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (AlpacaEval) 70.15 5224 52.10 83.33 75.79 91.58 0.09
GPT-40-2024-08-06 (AlpacaEval)® 69.97 52.01 47.37 83.33 72.63 90.08 0.09
Ensemble-Judges (ArenaHard)" 69.59 57.24 63.16 83.33 83.16 94.74 0.08
GPT-40-2024-08-06 (ArenaHard)" 68.54 56.01 52.10 81.25 77.89 93.53 0.08
GPT-40-Mini-2024-07-18 (ArenaHard)" 67.50 50.08 46.32 78.12 72.63 88.72 0.09
Llama-3.1-70B-Instruct (AlpacaEval)’ 67.40 46.25 46.32 68.75 60.00 80.60 0.14
Gemini-1.5-Pro-002 (ArenaHard)" 67.08 55.16 57.37 90.62 82.11 94.89 0.06
Claude-3-5-Sonnet-20240620 (AlpacaEval)’ 66.98 44.87 35.26 61.46 67.37 84.51 0.12
Claude-3-5-Sonnet-20240620 (ArenaHard)" 66.95 55.98 58.42 87.50 72.63 90.53 0.09
Gemini-1.5-Flash-002 (AlpacaEval)’ 66.92 45.52 48.95 76.04 72.63 88.42 0.10
Athene-RM-70B 66.90 58.55 64.21 93.75 77.89 92.48 0.08
Gemini-1.5-Pro-002 (AlpacaEval)’ 65.96 51.60 53.68 84.38 81.05 93.23 0.06
GPT-40-Mini-2024-07-18 (AlpacaEval)® 65.39 42.05 25.79 46.88 69.47 85.71 0.12
Athene-RM-8B 64.49 53.01 58.95 83.33 64.21 83.16 0.13
Llama-3.1-70B-Instruct (ArenaHard)" 64.10 48.06 40.53 68.75 64.21 82.71 0.12
Skywork-Reward-Llama-3.1-8B 63.24 42.44 46.32 56.25 62.11 78.80 0.15
Gemini-1.5-Pro-001 (ArenaHard)" 62.65 40.53 54.21 78.12 80.00 93.68 0.09
Eurus-RM-7B 61.82 34.66 41.05 31.25 36.84 4571 0.27
InternLM2-7B-Reward 61.70 32.69 34.74 45.83 45.26 60.60 0.23
Starling-RM-34B 61.41 33.87 35.79 41.67 44.21 60.75 0.22
Gemini-1.5-Flash-002 (ArenaHard)" 61.01 42.41 46.84 77.08 68.42 87.52 0.10
InternLM2-20B-Reward 60.37 40.89 42.63 51.04 42.11 57.29 0.23
ArmoRM-Llama3-8B-v0.1 60.28 34.56 40.53 53.12 58.95 73.08 0.17
Nemotron-4-340B-Reward 59.58 45.52 56.32 68.75 67.37 84.06 0.13
Naive VerbosityModel 59.24 12.01 45.79 521 6.32 8.57 0.40
Starling-RM-7B-Alpha 58.70 27.17 38.95 29.17 28.42 39.25 0.30
Llama-3-OffsetBias-RM-8B 58.66 35.23 29.47 29.17 43.16 55.49 0.23
Skywork-Reward-Gemma-2-27B 56.74 45.42 40.00 66.67 77.89 92.18 0.09
InternLM2-1.8B-Reward 55.54 30.02 27.89 15.62 22.11 29.32 0.30

Table 6: Reward model and LLM judge performance on Easy prompt subset of the human preference
dataset. LLM-as-a-judge are labeled with system prompt source, and marked with 7.
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 69.77 66.89 70.00 97.09 83.16 93.68 0.07
Claude-3-5-Sonnet-20240620 (ArenaHard)" 68.38 70.13 64.74 92.23 80.00 91.88 0.07
Ensemble-Judges (AlpacaEval)’ 67.86 69.18 70.00 96.12 86.32 95.04 0.05
GPT-40-2024-08-06 (ArenaHard)" 67.51 60.99 66.84 96.12 78.95 92.93 0.08
Gemini-1.5-Pro-002 (AlpacaEval)® 66.78 68.61 73.16 97.09 88.42 96.54 0.04
Gemini-1.5-Pro-002 (ArenaHard)" 66.70 69.92 68.42 97.09 82.11 93.83 0.06
Athene-RM-70B 66.50 63.79 75.26 95.15 77.89 90.98 0.09
GPT-40-2024-08-06 (AlpacaEval)® 66.09 64.39 65.26 92.23 82.11 93.98 0.06
GPT-40-Mini-2024-07-18 (ArenaHard)" 65.75 62.88 73.16 92.23 76.84 90.53 0.09
Gemini-1.5-Flash-002 (AlpacaEval)’ 65.43 64.33 65.79 89.32 82.11 93.38 0.07
Athene-RM-8B 64.77 60.56 68.42 90.29 76.84 89.32 0.09
Llama-3.1-70B-Instruct (Alpz:lcaEval)T 63.68 63.11 63.16 79.61 75.79 88.57 0.10
Claude-3-5-Sonnet-20240620 (AlpacaEval) 63.42 57.93 59.47 81.55 71.58 87.97 0.10
Gemini-1.5-Pro-001 (ArenaHard)" 63.25 66.39 62.63 88.35 80.00 91.13 0.08
Llama-3.1-70B-Instruct (ArenaHard)* 63.04 59.85 62.10 83.50 76.84 90.83 0.08
Gemini-1.5-Flash-002 (ArenaHard)" 62.66 60.73 61.05 87.38 75.79 89.77 0.09
Nemotron-4-340B-Reward 61.89 56.91 63.16 86.41 71.58 86.92 0.11
InternLM2-20B-Reward 61.89 57.38 64.74 79.61 64.21 83.76 0.15
Skywork-Reward-Llama-3.1-8B 61.41 57.88 66.32 81.55 74.74 88.12 0.10
InternLM2-7B-Reward 61.41 55.07 64.74 66.99 63.16 80.45 0.16
Starling-RM-34B 61.11 52.85 61.05 77.67 65.26 8241 0.13
GPT-40-Mini-2024-07-18 (AlpacaEval)® 61.10 50.62 43.16 66.99 72.63 87.82 0.10
Eurus-RM-7B 60.90 51.96 59.47 65.05 51.58 65.26 0.20
ArmoRM-Llama3-8B-v0.1 60.87 55.71 56.32 78.64 76.84 90.53 0.10
Llama-3-OffsetBias-RM-8B 60.22 55.63 51.05 65.05 68.42 83.01 0.15
InternLM2-1.8B-Reward 57.27 38.46 55.79 39.81 42.11 59.55 0.23
NaiveVerbosityModel 57.07 31.21 56.84 32.04 33.68 47.67 0.29
Skywork-Reward-Gemma-2-27B 56.43 43.85 32.63 54.37 75.79 91.43 0.09
Starling-RM-7B-Alpha 55.71 40.10 48.42 52.43 4421 58.20 0.22

Table 7: Reward model and LLM judge performance on If prompt subset of the human preference
dataset. LL.M-as-a-judge are labeled with system prompt source, and marked with 7.

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Claude-3-5-Sonnet-20240620 (ArenaHard)" 68.06 57.64 62.63 97.22 88.42 97.74 0.04
Ensemble-Judges (ArenaHard)* 67.98 58.22 71.58 91.67 84.21 96.09 0.05
GPT-40-2024-08-06 (ArenaHard)" 67.66 58.16 65.79 97.22 88.42 97.29 0.04
Ensemble-Judges (AlpacaEval) 67.47 55.98 72.11 94.44 82.11 94.14 0.06
Athene-RM-70B 66.87 57.57 70.53 94.44 81.05 93.23 0.07
GPT-40-Mini-2024-07-18 (ArenaHard)" 66.08 53.90 67.90 100.00 85.26 96.24 0.05
Claude-3-5-Sonnet-20240620 (AlpacaEval) 65.92 45.70 60.00 97.22 81.05 94.44 0.08
Gemini-1.5-Pro-002 (AlpacaEval)® 65.57 56.07 65.79 91.67 76.84 91.88 0.08
GPT-40-2024-08-06 (AlpacaEval)® 65.50 55.66 62.10 94.44 86.32 95.94 0.05
Athene-RM-8B 65.22 57.37 70.00 94.44 76.84 92.18 0.09
Llama-3.1-70B-Instruct (AlpzlcaEval)T 64.40 54.30 62.10 94.44 75.79 92.03 0.09
Llama-3.1-70B-Instruct (ArenaHard)" 64.37 47.58 58.42 97.22 78.95 94.14 0.07
Gemini-1.5-Flash-002 (AlpacaEval) 64.36 42.96 57.37 88.89 72.63 89.92 0.11
Starling-RM-34B 64.29 56.23 66.84 88.89 74.74 89.32 0.10
Gemini-1.5-Pro-002 (ArenaHard)" 64.18 54.06 66.32 90.28 77.89 92.78 0.08
InternLM2-7B-Reward 63.53 46.74 65.26 84.72 68.42 86.47 0.12
Eurus-RM-7B 62.98 57.01 66.32 81.94 62.11 78.05 0.16
Gemini-1.5-Flash-002 (ArenaHard)" 62.65 56.60 54.74 95.83 80.00 93.68 0.07
InternLM2-20B-Reward 62.10 47.74 58.95 90.28 75.79 91.13 0.09
GPT-40-Mini-2024-07-18 (AlpacaEval)® 61.77 37.46 44.74 83.33 77.89 93.68 0.08
Gemini-1.5-Pro-001 (ArenaHard)" 61.55 46.75 56.32 94.44 75.79 91.43 0.08
NaiveVerbosityModel 61.39 41.83 63.68 79.17 48.42 66.02 0.22
ArmoRM-Llama3-8B-v0.1 61.01 49.40 51.05 93.06 81.05 93.83 0.08
Skywork-Reward-Llama-3.1-8B 61.01 50.02 61.05 93.06 76.84 91.58 0.10
Llama-3-OffsetBias-RM-8B 59.80 45.80 48.95 62.50 64.21 83.01 0.14
InternLM2-1.8B-Reward 58.76 45.07 58.42 62.50 54.74 71.28 0.19
Starling-RM-7B-Alpha 58.71 46.85 56.32 76.39 64.21 78.80 0.15
Nemotron-4-340B-Reward 57.94 35.96 51.05 79.17 72.63 89.62 0.10
Skywork-Reward-Gemma-2-27B 56.41 25.46 26.84 54.17 64.21 84.51 0.13

Table 8: Reward model and LLM judge performance on Is code subset of the human preference
dataset. LLM-as-a-judge are labeled with system prompt source, and marked with 7.
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 73.58 54.87 65.79 88.73 80.00 94.44 0.07
GPT-40-2024-08-06 (ArenaHard)" 72.57 56.46 63.16 88.73 82.11 94.89 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard) 71.79 49.92 60.53 88.73 78.95 93.38 0.08
GPT-40-Mini-2024-07-18 (ArenaHard)" 70.20 50.30 55.26 87.32 71.58 87.97 0.11
Gemini-1.5-Pro-002 (ArenaHard)" 69.61 60.91 58.42 84.51 77.89 92.63 0.08
Ensemble-Judges (AlpacaEval)’ 69.09 52.15 62.10 91.55 74.74 91.13 0.09
Llama-3.1-70B-Instruct (ArenaHard)" 68.93 46.05 54.74 84.51 72.63 87.82 0.10
Athene-RM-70B 68.58 57.39 67.37 85.92 77.89 92.33 0.09
GPT-40-2024-08-06 (AlpacaEval)® 68.21 53.79 56.84 88.73 77.89 92.93 0.08
Gemini-1.5-Pro-002 (AlpacaEval)® 67.25 55.63 59.47 88.73 84.21 95.04 0.07
Claude-3-5-Sonnet-20240620 (AlpacaEval) 66.67 46.28 54.21 84.51 58.95 78.95 0.16
Llama-3.1-70B-Instruct (AlpacaEval)’ 65.12 46.95 56.84 83.10 57.89 79.55 0.14
Gemini-1.5-Pro-001 (ArenaHard)" 64.70 47.86 51.58 84.51 77.89 92.63 0.08
Gemini-1.5-Flash-002 (ArenaHard)" 64.62 45.11 53.68 85.92 71.58 87.22 0.09
Starling-RM-34B 63.88 36.42 55.79 78.87 64.21 83.91 0.14
GPT-40-Mini-2024-07-18 (AlpacaEval)® 63.66 44.85 50.53 83.10 65.26 84.51 0.14
Athene-RM-8B 62.85 42.56 61.05 83.10 67.37 85.56 0.12
Gemini-1.5-Flash-002 (AlpacaEval)® 62.70 41.05 47.90 74.65 66.32 83.91 0.11
InternLM2-20B-Reward 62.63 40.47 55.26 76.06 71.58 87.37 0.11
Nemotron-4-340B-Reward 61.60 48.64 59.47 87.32 77.89 93.23 0.09
InternLM2-7B-Reward 61.53 41.83 55.26 73.24 61.05 80.00 0.15
Eurus-RM-7B 61.31 35.08 54.21 57.75 47.37 64.06 0.22
Skywork-Reward-Llama-3.1-8B 60.65 43.03 53.16 77.46 63.16 81.65 0.14
ArmoRM-Llama3-8B-v0.1 59.32 37.16 44.74 73.24 65.26 83.31 0.14
Llama-3-OffsetBias-RM-8B 58.96 31.99 50.00 70.42 54.74 71.88 0.20
InternLM2-1.8B-Reward 58.74 33.52 36.84 45.07 49.47 67.82 0.19
Starling-RM-7B-Alpha 58.08 26.79 38.95 56.34 54.74 74.59 0.18
Naive VerbosityModel 57.49 27.69 60.00 49.30 30.53 41.05 0.31
Skywork-Reward-Gemma-2-27B 55.80 35.07 25.26 46.48 60.00 75.94 0.14

Table 9: Reward model and LLM judge performance on Math prompt subset of the human prefer-
ence dataset. LLLM-as-a-judge are labeled with system prompt source, and marked with 7.

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Nemotron-4-340B-Reward 62.65 56.88 58.95 62.28 51.58 68.42 0.19
Gemini-1.5-Pro-002 (ArenaHard)* 59.90 45.67 66.32 44.74 37.89 53.38 0.27
Gemini-1.5-Pro-001 (ArenaHard)" 58.01 36.29 52.63 42.11 41.05 53.23 0.27
ArmoRM-Llama3-8B-v0.1 56.83 33.59 43.16 42.98 36.84 47.82 0.27
Gemini-1.5-Pro-002 (AlpacaEval)® 56.83 30.75 67.90 38.60 30.53 45.41 0.31
Athene-RM-70B 55.81 31.06 67.37 35.96 28.42 44.06 0.32
Ensemble-Judges (ArenaHard)* 55.27 36.57 66.32 42.11 37.89 53.68 0.27
Skywork-Reward-Llama-3.1-8B 54.67 24.79 55.26 36.84 29.47 41.50 0.33
Skywork-Reward-Gemma-2-27B 54.50 34.00 35.79 38.60 43.16 57.89 0.21
Llama-3-OffsetBias-RM-8B 54.04 30.51 41.58 42.11 34.74 49.77 0.26
Athene-RM-8B 54.04 23.29 64.74 32.46 25.26 39.85 0.34
GPT-40-2024-08-06 (ArenaHard)" 52.74 29.48 58.95 40.35 34.74 53.38 0.29
InternLM2-20B-Reward 5243 29.55 55.79 39.47 36.84 55.94 0.26
Claude-3-5-Sonnet-20240620 (ArenaHard)" 52.32 28.63 58.42 33.33 38.95 51.73 0.28
Ensemble-Judges (AlpacaEval)’ 51.26 16.53 57.90 31.58 27.37 39.10 0.33
GPT-40-2024-08-06 (AlpacaEval)’ 50.18 12.95 51.05 31.58 33.68 50.08 0.30
GPT-40-Mini-2024-07-18 (ArenaHard)" 50.06 15.15 51.58 30.70 28.42 4571 0.30
GPT-40-Mini-2024-07-18 (AlpacaEval)* 48.41 -1.95 24.21 15.79 20.00 29.92 0.31
InternLM2-1.8B-Reward 47.86 2.97 36.32 -3.51 9.47 20.75 0.37
Gemini-1.5-Flash-002 (ArenaHard)" 47.13 16.99 48.95 18.42 22.11 38.95 0.33
Gemini-1.5-Flash-002 (AlpacaEval)’ 46.72 5.46 48.95 17.54 14.74 23.16 0.37
InternLM2-7B-Reward 45.77 -3.02 42.63 9.65 14.74 21.80 0.36
Claude-3-5-Sonnet-20240620 (AlpacaEval) 45.39 2.05 35.26 14.04 10.53 16.24 0.37
Llama-3.1-70B-Instruct (Alpz:lcaEval)T 45.33 -4.86 46.84 11.40 6.32 14.59 0.39
Llama-3.1-70B-Instruct (ArenaHard)" 45.27 7.88 45.26 18.42 20.00 31.88 0.34
Eurus-RM-7B 39.81 -19.21 37.90 -7.02 -2.11 -1.65 0.45
Starling-RM-34B 39.23 -21.35 35.79 -6.14 1.05 0.45 0.42
Starling-RM-7B-Alpha 38.59 -25.59 32.63 -12.28 -3.16 -5.41 0.44
Naive VerbosityModel 6.10 -93.99 52.63 -75.44 -94.74 -99.10 0.85

Table 10: Reward model and LLM judge performance on Shorter won subset of the human prefer-
ence dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 68.15 71.49 73.16 91.59 86.32 95.64 0.06
Ensemble-Judges (AlpacaEval) 67.28 73.31 74.21 92.52 84.21 94.44 0.06
GPT-40-2024-08-06 (ArenaHard)" 67.23 71.93 71.05 92.52 84.21 95.19 0.07
Claude-3-5-Sonnet-20240620 (ArenaHard)" 67.08 7222 70.00 88.79 84.21 93.83 0.06
GPT-40-Mini-2024-07-18 (ArenaHard)" 66.29 71.23 69.47 89.72 80.00 92.48 0.08
Athene-RM-70B 65.84 72.39 81.05 90.65 78.95 91.88 0.09
Gemini-1.5-Pro-002 (AlpacaEval)’ 65.54 71.75 74.21 92.52 85.26 94.74 0.06
GPT-40-2024-08-06 (AlpacaEval)® 65.45 71.06 68.42 88.79 82.11 93.68 0.07
Gemini-1.5-Flash-002 (AlpacaEval)’ 64.88 66.90 66.84 88.79 74.74 88.87 0.10
Llama-3.1-70B-Instruct (AlpacaEval)® 64.86 71.92 75.26 88.79 71.58 86.47 0.11
Gemini-1.5-Pro-002 (ArenaHard)" 64.84 70.79 73.16 90.65 83.16 93.83 0.07
Athene-RM-8B 64.28 68.70 78.95 89.72 74.74 88.57 0.10
Starling-RM-34B 64.05 67.27 75.79 83.18 71.58 85.56 0.12
Llama-3.1-70B-Instruct (ArenaHard)" 63.96 66.05 68.95 85.98 72.63 87.52 0.12
Claude-3-5-Sonnet-20240620 (AlpacaEval) 63.95 65.29 65.79 87.85 70.53 85.71 0.12
Gemini-1.5-Flash-002 (ArenaHard)" 63.26 66.65 72.63 88.79 74.74 89.47 0.10
Skywork-Reward-Llama-3.1-8B 62.83 71.83 73.68 97.20 81.05 92.18 0.08
Gemini-1.5-Pro-001 (ArenaHard)" 62.46 64.75 66.32 86.92 77.89 90.68 0.09
Eurus-RM-7B 62.07 56.73 68.95 73.83 57.89 72.03 0.20
Naive VerbosityModel 61.30 40.25 68.95 53.27 34.74 49.92 0.30
InternLM2-7B-Reward 60.82 61.98 69.47 71.57 60.00 80.30 0.16
GPT-40-Mini-2024-07-18 (AlpacaEval)® 60.59 60.26 57.90 87.85 75.79 88.87 0.10
ArmoRM-Llama3-8B-v0.1 60.03 63.19 71.05 90.65 81.05 90.98 0.07
Starling-RM-7B-Alpha 59.01 54.50 64.21 64.49 49.47 70.83 0.20
InternLM2-20B-Reward 59.00 54.89 68.95 69.16 57.89 78.20 0.17
Llama-3-OffsetBias-RM-8B 58.58 57.04 58.95 71.96 64.21 81.80 0.14
Nemotron-4-340B-Reward 57.74 50.81 75.26 65.42 57.89 73.98 0.19
Skywork-Reward-Gemma-2-27B 55.93 54.08 51.58 76.64 75.79 90.68 0.10
InternLM2-1.8B-Reward 55.92 37.43 61.58 42.99 36.84 55.64 0.27

Table 11: Reward model and LLM judge performance on Similar response subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 68.17 70.80 71.58 86.24 81.05 94.14 0.08
GPT-40-2024-08-06 (ArenaHard)" 67.78 71.61 68.95 86.24 83.16 94.89 0.07
Ensemble-Judges (AlpacaEval)’ 67.60 70.66 71.58 84.40 76.84 92.93 0.10
GPT-40-2024-08-06 (AlpacaEval)® 66.70 63.51 66.32 80.73 76.84 91.73 0.09
Claude-3-5-Sonnet-20240620 (ArenaHard) 66.42 68.25 70.53 86.24 78.95 93.68 0.08
GPT-40-Mini-2024-07-18 (ArenaHard)" 66.39 66.39 67.37 81.65 78.95 92.03 0.09
Athene-RM-70B 65.53 68.75 79.47 83.49 73.68 90.98 0.12
Gemini-1.5-Pro-002 (AlpacaEval)® 65.37 70.68 74.74 87.16 76.84 91.88 0.10
Llama-3.1-70B-Instruct (AlpacaEval)’ 64.79 65.74 72.11 78.90 66.32 85.56 0.13
Gemini-1.5-Pro-002 (ArenaHard)" 64.75 69.77 71.58 84.40 76.84 92.93 0.10
Gemini-1.5-Flash-002 (AlpacaEval)’ 64.48 65.98 67.90 79.82 69.47 86.02 0.13
Llama-3.1-70B-Instruct (ArenaHard)" 64.31 63.74 67.90 82.57 70.53 88.87 0.12
Claude-3-5-Sonnet-20240620 (AlpacaEval) 64.27 62.80 65.26 79.82 68.42 86.47 0.13
Athene-RM-8B 63.55 65.76 75.26 81.65 69.47 89.32 0.13
Starling-RM-34B 63.50 60.04 72.63 68.81 65.26 81.80 0.16
Gemini-1.5-Flash-002 (ArenaHard)" 62.97 64.16 66.84 77.98 70.53 88.12 0.12
Skywork-Reward-Llama-3.1-8B 62.94 68.77 70.53 87.16 75.79 90.98 0.10
Gemini-1.5-Pro-001 (ArenaHard)" 62.04 64.66 65.79 86.24 70.53 89.47 0.12
Eurus-RM-7B 61.78 51.70 71.58 58.72 52.63 65.86 0.20
GPT-40-Mini-2024-07-18 (AlpacaEval)’ 61.64 57.42 59.47 81.65 71.58 87.52 0.11
Naive VerbosityModel 61.26 40.80 68.42 48.62 43.16 51.73 0.26
InternLM2-7B-Reward 61.01 53.18 66.84 70.64 58.95 80.30 0.18
ArmoRM-Llama3-8B-v0.1 60.94 64.96 70.00 83.49 75.79 90.38 0.10
Starling-RM-7B-Alpha 59.55 50.50 67.90 53.21 55.79 71.43 0.21
InternLM2-20B-Reward 59.34 54.73 68.95 65.14 50.53 71.58 0.20
Llama-3-OffsetBias-RM-8B 59.06 54.04 55.26 66.06 54.74 69.47 0.20
Nemotron-4-340B-Reward 57.47 44.46 71.05 62.39 50.53 67.07 0.22
InternLM2-1.8B-Reward 56.17 41.19 61.58 38.53 32.63 50.23 0.28
Skywork-Reward-Gemma-2-27B 55.21 57.61 49.47 73.39 69.47 87.52 0.11

Table 12: Reward model and LLM judge performance on English prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (AlpacaEval)’ 69.68 73.76 74.21 94.31 90.53 97.74 0.03
Ensemble-Judges (ArenaHard)* 69.09 75.81 76.84 93.50 86.32 95.79 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard) 68.48 75.18 75.26 91.87 86.32 96.39 0.05
Athene-RM-70B 67.86 73.24 76.84 91.87 82.11 94.89 0.07
GPT-40-2024-08-06 (AlpacaEval)® 67.66 72.18 72.63 98.37 93.68 98.65 0.03
GPT-40-2024-08-06 (ArenaHard)" 67.63 71.24 73.16 91.87 82.11 94.74 0.07
Gemini-1.5-Pro-002 (AlpacaEval)’ 67.01 73.72 80.00 94.31 88.42 97.14 0.05
Gemini-1.5-Pro-002 (ArenaHard)" 66.93 74.39 75.26 90.24 82.11 94.29 0.07
Claude-3-5-Sonnet-20240620 (AlpacaEval) 66.68 67.72 60.53 80.49 81.05 94.14 0.07
GPT-40-Mini-2024-07-18 (ArenaHard)" 66.55 71.23 72.63 90.24 82.11 94.44 0.07
Athene-RM-8B 65.91 70.37 80.53 92.68 82.11 95.04 0.07
Llama-3.1-70B-Instruct (Alpz:lcaEval)T 65.87 65.70 68.95 83.74 75.79 90.53 0.09
Gemini-1.5-Flash-002 (AlpacaEval)’ 65.75 70.61 67.90 86.99 87.37 96.84 0.06
Llama-3.1-70B-Instruct (ArenaHard)* 64.25 68.81 65.26 82.11 80.00 93.38 0.09
GPT-40-Mini-2024-07-18 (AlpacaEval)® 64.17 62.56 54.74 78.05 83.16 94.44 0.06
InternLM2-7B-Reward 63.36 63.58 65.79 69.11 62.11 84.21 0.16
Gemini-1.5-Pro-001 (ArenaHard)" 63.24 70.19 70.53 87.80 80.00 94.14 0.08
InternLM2-20B-Reward 63.10 63.69 72.11 76.42 64.21 86.17 0.16
Gemini-1.5-Flash-002 (ArenaHard)" 63.06 68.96 71.05 86.18 77.89 93.38 0.08
Eurus-RM-7B 62.32 56.17 61.05 67.48 66.32 75.49 0.16
Starling-RM-34B 62.19 58.76 64.21 73.17 70.53 86.32 0.12
Skywork-Reward-Llama-3.1-8B 61.66 64.18 70.53 75.61 73.68 87.52 0.11
Nemotron-4-340B-Reward 61.57 67.30 72.63 83.74 76.84 90.53 0.10
ArmoRM-Llama3-8B-v0.1 60.11 59.89 58.95 66.67 73.68 90.53 0.12
Llama-3-OffsetBias-RM-8B 59.20 48.58 55.79 52.85 53.68 69.17 0.19
InternLM2-1.8B-Reward 58.55 44.78 55.26 43.90 41.05 56.24 0.24
Skywork-Reward-Gemma-2-27B 58.40 58.79 61.05 83.74 83.16 95.19 0.06
Starling-RM-7B-Alpha 58.13 40.90 59.47 55.28 48.42 60.75 0.22
Naive VerbosityModel 57.98 21.46 64.21 30.89 21.05 27.52 0.36

Table 13: Reward model and LLM judge performance on Non english prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (AlpacaEval) 67.91 52.67 54.21 93.33 80.00 94.14 0.07
Claude-3-5-Sonnet-20240620 (ArenaHard) 67.03 5091 48.42 90.00 78.95 93.38 0.08
Athene-RM-70B 66.39 45.24 61.05 90.00 83.16 93.83 0.07
Gemini-1.5-Pro-002 (AlpacaEval)® 66.27 49.83 58.42 93.33 82.11 93.38 0.08
Ensemble-Judges (ArenaHard)* 66.15 53.77 47.37 86.67 77.89 92.33 0.07
GPT-40-2024-08-06 (ArenaHard)" 65.37 49.18 52.10 90.00 76.84 92.18 0.08
GPT-40-Mini-2024-07-18 (ArenaHard)" 65.29 51.87 44.74 76.67 66.32 86.47 0.12
Gemini-1.5-Flash-002 (AlpacaEval)® 65.10 40.01 46.32 86.67 71.58 89.17 0.09
Claude-3-5-Sonnet-20240620 (AlpacaEval) 64.89 47.98 43.16 88.33 69.47 87.52 0.11
InternLM2-20B-Reward 64.62 42.76 48.42 56.67 65.26 83.91 0.12
Athene-RM-8B 64.45 4241 60.00 86.67 81.05 94.59 0.07
Gemini-1.5-Pro-002 (ArenaHard)" 64.16 49.86 51.05 80.00 76.84 91.88 0.08
InternLM2-7B-Reward 63.87 44.35 41.05 53.33 70.53 89.17 0.11
GPT-40-2024-08-06 (AlpacaEval)® 63.53 43.47 51.58 90.00 83.16 94.89 0.06
Llama-3.1-70B-Instruct (ArenaHard)* 63.04 32.00 48.42 81.67 60.00 81.65 0.14
Llama-3.1-70B-Instruct (Alpz:lcaEval)T 63.03 36.40 47.90 68.33 67.37 86.17 0.13
Starling-RM-34B 62.52 40.66 56.32 85.00 71.58 86.32 0.11
Gemini-1.5-Flash-002 (ArenaHard)" 62.48 43.33 46.32 83.33 73.68 89.02 0.09
Gemini-1.5-Pro-001 (ArenaHard)" 62.09 36.12 41.05 75.00 71.58 89.77 0.09
GPT-40-Mini-2024-07-18 (AlpacaEval)’ 61.43 38.81 23.68 55.00 63.16 83.01 0.14
Eurus-RM-7B 61.18 39.05 4421 70.00 65.26 81.05 0.14
InternLM2-1.8B-Reward 60.08 38.02 42.63 40.00 51.58 70.83 0.20
Skywork-Reward-Gemma-2-27B 59.16 22.83 26.84 75.00 86.32 96.09 0.06
Nemotron-4-340B-Reward 58.07 28.62 32.63 45.00 52.63 72.33 0.18
Llama-3-OffsetBias-RM-8B 57.48 27.04 27.37 28.33 52.63 68.12 0.20
Skywork-Reward-Llama-3.1-8B 57.23 38.20 37.37 53.33 64.21 81.20 0.13
ArmoRM-Llama3-8B-v0.1 56.64 18.09 26.84 28.33 46.32 59.40 0.21
Naive VerbosityModel 56.55 19.66 48.95 11.67 14.74 21.05 0.36
Starling-RM-7B-Alpha 54.29 7.14 28.42 18.33 35.79 47.37 0.23

Table 14: Reward model and LLM judge performance on Chinese prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .

20



Published as a conference paper at ICLR 2025

Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 70.37 50.61 53.16 92.86 77.89 92.63 0.09
Ensemble-Judges (AlpacaEval) 69.43 51.76 57.90 92.86 80.00 94.44 0.06
Claude-3-5-Sonnet-20240620 (ArenaHard) 68.63 4471 50.53 85.71 70.53 87.97 0.09
GPT-40-2024-08-06 (AlpacaEval)® 68.58 42.94 38.95 91.07 77.89 93.83 0.08
GPT-40-2024-08-06 (ArenaHard)" 68.54 43.94 47.37 89.29 70.53 89.02 0.10
Athene-RM-70B 68.49 48.66 58.42 94.64 77.89 90.68 0.09
Gemini-1.5-Pro-002 (ArenaHard)" 67.23 49.82 53.68 87.50 73.68 89.32 0.10
Gemini-1.5-Pro-002 (AlpacaEval)’ 66.20 50.01 58.42 92.86 78.95 93.38 0.07
Claude-3-5-Sonnet-20240620 (AlpacaEval) 66.13 42.56 45.79 85.71 76.84 89.62 0.10
Llama-3.1-70B-Instruct (AlpacaEval)’ 65.65 38.73 47.90 92.86 66.32 85.56 0.12
GPT-40-Mini-2024-07-18 (ArenaHard)" 65.49 40.39 45.26 85.71 75.79 91.28 0.09
Gemini-1.5-Flash-002 (AlpacaEval)’ 65.21 42.35 50.00 94.64 75.79 91.73 0.09
Athene-RM-8B 64.87 41.89 55.79 91.07 71.58 86.62 0.10
Nemotron-4-340B-Reward 63.86 41.06 52.10 87.50 72.63 87.07 0.10
GPT-40-Mini-2024-07-18 (AlpacaEval)® 63.82 31.28 23.68 71.43 82.11 93.83 0.08
Llama-3.1-70B-Instruct (ArenaHard)" 63.37 28.42 40.53 69.64 64.21 81.80 0.14
Gemini-1.5-Flash-002 (ArenaHard)" 63.26 31.97 42.63 76.79 67.37 85.56 0.12
Eurus-RM-7B 62.84 33.63 43.68 76.79 56.84 73.38 0.16
Gemini-1.5-Pro-001 (ArenaHard)" 62.08 43.28 46.32 78.57 70.53 88.12 0.11
Skywork-Reward-Llama-3.1-8B 61.17 23.32 41.58 73.21 65.26 84.51 0.13
InternLM2-7B-Reward 61.08 30.92 41.58 46.43 58.95 78.05 0.15
Starling-RM-34B 60.98 36.02 36.32 73.21 63.16 80.00 0.13
InternLM2-20B-Reward 60.43 26.87 39.47 30.36 60.00 78.50 0.16
ArmoRM-Llama3-8B-v0.1 60.33 38.52 35.26 83.93 74.74 90.23 0.09
Starling-RM-7B-Alpha 59.41 31.55 38.95 69.64 53.68 66.77 0.19
Llama-3-OffsetBias-RM-8B 59.04 25.82 30.53 50.00 48.42 68.27 0.19
NaiveVerbosityModel 59.04 10.26 3421 33.93 29.47 38.95 0.29
InternLM2-1.8B-Reward 57.65 26.88 25.79 17.86 45.26 60.75 0.21
Skywork-Reward-Gemma-2-27B 56.26 29.71 23.68 50.00 64.21 82.86 0.14

Table 15: Reward model and LLM judge performance on Russian prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (ArenaHard)" 75.16 38.73 38.42 84.62 73.68 88.42 0.10
Claude-3-5-Sonnet-20240620 (ArenaHard) 72.49 30.32 23.16 66.67 65.26 81.50 0.12
GPT-40-2024-08-06 (ArenaHard)" 71.03 31.32 24.74 84.62 72.63 85.86 0.10
Gemini-1.5-Pro-002 (ArenaHard)" 70.64 29.57 27.89 76.92 72.63 87.22 0.11
GPT-40-2024-08-06 (AlpacaEval)® 69.71 21.47 21.05 74.36 72.63 88.27 0.10
Ensemble-Judges (AlpacaEval)’ 68.88 15.78 27.37 71.79 60.00 78.05 0.14
Athene-RM-70B 67.71 11.39 33.68 76.92 65.26 84.21 0.13
Nemotron-4-340B-Reward 66.86 2791 26.84 71.79 62.11 83.16 0.12
Llama-3.1-70B-Instruct (Alpz:lcaEval)T 66.86 27.69 25.79 66.67 51.58 69.17 0.17
Gemini-1.5-Flash-002 (AlpacaEval)’ 66.86 18.29 2421 61.54 54.74 73.38 0.15
Gemini-1.5-Pro-002 (AlpacaEval)® 66.29 8.72 33.68 69.23 69.47 84.81 0.13
GPT-40-Mini-2024-07-18 (ArenaHard)" 66.00 13.41 11.58 61.54 70.53 86.32 0.11
Athene-RM-8B 65.43 3.68 37.37 76.92 67.37 83.31 0.12
Gemini-1.5-Flash-002 (ArenaHard)" 65.32 19.95 15.79 43.59 57.89 75.64 0.16
Llama-3.1-70B-Instruct (ArenaHard)" 64.66 21.95 17.37 48.72 52.63 68.42 0.16
Claude-3-5-Sonnet-20240620 (AlpacaEval) 63.69 11.97 7.37 20.51 46.32 61.65 0.20
Starling-RM-34B 63.43 11.24 11.58 46.15 49.47 64.81 0.19
Gemini-1.5-Pro-001 (ArenaHard)" 63.33 16.68 15.26 48.72 61.05 82.26 0.14
Eurus-RM-7B 62.57 14.76 8.95 41.03 44.21 56.54 0.22
InternLM2-7B-Reward 62.29 12.92 11.05 38.46 57.89 78.05 0.16
GPT-40-Mini-2024-07-18 (AlpacaEval)® 62.29 14.84 10.00 33.33 48.42 66.17 0.18
InternLM2-20B-Reward 61.71 18.35 2421 61.54 60.00 79.40 0.15
ArmoRM-Llama3-8B-v0.1 60.86 -8.08 19.47 46.15 57.89 71.73 0.16
Skywork-Reward-Llama-3.1-8B 59.71 -4.01 20.00 53.85 57.89 72.03 0.16
Naive VerbosityModel 56.86 17.14 8.42 12.82 -2.11 -4.36 0.36
Llama-3-OffsetBias-RM-8B 56.57 -4.02 13.68 30.77 46.32 56.69 0.21
Starling-RM-7B-Alpha 56.29 6.70 7.89 23.08 34.74 47.67 0.24
InternLM2-1.8B-Reward 55.14 13.77 7.37 30.77 32.63 40.75 0.24
Skywork-Reward-Gemma-2-27B 54.57 -11.99 6.84 23.08 45.26 60.45 0.19

Table 16: Reward model and LLM judge performance on German prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Athene-RM-70B 71.10 46.16 37.37 84.21 67.37 83.76 0.14
Ensemble-Judges (AlpacaEval)’ 69.63 32.44 34.21 52.63 63.16 82.71 0.13
Skywork-Reward-Llama-3.1-8B 68.81 40.32 22.11 68.42 58.95 78.20 0.14
Ensemble-Judges (ArenaHard)* 68.45 33.85 25.79 65.79 61.05 78.50 0.14
Gemini-1.5-Pro-002 (AlpacaEval)’ 68.06 28.63 28.42 50.00 66.32 84.36 0.12
Claude-3-5-Sonnet-20240620 (AlpacaEval) 67.59 27.29 12.11 36.84 57.89 78.95 0.15
Llama-3.1-70B-Instruct (AlpacaEval)’ 66.97 24.59 19.47 52.63 61.05 78.20 0.15
GPT-40-2024-08-06 (AlpacaEval)’ 66.97 34.79 27.37 44.74 66.32 86.32 0.13
GPT-40-2024-08-06 (ArenaHard)" 66.67 30.49 25.26 63.16 63.16 81.05 0.13
InternLM2-20B-Reward 66.51 36.27 20.00 18.42 55.79 7233 0.18
Gemini-1.5-Pro-002 (ArenaHard)" 66.36 29.17 21.05 73.68 61.05 79.85 0.14
Athene-RM-8B 65.60 31.00 32.63 63.16 60.00 78.65 0.14
GPT-40-Mini-2024-07-18 (ArenaHard)" 65.14 29.31 25.79 73.68 74.74 89.92 0.12
Gemini-1.5-Flash-002 (AlpacaEval) 64.81 21.30 18.42 50.00 66.32 84.36 0.13
GPT-40-Mini-2024-07-18 (AlpacaEval)* 64.68 14.42 18.42 31.58 60.00 79.70 0.14
Claude-3-5-Sonnet-20240620 (ArenaHard) 64.68 27.59 21.05 55.26 65.26 86.02 0.12
Gemini-1.5-Flash-002 (ArenaHard) 63.68 20.76 24.21 65.79 64.21 80.30 0.14
InternLM2-7B-Reward 63.30 30.05 9.47 -26.32 49.47 68.42 0.20
Llama-3.1-70B-Instruct (ArenaHard)" 63.13 10.68 17.89 73.68 57.89 78.80 0.15
Llama-3-OffsetBias-RM-8B 62.39 28.23 16.32 63.16 25.26 38.50 0.26
ArmoRM-Llama3-8B-v0.1 62.39 29.54 23.16 60.53 43.16 58.65 0.20
Gemini-1.5-Pro-001 (ArenaHard)" 62.24 19.36 13.16 57.89 60.00 78.95 0.13
Eurus-RM-7B 61.47 30.57 15.79 44.74 50.53 71.43 0.17
Nemotron-4-340B-Reward 61.47 17.85 26.84 31.58 4421 52.63 0.23
Starling-RM-34B 60.09 16.40 14.21 68.42 55.79 70.98 0.17
InternLM2-1.8B-Reward 57.34 19.72 6.32 -7.89 38.95 54.59 0.21
NaiveVerbosityModel 56.88 9.00 8.42 -28.95 1579 20.90 0.25
Starling-RM-7B-Alpha 55.96 18.12 16.32 44.74 44.21 57.44 0.23
Skywork-Reward-Gemma-2-27B 55.05 8.51 20.53 55.26 42.11 56.54 0.20

Table 17: Reward model and LLM judge performance on Korean prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Claude-3-5-Sonnet-20240620 (AlpacaEval) 73.36 37.78 6.32 58.33 69.47 87.22 0.11
Athene-RM-8B 71.89 39.72 14.21 54.17 67.37 87.07 0.10
Ensemble-Judges (AlpacaEval) 71.36 36.61 11.05 70.83 71.58 86.62 0.11
Llama-3.1-70B-Instruct (AlpacaEval)® 70.05 37.95 6.32 62.50 62.11 81.50 0.11
Claude-3-5-Sonnet-20240620 (ArenaHard)" 68.52 33.33 14.74 75.00 72.63 89.62 0.10
Athene-RM-70B 68.20 33.11 18.42 50.00 72.63 87.82 0.13
GPT-40-Mini-2024-07-18 (ArenaHard)" 68.20 41.02 8.95 58.33 62.11 80.75 0.13
Gemini-1.5-Flash-002 (AlpacaEval)® 67.44 35.21 14.21 66.67 62.11 81.20 0.13
GPT-40-Mini-2024-07-18 (AlpacaEval)® 67.28 31.60 0.53 54.17 65.26 82.11 0.12
Gemini-1.5-Pro-002 (AlpacaEval)’ 66.98 33.95 14.74 54.17 64.21 83.46 0.12
Skywork-Reward-Llama-3.1-8B 66.82 28.61 9.47 83.33 64.21 77.59 0.14
InternLM2-7B-Reward 66.36 19.15 16.32 25.00 53.68 70.53 0.16
Ensemble-Judges (ArenaHard)* 65.79 31.49 16.84 62.50 71.58 87.37 0.11
Starling-RM-34B 64.98 27.05 16.32 54.17 61.05 79.70 0.15
GPT-40-2024-08-06 (AlpacaEval)® 64.52 29.56 5.79 37.50 64.21 82.11 0.13
GPT-40-2024-08-06 (ArenaHard)" 64.10 28.43 15.26 58.33 69.47 86.47 0.12
Llama-3.1-70B-Instruct (ArenaHard)" 64.02 22.78 3.16 54.17 54.74 75.79 0.16
Nemotron-4-340B-Reward 63.59 28.08 8.95 37.50 67.37 83.46 0.13
Skywork-Reward-Gemma-2-27B 63.13 12.65 6.32 50.00 49.47 64.21 0.18
InternLM2-20B-Reward 63.13 21.49 9.47 -4.17 58.95 80.15 0.16
Gemini-1.5-Flash-002 (ArenaHard)" 63.03 33.38 7.89 54.17 62.11 82.26 0.11
Gemini-1.5-Pro-002 (ArenaHard)" 62.91 22.44 15.79 62.50 60.00 79.85 0.14
Naive VerbosityModel 62.21 18.81 5.26 4.17 27.37 29.92 0.27
Eurus-RM-7B 61.29 20.76 3.68 20.83 47.37 63.61 0.19
ArmoRM-Llama3-8B-v0.1 60.37 12.93 9.47 75.00 22.11 33.08 0.24
Llama-3-OffsetBias-RM-8B 59.91 17.63 11.58 66.67 36.84 53.53 0.22
Gemini-1.5-Pro-001 (ArenaHard)" 59.51 15.30 3.16 66.67 51.58 70.38 0.15
InternLM2-1.8B-Reward 58.99 15.75 8.42 -20.83 36.84 53.98 0.22
Starling-RM-7B-Alpha 58.06 23.72 8.42 54.17 10.53 14.14 0.32

Table 18: Reward model and LLM judge performance on Japanese prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
Ensemble-Judges (AlpacaEval)’ 72.11 31.81 5.79 36.84 20.00 30.53 0.28
GPT-40-2024-08-06 (AlpacaEval)® 70.53 23.71 0.00 100.00 35.79 48.42 0.22
GPT-40-2024-08-06 (ArenaHard)" 70.29 24.79 421 89.47 43.16 59.55 0.21
Athene-RM-70B 69.47 24.25 17.37 89.47 35.79 49.62 0.23
Claude-3-5-Sonnet-20240620 (AlpacaEval) 68.42 28.53 1.58 100.00 20.00 33.83 0.26
Llama-3.1-70B-Instruct (ArenaHard)" 67.93 29.52 6.32 78.95 25.26 32.63 0.28
Skywork-Reward-Llama-3.1-8B 67.89 20.95 7.37 89.47 35.79 52.33 0.21
Llama-3.1-70B-Instruct (AlpacaEval)® 67.89 27.03 2.63 100.00 32.63 49.77 0.22
Naive VerbosityModel 67.37 24.77 2.11 100.00 25.26 34.89 0.24
Gemini-1.5-Flash-002 (AlpacaEval)® 67.37 29.36 4.74 68.42 25.26 37.44 0.26
InternLM2-7B-Reward 67.37 23.65 2.63 78.95 23.16 34.89 0.24
Starling-RM-34B 66.84 23.40 2.11 78.95 13.68 20.30 0.30
Ensemble-Judges (ArenaHard)" 66.47 20.45 12.63 47.37 28.42 40.15 0.24
Gemini-1.5-Pro-002 (AlpacaEval)® 66.32 19.40 11.05 47.37 24.21 38.05 0.25
Starling-RM-7B-Alpha 65.79 3243 1.58 68.42 6.32 6.02 0.30
InternLM2-20B-Reward 65.26 24.19 1.05 100.00 21.05 32.78 0.25
GPT-40-Mini-2024-07-18 (AlpacaEval)’ 64.74 22.02 0.00 100.00 11.58 14.89 0.27
Claude-3-5-Sonnet-20240620 (ArenaHard)" 64.74 21.07 8.95 5.26 24.21 36.54 0.26
Athene-RM-8B 64.21 23.88 9.47 68.42 27.37 40.45 0.26
Gemini-1.5-Pro-001 (ArenaHard)" 63.84 25.24 3.68 36.84 25.26 37.74 0.23
GPT-40-Mini-2024-07-18 (ArenaHard)" 63.83 11.48 7.89 78.95 31.58 46.47 0.24
Gemini-1.5-Pro-002 (ArenaHard)" 63.64 15.85 11.05 36.84 32.63 46.02 0.23
Eurus-RM-7B 63.16 14.36 0.53 89.47 1.05 2.86 0.33
Llama-3-OffsetBias-RM-8B 61.05 20.44 1.58 100.00 42.11 53.68 0.21
Gemini-1.5-Flash-002 (ArenaHard)" 60.75 16.42 8.42 57.89 12.63 17.14 0.29
Skywork-Reward-Gemma-2-27B 60.00 30.32 0.53 89.47 22.11 31.58 0.27
ArmoRM-Llama3-8B-v0.1 59.47 15.07 3.16 100.00 33.68 47.07 0.23
InternLM2-1.8B-Reward 59.47 17.02 2.63 47.37 8.42 10.53 0.32
Nemotron-4-340B-Reward 58.42 10.01 6.32 89.47 20.00 29.17 0.28

Table 19: Reward model and LLM judge performance on Spanish prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Gemini-1.5-Pro-002 (ArenaHard)" 69.57 14.77 14.74 54.17 63.16 8241 0.14
GPT-40-Mini-2024-07-18 (ArenaHard)" 68.45 25.12 421 75.00 54.74 73.08 0.17
Ensemble-Judges (ArenaHard)" 68.24 21.05 17.37 66.67 62.11 80.90 0.13
Ensemble-Judges (AlpacaEval) 67.74 27.12 4.21 79.17 46.32 65.71 0.19
Gemini-1.5-Pro-002 (AlpacaEval)® 67.38 26.42 8.95 79.17 47.37 65.26 0.18
Athene-RM-8B 67.38 26.84 18.95 45.83 45.26 64.81 0.17
InternLM2-7B-Reward 66.31 20.42 11.05 45.83 43.16 62.41 0.19
Claude-3-5-Sonnet-20240620 (ArenaHard)" 66.31 24.02 5.79 45.83 55.79 73.53 0.15
Athene-RM-70B 65.78 22.45 17.89 54.17 45.26 65.86 0.18
InternLM2-20B-Reward 65.24 26.25 13.16 29.17 58.95 79.55 0.15
ArmoRM-Llama3-8B-v0.1 65.24 21.41 5.79 45.83 33.68 55.19 0.23
Llama-3-OffsetBias-RM-8B 64.71 13.13 2.11 79.17 27.37 41.80 0.23
GPT-40-2024-08-06 (AlpacaEval)® 64.71 20.04 421 58.33 52.63 72.33 0.16
Llama-3.1-70B-Instruct (AlpacaEval)® 64.17 20.26 3.68 70.83 43.16 61.65 0.19
Claude-3-5-Sonnet-20240620 (AlpacaEval) 63.98 27.44 2.11 79.17 36.84 51.73 0.21
Starling-RM-7B-Alpha 63.10 22.33 9.47 54.17 34.74 47.67 0.20
GPT-40-Mini-2024-07-18 (AlpacaEval)’ 62.57 30.14 1.05 70.83 25.26 38.50 0.24
GPT-40-2024-08-06 (ArenaHard)" 62.43 15.80 8.95 70.83 49.47 65.56 0.18
Gemini-1.5-Flash-002 (ArenaHard)" 62.37 22.71 13.16 62.50 36.84 55.19 0.21
Eurus-RM-7B 62.03 14.76 8.42 37.50 17.89 26.17 0.29
Nemotron-4-340B-Reward 62.03 11.19 18.95 29.17 49.47 66.92 0.19
Gemini-1.5-Flash-002 (AlpacaEval)® 62.03 20.24 2.11 79.17 37.89 54.59 0.20
Llama-3.1-70B-Instruct (ArenaHard)" 61.62 20.93 3.68 70.83 46.32 69.17 0.17
Gemini-1.5-Pro-001 (ArenaHard)" 61.11 12.74 5.79 58.33 47.37 59.55 0.17
Skywork-Reward-Llama-3.1-8B 60.96 9.19 10.53 70.83 28.42 40.00 0.26
Starling-RM-34B 59.36 11.68 0.53 79.17 38.95 54.44 0.22
InternLM2-1.8B-Reward 58.82 21.97 4.21 12.50 36.84 46.47 0.21
Skywork-Reward-Gemma-2-27B 57.75 3.40 8.42 87.50 48.42 63.46 0.20
Naive VerbosityModel 54.01 9.52 10.00 62.50 -2.11 -3.16 0.35

Table 20: Reward model and LLM judge performance on French prompt subset of the human pref-
erence dataset. LLM-as-a-judge are labeled with system prompt source, and marked with 7.
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Reward Model Accuracy R.W. Pearson Separability —Conf. Agree. Kendalltau Spearmanr Brier Score
GPT-40-Mini-2024-07-18 (AlpacaEval)® 71.84 31.95 2.11 100.00 49.47 67.82 0.18
Claude-3-5-Sonnet-20240620 (AlpacaEval) 68.93 27.08 7.37 100.00 48.42 67.97 0.22
InternLM2-7B-Reward 68.93 25.47 1.05 100.00 49.47 68.12 0.18
Claude-3-5-Sonnet-20240620 (ArenaHard) 68.63 20.55 3.68 100.00 60.00 77.74 0.18
Ensemble-Judges (AlpacaEval)f 67.96 17.35 7.37 100.00 57.89 79.25 0.22
Ensemble-Judges (ArenaHard)* 67.02 20.72 10.53 100.00 62.11 76.39 0.17
GPT-40-2024-08-06 (AlpacaEval)’ 66.99 16.25 3.68 100.00 50.53 69.47 0.18
Skywork-Reward-Gemma-2-27B 66.02 21.16 4.74 100.00 58.95 7729 0.20
Athene-RM-8B 66.02 20.34 8.42 89.47 54.74 75.49 0.16
Eurus-RM-7B 65.05 26.36 3.16 78.95 30.53 39.55 0.21
Athene-RM-70B 65.05 10.12 7.89 89.47 50.53 72.33 0.18
GPT-40-Mini-2024-07-18 (ArenaHard)" 64.08 12.29 13.68 89.47 61.05 81.35 0.15
Gemini-1.5-Pro-002 (AlpacaEval)’ 64.08 14.69 3.16 100.00 54.74 72.03 0.18
Gemini-1.5-Flash-002 (AlpacaEval)® 64.08 21.03 3.68 100.00 41.05 58.05 0.21
Llama-3-OffsetBias-RM-8B 64.08 28.73 11.05 100.00 27.37 40.15 0.21
InternLM2-20B-Reward 64.08 8.68 2.63 100.00 53.68 75.49 0.19
Gemini-1.5-Pro-002 (ArenaHard)" 64.00 12.53 12.63 89.47 48.42 65.56 0.19
GPT-40-2024-08-06 (ArenaHard)" 63.27 18.86 5.26 89.47 56.84 72.63 0.16
Starling-RM-34B 63.11 14.73 2.63 89.47 42.11 58.20 0.18
Llama-3.1-70B-Instruct (AlpacaEval)* 62.14 19.12 1.05 100.00 63.16 78.05 0.15
Skywork-Reward-Llama-3.1-8B 62.14 25.10 6.32 100.00 36.84 54.59 0.21
Llama-3.1-70B-Instruct (ArenaHard)" 61.39 -2.36 3.68 100.00 55.79 76.09 0.18
ArmoRM-Llama3-8B-v0.1 60.19 19.66 2.11 100.00 18.95 32.18 0.25
InternLM2-1.8B-Reward 59.22 11.84 2.11 57.89 27.37 33.38 0.24
Starling-RM-7B-Alpha 59.22 10.16 1.05 100.00 35.79 47.52 0.21
Naive VerbosityModel 58.25 11.49 2.63 100.00 20.00 32.78 0.22
Nemotron-4-340B-Reward 58.25 7.87 3.16 100.00 40.00 55.94 0.20
Gemini-1.5-Pro-001 (ArenaHard)" 57.58 -1.56 421 100.00 48.42 66.77 0.18
Gemini-1.5-Flash-002 (ArenaHard)" 51.96 -0.90 1.05 78.95 37.89 62.11 0.19

Table 21: Reward model and LLM judge performance on Portuguese prompt subset of the human
preference dataset. LLM-as-a-judge are labeled with system prompt source, and marked with .

Reward Model Accuracy R.W. Pearson Separability ~Conf. Agree. Kendalltau Spearmanr Brier Score
Gemini-1.5-Pro-002 (AlpacaEval)® 81.40 51.04 3.16 100.00 50.53 74.14 0.17
Ensemble-Judges (AlpacaEval)f 75.58 44.04 6.84 100.00 45.26 66.47 0.18
Gemini-1.5-Pro-002 (ArenaHard)" 74.42 40.23 3.16 57.89 52.63 70.83 0.18
Athene-RM-70B 74.42 42.65 4.74 100.00 43.16 61.05 0.20
Claude-3-5-Sonnet-20240620 (ArenaHard)" 73.26 42.33 1.58 100.00 47.37 58.80 0.20
Athene-RM-8B 73.26 43.29 8.42 78.95 43.16 60.45 0.19
Ensemble-Judges (ArenaHard)" 71.25 44.59 1.58 89.47 36.84 51.88 0.20
Claude-3-5-Sonnet-20240620 (AlpacaEval) 69.77 28.35 5.79 100.00 40.00 52.03 0.22
Gemini-1.5-Pro-001 (ArenaHard)" 69.23 35.18 2.63 100.00 40.00 55.94 0.19
GPT-40-2024-08-06 (AlpacaEval)® 68.60 39.33 5.79 100.00 40.00 53.53 0.19
Eurus-RM-7B 67.44 25.34 2.63 89.47 -2.11 -1.95 0.29
Skywork-Reward-Llama-3.1-8B 66.28 27.43 1.58 100.00 37.89 47.82 0.21
ArmoRM-Llama3-8B-v0.1 66.28 28.46 5.79 100.00 42.11 57.14 0.19
Gemini-1.5-Flash-002 (AlpacaEval)® 66.28 33.17 1.05 89.47 30.53 44.81 0.22
GPT-40-2024-08-06 (ArenaHard)" 66.25 39.65 6.32 100.00 34.74 51.88 0.20
GPT-40-Mini-2024-07-18 (ArenaHard)" 64.71 31.59 1.05 100.00 34.74 55.64 0.20
Llama-3.1-70B-Instruct (ArenaHard)" 64.63 27.88 1.58 89.47 38.95 54.59 0.20
InternLM2-7B-Reward 63.95 26.87 3.16 36.84 12.63 15.49 0.25
InternLM2-20B-Reward 63.95 19.03 0.00 100.00 29.47 46.32 0.20
Gemini-1.5-Flash-002 (ArenaHard)" 63.10 24.42 4.21 89.47 27.37 44.96 0.22
Starling-RM-34B 62.79 13.29 1.58 100.00 10.53 10.23 0.28
Skywork-Reward-Gemma-2-27B 61.63 19.87 0.00 100.00 41.05 56.84 0.21
Llama-3.1-70B-Instruct (AlpacaEval)* 61.63 19.26 2.11 100.00 16.84 21.50 0.24
Nemotron-4-340B-Reward 60.47 19.10 13.16 5.26 53.68 75.34 0.18
InternLM2-1.8B-Reward 59.30 16.29 0.53 89.47 2.11 0.00 0.27
GPT-40-Mini-2024-07-18 (AlpacaEval)® 58.14 14.03 1.05 100.00 24.21 33.98 0.23
Llama-3-OffsetBias-RM-8B 58.14 2.76 1.05 100.00 45.26 61.95 0.20
Starling-RM-7B-Alpha 56.98 12.63 3.68 89.47 2.11 -2.86 0.30
Naive VerbosityModel 50.00 -0.20 2.63 100.00 -1.37 -13.68 0.31

Table 22: Reward model and LLM judge performance on Italian prompt subset of the human pref-
erence dataset. LLM-as-a-judge are labeled with system prompt source, and marked with 7.

24



Published as a conference paper at ICLR 2025

A.2.1 SCORE DISTRIBUTION STATISTICS OF HUMAN PREFERENCE METRICS
subset mean std min 25% 50% T5% max
overall 0.6341 | 0.0337 | 0.5662 | 0.6100 | 0.6301 | 0.6609 | 0.6859
hard_prompt 0.6351 | 0.0353 | 0.5621 | 0.6115 | 0.6414 | 0.6630 | 0.6946
easy_prompt 0.6375 | 0.0412 | 0.5554 | 0.6037 | 0.6410 | 0.6698 | 0.7015
if_prompt 0.6306 | 0.0369 | 0.5571 | 0.6110 | 0.6304 | 0.6609 | 0.6977
code_prompt 0.6336 | 0.0316 | 0.5641 | 0.6139 | 0.6418 | 0.6557 | 0.6806
math_prompt 0.6449 | 0.0483 | 0.5580 | 0.6131 | 0.6388 | 0.6858 | 0.7358
similar_response | 0.6287 | 0.0342 | 0.5592 | 0.6059 | 0.6395 | 0.6545 | 0.6815
Table 23: Human Preference V1 Accuracy Metric Statistics
subset mean std min 25% 50% T5% max
overall 0.7135 | 0.1133 | 0.3203 | 0.6803 | 0.7477 | 0.7842 | 0.8263
hard_prompt 0.6623 | 0.0842 | 0.4218 | 0.6303 | 0.6890 | 0.7138 | 0.7637
easy_prompt 0.5070 | 0.1438 | 0.0761 | 0.4327 | 0.5342 | 0.6105 | 0.7266
if_prompt 0.6355 | 0.1040 | 0.3583 | 0.5848 | 0.6647 | 0.7011 | 0.7646
is_code 0.5871 | 0.0857 | 0.3950 | 0.5392 | 0.5971 | 0.6331 | 0.7311
math_prompt 0.5381 | 0.0876 | 0.3010 | 0.4862 | 0.5668 | 0.6085 | 0.6540
similar_response | 0.6609 | 0.0951 | 0.3456 | 0.6155 | 0.6755 | 0.7270 | 0.7682
Table 24: Human Preference V1 Row-wise Pearson Metric Statistics
subset mean std min 25% 50% T5% max
overall 0.8244 | 0.1540 | 0.3643 | 0.7571 | 0.8786 | 0.9357 | 0.9714
hard_prompt 0.7978 | 0.0998 | 0.5000 | 0.7786 | 0.8286 | 0.8643 | 0.9071
easy_prompt 0.6071 | 0.2054 | 0.0643 | 0.4500 | 0.6571 | 0.7571 | 0.8500
if_prompt 0.7759 | 0.1362 | 0.4571 | 0.6929 | 0.8357 | 0.8714 | 0.9214
is_code 0.7355 | 0.0993 | 0.5143 | 0.6929 | 0.7500 | 0.8071 | 0.8571
math_prompt 0.6527 | 0.1360 | 0.3000 | 0.6143 | 0.6929 | 0.7571 | 0.8071
similar_response | 0.7798 | 0.1296 | 0.3500 | 0.7429 | 0.7929 | 0.8643 | 0.9214
Table 25: Human Preference V1 Confidence Agreement Metric Statistics
subset mean std min 25% 50% 75% max
overall 82.1779 | 3.9903 | 73.1580 | 80.0000 | 82.6320 | 84.2110 | 91.5790
hard_prompt 73.3031 | 5.7412 | 51.0530 | 71.5790 | 73.6840 | 76.8420 | 81.5790
easy_prompt 55.7350 | 8.2493 | 34.7370 | 50.5260 | 55.2630 | 61.5790 | 67.8950
if_prompt 68.8929 | 7.6624 | 45.7890 | 67.3680 | 69.4740 | 74.7370 | 80.0000
is_code 66.8239 | 7.0225 | 39.4740 | 65.2630 | 68.4210 | 70.0000 | 76.8420
math_prompt 61.1070 | 8.9433 | 27.8950 | 58.4210 | 62.6320 | 66.3160 | 72.1050
similar_response | 76.5153 | 4.8143 | 64.7370 | 74.2110 | 77.3680 | 78.9470 | 83.6840
Table 26: Human Preference V1 Separability Metric Statistics
subset mean std min 25% 50% T5% max
overall 0.8432 | 0.1473 | 0.3353 | 0.8120 | 0.8872 | 0.9444 | 0.9699
hard_prompt 0.8637 | 0.0911 | 0.5955 | 0.8541 | 0.8812 | 0.9218 | 0.9474
easy_prompt 0.7673 | 0.2210 | 0.0737 | 0.6421 | 0.8451 | 0.9128 | 0.9624
if_prompt 0.8709 | 0.1176 | 0.5504 | 0.8662 | 0.9113 | 0.9429 | 0.9699
is_code 0.8405 | 0.0873 | 0.6015 | 0.8331 | 0.8752 | 0.8902 | 0.9429
math_prompt 0.8096 | 0.1062 | 0.3895 | 0.8075 | 0.8316 | 0.8737 | 0.9203
similar_response | 0.8299 | 0.1208 | 0.4195 | 0.8015 | 0.8586 | 0.9098 | 0.9489

Table 27: Human Preference V1 Spearman Metric Statistics
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subset mean std min 25% 50% 75% max
overall 0.7172 | 0.1593 | 0.2947 | 0.6737 | 0.7579 | 0.8421 | 0.9053
hard_prompt 0.7227 | 0.1083 | 0.4211 | 0.6737 | 0.7474 | 0.7895 | 0.8421
easy_prompt 0.6203 | 0.2009 | 0.0737 | 0.4737 | 0.6737 | 0.7474 | 0.8632
if_prompt 0.7397 | 0.1338 | 0.3895 | 0.7158 | 0.7895 | 0.8316 | 0.8737
is_code 0.6897 | 0.0939 | 0.4632 | 0.6737 | 0.7053 | 0.7579 | 0.8211
math_prompt 0.6570 | 0.1080 | 0.3053 | 0.6421 | 0.6737 | 0.7158 | 0.8000
similar_response | 0.6860 | 0.1345 | 0.3053 | 0.6211 | 0.7053 | 0.7789 | 0.8421

Table 28: Human Preference V1 Kendalltau Metric Statistics

subset mean std min 25% 50% T5% max
overall 0.1276 | 0.0750 | 0.0454 | 0.0700 | 0.1055 | 0.1532 | 0.3344
hard_prompt 0.1169 | 0.0481 | 0.0680 | 0.0857 | 0.1047 | 0.1353 | 0.2507
easy_prompt 0.1549 | 0.0906 | 0.0562 | 0.0946 | 0.1201 | 0.2273 | 0.4132
if_prompt 0.1062 | 0.0591 | 0.0442 | 0.0685 | 0.0851 | 0.1148 | 0.2579
is_code 0.1289 | 0.0447 | 0.0721 | 0.0986 | 0.1176 | 0.1396 | 0.2421
math_prompt 0.1408 | 0.0507 | 0.0857 | 0.1064 | 0.1285 | 0.1473 | 0.3191
similar_response | 0.1378 | 0.0628 | 0.0705 | 0.0934 | 0.1259 | 0.1577 | 0.3299

Table 29: Human Preference V1 Brier Metric Statistics

A.3 DETAILS ON CURATION AND SCORES FOR CORRECTNESS PREFERENCE EVALUATION
DATASET

A.3.1 SMALL BENCHMARK MODIFICATIONS

To ensure more natural responses that better reflect real-world use cases, we modified each verifi-
able benchmark’s canonical prompt to encourage Chain of Thought (CoT) thinking (citation). This
approach both increases the diversity of sampled responses and enhances the task difficulty for the
human preference proxy by incorporating additional signals beyond final answer correctness. The
specific instructions for each benchmark are detailed below.

For the MATH benchmark, we implemented a new system prompt to facilitate zero-shot CoT be-
havior. Additionally, we converted the parsed answer to its symbolic representation and utilized a
symbolic solver to evaluate true equality instead of relying on raw string matching. This refinement

of the correctness signal ensures that trivial answer differences, such as 1% VS % or ‘“*T\/‘?’ S % + 21,
are marked as equivalent, with either answer accepted if correct.

In practice, we observed that the sampled MBPP-Plus generations from some models were almost all
identical. Models also generally failed to follow instructions to “think step-by-step” before providing
their final answers, suppressing answer diversity. To address this issue, we prompted the models to
“write comments clearly explaining each part of the code,” thereby lengthening trajectories and
yielding greater exploration of the answer spaces. We also observed some ambiguity in MBPP-Plus
intructions. To mitigate this, we added standard MBPP test cases into the function docstring as
examples, and used the more extensive remaining MBPP-Plus test cases as the real tests.

Lastly, for IFEval, we prefixed the prompts with “It is extremely important that you follow all in-
structions exactly.” This addition emphasizes the necessity of precise instruction following in these
tasks and ensures that the human preference proxy implicitly recognizes this as a significant evalua-
tion criterion.

The prompt template for MMLU-Pro and GPQA were adaption from |Gao et al.| (2021)’s Language
Model Evaluation Harness. The MATH template was generated with the assistance of Anthropic’s
prompt generator.

The prompt templates for each benchmark are detailed below. Note that {{var}} indicates a field
to be filled by prompt data or metadata.
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MMLU Prompt Template:

The following are multiple choice questions (with answers) about {{domain}}. Think step
by step and then finish your answer with "the answer is (X)" where X is the correct
letter choice.

Question: {{question}}
Options:

{{letter}}. {{choice}}
{{letter}}. {{choice}}
{{letter}}. {{choice}}

MATH Prompt Template:

You are a highly skilled mathematician tasked with solving complex math problems.
Your goal is to provide clear, step-by-step solutions that can be easily parsed and
evaluated.

Here is the math problem you need to solve:
<problem>
{{MATH_PROBLEM} }

</problem>

Box your final answer using LaTeX, for example: $x = \\boxed{[Your final numerical or
algebraic answer]}S.

Now, please solve the given math problem and provide your solution in the specified format.

GPQA Prompt Template:

The following is a {{domain}} multiple choice question. Think step by step and then
finish your answer with "the answer is (X)" where X is the correct letter choice.

Question: {{question}}
Choices:

(A) {{choicel}}

(B) {{choice2}}

(C) {{choice3}}

(D) {{choiced}}

MBPP-Plus Prompt Template:

Below will be an instruction to write a python function that accomplishes a task.

You will also be given starter code with a function definition and any required imports.
Think step-by-step, write comments clearly explaining each part of the code, and make sure
your code solution is enclosed in markdown ticks (‘' [your code here] ‘).

<instruction>
{{instruction}}
</instruction>

<starter_code>

ERRNRY

{{starter_code}}
pass

AIRRY

</starter_code>

IFEval Prompt Template:

It is extemely important that you follow all instructions exactly:
{{prompt}}

A.3.2 MORE ON BEST OF K CURVES

These curves represent how much the reward model can differentiate the LLM’s generations whilst
picking from examples drawn from the same distribution. The simple intuition here is that as K
increases, the “exploration” of the LLM is expanded, thereby increasing the likelihood that a correct
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answer lies within the K different samples. However, as exploration increases, the likelihood that a
response that exploits the reward model is present also increases. In all best of K metrics, we use
K = 32, providing both reasonable inference costs balanced with a significant enough exploration

space to test the reward model’s capabilities.

In order to distill the curves into interpretable numbers, we propose several metrics:

1. Maximum Achieved Performance: the maximum score achieved by the reward model at
any point on the best of K curve. Note that the maximum achieved performance is relatively

agnostic to over-optimization.

2. Error With Respect to Ground Truth: the expected squared error between the score of
the reward model’s selected response against the ground truth best response. Once again, let
Sk be a size K random sample of responses from a model, g : S — {0, 1} be the ground

truth scoring function, and R : Sk — R be the reward model proxy score. Then, the error
with respect to ground truth is 55 Zi’?zl Esy [(9(argmax g, R(s)) — maxes, 9(s))?]

3. End Score: We also look at the final score achieved by the reward model at K = 32. If no
over-optimization has occurred this should also be the maximum achieved performance.

A.3.3 DETAILED SCORES

Reward Model MMLU Pro Math GPQA MBPPPlus IFEval Mean
Athene-RM-70B 0.761 0.607 0.499 0.748 0.633  0.650
InternLM2-20B-Reward 0.673 0.538 0471 0.654 0.652  0.598
Llama-3-Offsetbias-RM-8B 0.590 0.481 0.450 0.819 0.646  0.597
Athene-RM-8B 0.656 0.517 0.459 0.675 0.586  0.579
Nemotron-4-340B-Reward 0.697 0.499 0484 0.567 0.623  0.574
InternLm2-7B-Reward 0.638 0.552 0457 0.562 0.658  0.573
ArmoRM-Llama3-8B-v0.1 0.654 0.508 0.470 0.602 0.601  0.567
Skywork-Reward-Llama-3.1-8B 0.641 0.500 0.468 0.581 0.639  0.566
Starling-RM-34B 0.651 0.476  0.453 0.634 0.569  0.557
Eurus-RM-7B 0.607 0.516 0.438 0.590 0.594  0.549
Skywork-Reward-Gemma-2-27B 0.550 0462  0.447 0.691 0.583  0.547
InternLM?2-1-8B-Reward 0.538 0411 0451 0.572 0.581 0.510
Starling-RM-7B-Alpha 0.562 0.409 0.433 0.559 0.564  0.505
NaiveVerbosityModel 0.487 0.349 0420 0.568 0.539 0473
Table 30: Reward Model Best of K Performance Across Benchmarks
Reward Model MMLU Pro Math GPQA MBPPPlus IFEval Mean
Athene-RM-70B 0.792 0.760  0.603 0.661 0.594  0.682
Internlm2-20B-reward 0.677 0.691 0.562 0.574 0.595 0.620
Llama-3-offsetbias-RM-8B 0.631 0.617 0.541 0.710 0.594 0.619
Athene-RM-8B 0.683 0.673  0.560 0.602 0.556 0.615
Nemotron-4-340B-Reward 0.704 0.660 0.570 0.506 0.587  0.605
Skywork-Reward-Llama-3.1-8B 0.663 0.678  0.560 0.523 0.586  0.602
Internlm2-7B-Reward 0.665 0.718  0.558 0.464 0.605  0.602
ArmoRM-Llama3-8B-v0.1 0.678 0.659  0.549 0.538 0.573  0.599
Starling-RM-34B 0.683 0.621  0.547 0.534 0.536  0.584
Eurus-RM-7B 0.627 0.665 0.521 0.537 0.554  0.581
Skywork-Reward-Gemma-2-27B 0.542 0.582  0.506 0.572 0.536  0.547
Internlm?2-1-8B-Reward 0.561 0.587 0.538 0.462 0.538  0.537
Starling-RM-7B-Alpha 0.547 0.527  0.506 0.400 0.519  0.500
Naive VerbosityModel 0.495 0.528  0.506 0.330 0511 0474

Table 31: Area Under ROC Curve for Reward Models across Benchmarks
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gemma-2-9b-it gpt-4o-mini Llama-3-8B claude-3-haiku
Reward Model Loss Max End Loss Max End Loss Max End Loss Max End
athene-rm-70b 0.093 0.702 0.681 0.110 0.678 0.629 0.113 0.669 0.653 0.131 0.633 0.605
armorm-1lama3-8b-v0.1 0.119 0.657 0.636 0.147 0.620 0.580 0.179 0.576 0.537 0.194 0.564 0.512
naiveverbositymodel 0.241 0.508 0.463 0.250 0.554 0.425 0.358 0.448 0.317 0.337 0.467 0.355
eurus-rm-7b 0.143 0.627 0.597 0.158 0.613 0.562 0.187 0.562 0.512 0.228 0.531 0.452

skywork-reward-gemma-2-27b 0.169 0.583 0.543 0.175 0.590 0.549 0.209 0.534 0.494 0.190 0.558 0.529
skywork-reward-1lama-3.1-8b  0.126 0.643 0.612 0.136 0.633 0.597 0.189 0.565 0.527 0.216 0.561 0.491

llama-3-offsetbias-rm-8b 0.133 0.653 0.629 0.146 0.629 0.585 0.210 0.542 0.502 0.151 0.620 0.592
nemotron-4-340b-reward 0.129 0.641 0.617 0.128 0.644 0.618 0.159 0.610 0.583 0.232 0.565 0.485
starling-rm-34b 0.157 0.602 0.570 0.151 0.622 0.563 0.183 0.562 0.528 0.209 0.545 0.487
athene-rm-8b 0.142 0.621 0.584 0.133 0.636 0.600 0.175 0.589 0.543 0.183 0.560 0.531
internlm2-7b-reward 0.138 0.630 0.588 0.147 0.633 0.581 0.155 0.608 0.581 0.253 0.565 0.462
starling-rm-7b-alpha 0.183 0.569 0.535 0.199 0.578 0.516 0.238 0.508 0.476 0.319 0.486 0.378
internlm2-1-8b-reward 0.193 0.566 0.501 0.191 0.583 0.506 0.218 0.526 0.480 0.256 0.503 0.448
internlm2-20b-reward 0.124 0.648 0.626 0.130 0.646 0.607 0.159 0.602 0.570 0.166 0.586 0.570

Table 32: Average Best of K per Sample Model across MMLU Pro, Math, GPQA, MBPP Plus, and
IF Eval

Reward Model gemma-2-9b-it  gpt-4o-mini Llama-3-8B  claude-3-haiku
athene-rm-70b 0.710 0.648 0.710 0.674
armorm-llama3-8b-v0.1 0.655 0.577 0.616 0.591
naiveverbositymodel 0.515 0.491 0.487 0.433
eurus-rm-7b 0.620 0.546 0.621 0.562
skywork-reward-gemma-2-27b 0.553 0.519 0.562 0.550
skywork-reward-llama-3.1-8b 0.639 0.594 0.619 0.578
Ilama-3-offsetbias-rm-8b 0.628 0.574 0.583 0.650
nemotron-4-340b-reward 0.639 0.586 0.658 0.561
starling-rm-34b 0.602 0.571 0.604 0.574
athene-rm-8b 0.640 0.592 0.635 0.601
internlm2-7b-reward 0.657 0.573 0.655 0.569
starling-rm-7b-alpha 0.544 0.499 0.525 0.475
internlm2-1-8b-reward 0.581 0.536 0.570 0.504
internlm2-20b-reward 0.629 0.603 0.650 0.603

Table 33: Average AUC per sample model across MMLU Pro, Math, GPQA, MBPP Plus, and IF
Eval
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Figure 8: Performance average across all benchmarks, conditioned on each sample model
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Figure 9: Performance comparison across all benchmarks
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A.3.4 SCORE DISTRIBUTION STATISTICS OF CORRECTNESS BENCHMARKS

mean std min 25% 50% 75% max
accuracy 0.557 | 0.031 | 0.477 | 0.544 | 0.561 | 0.570 | 0.632
area_under_curve | 0.545 | 0.028 | 0.506 | 0.525 | 0.548 | 0.560 | 0.603
loss 0.265 | 0.026 | 0.219 | 0.251 | 0.265 | 0.270 | 0.322
mean_max_score | 0.458 | 0.020 | 0.424 | 0.449 | 0.455 | 0.469 | 0.498
mean_end_score 0.432 | 0.031 | 0.372 | 0.423 | 0.431 | 0.453 | 0.481

Table 34: GPQA Benchmark Score Distribution Information

mean std min 25% 50% 75% max
accuracy 0.581 | 0.035 | 0.517 | 0.560 | 0.576 | 0.617 | 0.640
area_under_curve | 0.563 | 0.031 | 0.511 | 0.536 | 0.565 | 0.593 | 0.605
loss 0.121 | 0.025 | 0.090 | 0.097 | 0.122 | 0.135 | 0.173
mean_max_score | 0.605 | 0.037 | 0.540 | 0.581 | 0.599 | 0.638 | 0.658
mean_end_score 0.590 | 0.047 | 0.503 | 0.563 | 0.579 | 0.631 | 0.654

Table 35: IFEVAL Benchmark Score Distribution Information

mean std min 25% 50% 75% max
accuracy 0.693 | 0.091 | 0.498 | 0.645 | 0.693 | 0.726 | 0.866
area_under_curve | 0.656 | 0.089 | 0.527 | 0.602 | 0.660 | 0.684 | 0.878
loss 0.199 | 0.080 | 0.047 | 0.169 | 0.189 | 0.214 | 0.401
mean_max_score | 0.504 | 0.091 | 0.348 | 0.470 | 0.500 | 0.527 | 0.741
mean_end_score 0.486 | 0.107 | 0.245 | 0.459 | 0.494 | 0.516 | 0.736

Table 36: Math Benchmark Score Distribution Information

mean std min 25% 50% 75% max
accuracy 0.533 | 0.095 | 0.312 | 0.510 | 0.538 | 0.580 | 0.743
area_under_curve | 0.530 | 0.098 | 0.330 | 0.474 | 0.536 | 0.573 | 0.710
loss 0.177 | 0.092 | 0.035 | 0.110 | 0.176 | 0.221 | 0.337
mean_max_score | 0.631 | 0.078 | 0.557 | 0.577 | 0.596 | 0.668 | 0.818
mean_end_score 0.565 | 0.134 | 0.376 | 0.491 | 0.544 | 0.658 | 0.815

Table 37: MBPP Plus Benchmark Score Distribution Information

mean std min 25% 50% 75% max
accuracy 0.654 | 0.078 | 0.479 | 0.615 | 0.662 | 0.684 | 0.814
area_under_curve | 0.639 | 0.079 | 0.495 | 0.578 | 0.664 | 0.682 | 0.792
loss 0.139 | 0.059 | 0.053 | 0.109 | 0.118 | 0.172 | 0.291
mean_max_score | 0.622 | 0.073 | 0.483 | 0.570 | 0.640 | 0.655 | 0.762
mean_end_score 0.605 | 0.089 | 0.403 | 0.559 | 0.630 | 0.647 | 0.760

Table 38: MMLU Pro Benchmark Score Distribution Information
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A.4 DPO CONFIGURATION

DPO Configuration
Base Model | Meta-Llama-3.1-8B-Instruct
71 0.1

Learning Rate | 2.00 x 1076
LR Schedule | Constant
Global Batch Size | 64

Max Length | 8192

Max Prompt Length | 4096
Implementation | TRL DPOTrainer (von Werra et al., [2020)
Optimizer | AdamW, 5, = 0.9, 82 = 0.999

Space Optimization | Deepspeed Zero2

A.5 CROWDSOURCED HUMAN PREFERENCE VOTE DETAILS

#Votes | Est. Unique Users | Mean Votes/User | Median Votes/User | Mean Battles/Pair | Mean Votes/Model
12190 | 6120 | 199 | .00 | 190.47 | 2031.67

Table 39: Statistics on vote participation and distribution for crowdsourced human preference labels.

A.6 ADDITIONAL ANALYSIS ON DOWNSTREAM PERFORMANCE

Performance Correlation vs Human Preference Category Score Quantile
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Figure 10: The graphs show all metrics for the human preference dataset. For each metric, the six
benchmarks (Hard, Easy, Instruction Following, Coding, Math, and Similar Responses Prompts) (all
mean and SD normalized) aggregated into final score by quantile (x-axis). The Pearson Correlation
between the aggregated scores are calculated relative to Post-RLHF Human Preference ratings for
each aggregation level. Notice that for all metrics except Separability, decreasing quantile increases
correlation.

One possible cause of the pattern seen in is that low quantile aggregation better measures
robustness. Intuitively, any single weakness within some input domain could be exploited by the
policy model during RL training, thus damaging the model. Another reasonable explanation is that
a reward model’s weakness in one area may yield noisy signals during training, causing the policy
model’s rather fragile parameters to be disrupted— a possibly unrecoverable degradation in what
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we may consider an instance of “catastrophic forgetting”. Ultimately, the underlying mechanisms
are complex; we do not expect to answer this question in its entirety. However, we believe that our
end-to-end experiment provides the first step to understanding how reward model behaviors relate
to downstream performance.

A.6.1 COMMENTS ON REWARDBENCH CORRELATIONS

Commenting on while our work’s focus was not to prove or disprove RewardBench, we
can provide the following hypothesis for context and clarity: we hypothesize that the reward mod-
els tested may have over-optimized for RewardBench’s specific preference distribution rather than
capturing broader human preferences, potentially exceeding RewardBench’s measurement capabil-
ities. However, we note that initial improvements in RewardBench score may still correlate well to
real post RLHF human preference outcomes. Ultimately, these insights are only possible through
our end-to-end experiments, which enable the research community to further investigate and discuss
the true correlations between benchmark metrics and downstream performance. We believe this
highlights the value of comprehensive evaluation approaches like ours in understanding real-world
model behaviors.

A.6.2 STYLE-CONTROLLED DOWNSTREAM PERFORMANCE

Model Elo 95% CILower 95% CI Upper
Meta-Llama-3.1-70B-Instruct” 1229 1218 1239
Athene-RM-70B 1209 1201 1218
Athene-RM-8B 1203 1194 1211
internlm2-7b-reward 1201 1192 1210
Llama-3-OffsetBias-RM-8B 1197 1188 1204
ArmoRM-Llama3-8B-v0.1 1185 1175 1191
Meta-Llama-3.1-8B-Instruct” 1177 1168 1186
Skywork-Reward-Llama-3.1-8B 1171 1163 1182
Nemotron-4-340B-Reward 1170 1161 1180
internlm2-20b-reward 1170 1159 1179
Skywork-Reward-Gemma-2-27B 1170 1160 1180
Meta-Llama-3-8B-Instruct” 1152 1142 1160

Table 40: Post DPO performance on real human preference Overall Category after applying style-
control. “Model” is the reward model used to train the base model. Models marked with “*” are
baseline unaltered models. The best non-base model elo is bolded.
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Correlation to Style-Controlled Post-RLHF Arena Score: Correlation to Style-Controlled Post-RLHF Arena Score:
Metrics on the Correctness Dataset Metrics on the Human Preference Dataset
0.8
Accuract PNcaak 0.67 0.71  0.60 o
Row-wise Pearson® - 0. 0.52
0.4
ROC AUCY 5
Separability® 1 0.35 U 0. ! LUl 036 02 =
N E
Max Score’ - Confidence Agreement’r 0.05 0.33 0.32 0.0 8
=
2
Kendall's Tau’ - 0.00 0.04 -0.04 0.09 0.14 -0.04 0.14 —0.28
E * o
nd Score &
v —0.4
Spearman - -0.11 -0.19 -0.05 -0.10 0.06 -0.01 0.21
o -0.6
Loss Brier Score’ - 0.03 -0.09 -0.01 -0.07 0.09 -0.14 0.18
. . . . . . . -0.8
R SR SR S S S S
N LS ¢ © & &
X <& S N &
Granularity Levels
A High Granularity # Medium Granularity ¥ Low Granularity

Figure 11: Pearson correlations between various metrics and styled-controlled human preference
scores. Left: Correlations between metrics on the Correctness Dataset and Post-RLHF human pref-
erence rating. Right: Correlations between metrics on the Human Preference Dataset and Post-
RLHF human preference rating.
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Figure 12: Pearson correlation between the ranking of models in RewardBench and their respective
style-controlled Post-DPO rankings on real human preference.

As an ablation, we calculate style-controlled human preference ratings. Style-controlled ratings fit
the Bradley Terry model with style elements as features of the regression. These features are used to
decouple style from model ratings; this process yields score estimates, style aside. The full process
for style control is detailed in (2024a)). For maximum coverage, we control for length and
markdown.
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A.6.3 CORRELATION VS. K

Mean Max Score Correlation to Downstream Performance vs K
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Figure 13: Pearson correlation to downstream human preference performance of mean max score
best of K metric vs K.

shows that increasing the value of K for best of K metrics does not increase benchmark
predictive power. We note that the most predictive correctness metrics is the accuracy metric detailed
in jsubsubsection 5.2.3| which is inherently K = 2. Therefore, the predictive power of PPE can be
retained without running full X' = 32, which is more compute heavy.

A.7 RECOMMENDATIONS FOR PPE AND FUTURE REWARD MODEL BENCHMARKS

Based on this end-to-end study results detailed in[section 7]and Appendix we recommend

those seeking the most predictive power from PPE run the human preference set as well as the
MATH accuracy metric. We suggest that users pay particular attention to the lower bound accuracy
across the main human preference set categories (easy, hard, instruction following, coding, math,
and similar). Considering our findings, this configuration likely maintains full predictive power of
PPE with less than half of the runtime. Future reward benchmarks may find it helpful to attend to
these particular design patterns.

A.8 RUNTIMES AND COSTS FOR PPE

Benchmark Set \ Time | Cost
Optimized (Human Preference V1 + Math Accuracy) | < 42 minutes < $1.50
Full Benchmark < 120 minutes < $3.50
End-to-end RLHF pipeline > 1 week | $1000 or more

Table 41: Benchmark runtimes and costs. Costs are calculated from RunPod’s hourly GPU pricing,
which puts an NVIDIA A100 80GB PCle instance at $1.64 per hour. Costs could fluctuate between
GPU providers. Runtimes are estimated assuming an 8B reward model.
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