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Deep learning (DL) has proven 
effective in medical image 
reconstruction. However, little is 
known about how robust these 
reconstructions are. Thus, this work 
analyzes the uncertainty of DL 
methods to improve risk 
quantification in a medical setting. 

• Compressive medical image 
recovery is an ambiguous
problem, with many realistic 
reconstructions that are consistent 
with real measurement (see Fig. 1)

• What is the uncertainty associated 
with recovering the true image x0?

Background
• MRI is very effective but suffers 

from long acquisition times [1]
• To make scanning faster, less data 

is acquired, leading to low-quality
images that must be 
“reconstructed” for a radiologist

• The equation y = 𝜙x links 
measurements in the frequency 
domain to recovered images (i.e. 
linear inverse problem) [2]
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Model

Future Work

• Improve variance estimates for 
SURE (at both global and pixel-
wise levels)

• Develop regularization schemes to 
improve the robustness of deep 
learning models in medical image 
recovery via training

• Data uncertainty: Explore effects 
of acquisition method and 
quantity of training data on 
uncertainty

Discussion
• SURE results are strongly 

correlated with MSE even when 
the ground truth is not known, 
showing its value as a general-
purpose uncertainty metric (can 
be used across model 
architectures)

• Density compensation enforces 
zero-mean property of SURE 
residuals, in addition to improving 
normality

• Radiologists can use these 
uncertainty metrics as a guide 
when making diagnoses

Figure 2 Model architecture

• VAE model: 4 convolutional layers in 
encoder, 4 transpose convolution layers 
for decoder, fully connected layers for 
latent space 𝜇 and 𝜎 (Fig 2)

• Data consistency: affine projection 
based on undersampling mask

SURE
• Stein’s Unbiased Risk Estimator (SURE) 

is surrogate for MSE when ground truth 
is unknown

Figure 4 Correlations between SURE and MSE at various undersampling rates

• Depends on following assumption for 
residuals (difference between input and 
ground truth:

• Density compensation modifies inputs 
to satisfy SURE requirements (zero 
mean / Gaussian residuals) by 
weighting undersampling masks by 
inverse of density at each point

• Residuals are zero-mean because:

Figure 1 Admissible solutions (x0 is the 
true image we wish to recover)

Figure 5 Pixel-wise SURE and MSE for a given reference slice 

Figure 3 Histograms and QQ plots before density compensation (top 
two rows) and after (bottom two rows).


