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Deep learning (DL) has proven
effective in medical image
reconstruction. However, little is

« VAE model: 4 convolutional layers in
encoder, 4 transpose convolution layers
for decoder, fully connected layers for
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« SURE results are strongly
correlated with MSE even when
the ground truth is not known,

known about how robust these latent space u and o (Fig 2) 2Ny, o) showing its value as a general-
reconstructions are. Thus, this work « Data consistency: affine projection * Dt Comeny purpose uncertainty metric (can
analyzes the uncertainty of DL based on undersamplingmask ...~ .y be used across model

methods to improve risk architectures)

Figure 2 Model architecture

guantification in a medical setting.

Background

« MRI is very effective but suffers
from long acquisition times [1]

« To make scanning faster, less data
is acquired, leading to low-quality
images that must be
“reconstructed” for a radiologist
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SURE

o Stein’s Unbiased Risk Estimator (SURE)
is surrogate for MSE when ground truth
is unknown
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« Density compensation enforces
zero-mean property of SURE
residuals, in addition to improving
normality

« Radiologists can use these
uncertainty metrics as a guide
when making diaghoses

Future Work
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« Improve variance estimates for
SURE (at both global and pixel-
wise levels)

« Develop regularization schemes to
improve the robustness of deep
learning models in medical image
recovery via training

« Data uncertainty: Explore effects
of acquisition method and
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residuals (difference between input and
ground truth:

domain to recovered images (i.e.
linear inverse problem) [2]
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« The equation y = ¢ox links =
measurements in the frequency « Depends on following assumption for :

r ~ N(0,0%1)

« Density compensation modifies inputs
to satisfy SURE requirements (zero
mean / Gaussian residuals) by .

-2 0 2 2
Theoretical quantiles Th retic I quantiles

Figure 3 Histograms and QQ plots before density compensation (top
two rows) and after (bottom two rows).

h retic Iq tI h retic Iq antiles

5 61.75

weighting undersampling masks by i & quantity of training data on
Flgur.e 1 Adm:ss:l?le solutions (x, is the inverse of density at each point i |
true image we wish to recover) % 00 uncertainty
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Figure 4 Correlations between SURE and MSE at various undersampling rates
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Problem Statement

« Compressive medical image

recovery is an ambiguous
problem, with many realistic
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reconstructions that are consistent
with real measurement (see Fig. 1)
« What is the uncertainty associated
with recovering the true image x,?

* Residuals are zero-mean because:

(D1 =1
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Figure 5 Pixel-wise SURE and MSE for a given reference slice
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