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ABSTRACT
To encourage the development of multilingual recommendation sys-
tems, Amazon pushlished a multilingual and multi-locale shopping
session dataset, and KDD Cup 2023 challenge on Multilingual Ses-
sion Recommendation Challenge was hosted based on this dataset.

In this paper, we present our solution for this competition. Fol-
lowing a widely-used setting in recommender system, our solution
consists of two stages: recalling and ranking. In the first stage, we
utilize various recalling strategies to retrieve a set of candidate
products, including covisit matrix based collective filtering, graph
embedding based I2I searching, text transformer based I2I searching
and BPR based U2I searching. In the second stage, we develop a
model to predict the probability of each user engaging with the
candidate products. This model is an ensemble of two Catboost
models, which include various statistical features and embedding
similarity features. Finally, we achieved 4th place in Task1 and 3rd
place in Task2.
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1 INTRODUCTION
1.1 Background
Recommender systems, also known as RecSys, play a crucial role in
various online services, including e-commerce, social media, news
platforms, and online video streaming. Among the different tasks
performed by these systems, session-based recommendation, which
utilizes customer session data to predict their next interaction,
stands out as an essential function.

However, session-based recommendation in the realm of real-
world scenarios involving multilingual and imbalanced data has
received limited attention in previous studies.

To bridge this research gap, Amazon introduced the "Multilin-
gual Multi-locale Shopping Session Dataset"[3], which comprises
millions of user sessions originating from six distinct locales, and
hosted KDD Cup 2023 on Multilingual Session Recommendation
Challenge based on this dataset.

1.2 Datasets And Tasks
The dataset encompasses products in 6 languages, namely English,
German, Japanese, French, Italian, and Spanish. Notably, the dataset
exhibits an imbalanced distribution, with a lower number of French,
Italian, and Spanish products compared to English, German, and
Japanese, as shown in Table 1.

With this dataset, three tasks were introduced:
• Next Product Recommendation: Given a session data and the
attributes of each product, the goal of this task is to predict
the next product that a customer is likely to engage with.
The test set for Task 1 comprises data from popular locales,
i.e., English, German, and Japanese locales.

• Next Product Recommendation for Underrepresented Languages
and Locales: The goal of this task is similar to Task1 while
the test set is constructed from the underepresented locales,
i.e., French, Italian, and Spanish.

• Next Product Title Generation: Given a session data and the
attributes of each product, the goal of this task is to predict
the title of the next product that a customer will engage with.
Unlike Tasks 1 and 2, which focus on recommending existing
products, predicting new or "cold-start" products presents a
unique challenge.

Our primary focus was on Task1 and Task2. Section 2-5 of this
paper will provide a detailed description of our solution for Task1
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Locale # of session # of items # of interactions
English 1,182,181 500,180 4,872,506

Task1 German 1,111,416 518,327 4,836,983
Japanese 979,119 395,009 4,388,790
French 117,561 44,577 416,797

Task2 Italian 126,925 50,461 464,851
Spanish 89,047 42,503 326,256

Table 1: Details of the Dataset

and Task2, encompassing preprocessing methods, recall strategies
and ranking models. Furthermore, the experimental results will be
presented in Section 6.

2 OVERVIEW
As depicted in Figure 1, our solution is composed of two main
stages: recalling and ranking. Although these stages are distinct,
they share a significant amount of data. Therefore, we first generate
multiple matrices and embeddings, which serve as the foundation
for both recalling and ranking.

The first stage is candidate item recalling, which involves retriev-
ing a set of potential products that each user may be interested in
from the entire pool of products. This is achieved by utilizing the
preprocessed matrices and embeddings. Approximately 200 items
are retrieved for each user.

The second stage is candidate item ranking, where we predict
the probability of a user engaging with each retrieved item. The
items are then sorted based on these probabilities, and the top 100
items with the highest probability are recommended.

3 PREPROCESS
To achieve effective recall and ranking, we utilize a variety of fea-
tures andmodels in both processes. In this section, we will elaborate
on the generation of these commonly used data, which form the
fundamental basis for our recall and ranking methods.

3.1 Covisit Matrix
One of the key features we utilize is the fact that items visited
within the same user session often exhibit similarities. To capture
this, we constructed a co-visit matrix where each entry represents
the number of times item 𝑖 and item 𝑗 were visited together within
the same user session.

Furthermore, we devised three types of weights to address bi-
ases that may arise from different user behaviors. The formula for
calculating each entry of the co-visit matrix is as follows:

𝑒 (𝑖, 𝑗) =
∑︁
𝑢∈𝑈

∑︁
(𝑖, 𝑗 ) ∈𝑢

1
𝑊𝑝 (𝑃𝑖, 𝑗 ) +𝑊𝑐 (𝐶𝑖 ) +𝑊𝑐 (𝐶 𝑗 ) +𝑊𝑙 (𝐿𝑠 )

(1)

𝑊 (𝑥) = 𝑥𝛼 (2)

• 𝑖 and 𝑗 represent item 𝑖 and item 𝑗 , respectively, while 𝑠 and
𝑆 denote user session 𝑢 and the full session set, respectively.

• The closer the items are in the session, the higher their simi-
larity.We use 𝑃𝑖, 𝑗 to denote the positional difference between

item 𝑖 and item 𝑗 and we use different 𝛼 values in𝑊𝑝 (·) to
promote diversity, like 0.7, 1.0 and so on;

• Popular items, which are visitedmore frequently, have greater
opportunities to calculate similarity with other items. To ad-
dress this, we introduce a weight factor.𝐶𝑖 and𝐶 𝑗 denote the
total visited count of item 𝑖 and item 𝑗 in the training data,
and we use different 𝛼 values in𝑊𝑐 (·) to promote diversity,
like 0.4, 1.0 and so on;

• Covisit in the long sessions also need to be penalized. To
address this, we introduce another weight factor. 𝐿𝑠 denotes
the length of 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 and we use different 𝛼 values in𝑊𝑙 (·)
to promote diversity, like 0.7, 1.0 and so on.

3.2 Text Transformer
In this dataset, there are several text features associated with items,
such as title, description, color, material, and more. To leverage
these textual information, we employed transformers using two
approaches:

• Pretrained sentence transformer[6]. We use a pretrained
sentence transformer for multilingual text 1 to encode each
attribute of an item into a vector.

• Fine-tuned transformer with contrastive loss. To improve
generalization in the competition dataset, we fine-tuned the
transformer by referring to the method described in [4].
First, we formulated an item as a "sentence" by flattening
its key-value attributes described by text. Then, we used a
transformer to encode this "sentence" into a vector, denoted
as ℎ𝑠 . Finally, a contrastive loss is utilized to fine-tune the
transformer:

𝐿 = −𝑙𝑜𝑔 𝑒𝑠𝑖𝑚 (ℎ𝑠 ,ℎ+
𝑖 )/𝜏∑

𝑖∈𝛽 𝑒𝑠𝑖𝑚 (ℎ𝑠 ,ℎ𝑖 )
(3)

where 𝑠𝑖𝑚 is the cosine similarity function; ℎ+
𝑖
is the embed-

ding of the next item to 𝑖𝑡𝑒𝑚𝑠 in the user session; 𝛽 is all
items in the batch and 𝜏 is a temperature parameter.

3.3 Graph Embedding
Because of the ability to utilize high order connection, graph neural
network has been widely used in the recommender system[2, 5, 8].
In our approach, we first build a large item graph, where the nodes
represent items and an edge consisting of <item 𝑖 , item 𝑗> denotes
a successive visit of item 𝑖 and item 𝑗 . We then use ProNE[9] to
extract a 2000-dimensional graph embedding for each item. The
larger the embedding dimension, the better the performance, but it
also slows down the process. We chose ProNE for several reasons:

• ProNE uses Sparse Randomized tSVD for fast embedding,
which makes the process faster.

• ProNE uses Spectral Propagation for embedding enhance-
ment, which makes the embeddings more accurate.

3.4 Item2vec
We treat all the Items in the same session as a sentence, and then
train a word2vec skip-gram model to extract item embeddings.

1https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2
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Figure 1: Architecture of our solution.

3.5 Bayesian Personalized Ranking
Bayesian Personalized Ranking[7], a.k.a BPR, is a commonly used
matrix factorization method for learning personalized rankings
from implicit feedback. It uses stochastic gradient descent (SGD)
to optimize a pairwise ranking objective function, as shown in the
Equation 4:

𝑎𝑟𝑔𝑚𝑎𝑥\ 𝑙 (\ ) =
∑︁

𝑙𝑛𝜎 (𝑥𝑢𝑖 − 𝑥𝑢 𝑗 ) + _ | |\ | |2 (4)

where 𝑖 is the postive item and 𝑗 is the random sampled negative
item; \ is the embedding table of users and items and 𝑥𝑢𝑖 is the
similarity of user embedding and item embedding; 𝜎 is the sigmoid
function and _ is the regularization parameter.

4 RECALLING
In this section, we explain the process of recalling candidate prod-
ucts, which is based on the co-visit matrix and various embeddings
described in Section 3.

4.1 Covisit Matrix Based Collaborative Filtering
The top N items that are most similar to the ones that the user
has interacted with will be recalled, where the covisit matrix based
similarity between users and items is as follows:

𝑆𝑖𝑚(𝑢, 𝑖) =
∑︁
𝑗∈𝑢

𝑊𝑝 (𝑝 𝑗 )𝑒 (𝑖, 𝑗) (5)

where 𝑢 and 𝑖 represent user 𝑢 and item 𝑖 , respectively;𝑊𝑝 (·) is
defined in the Equation 2, with a 𝛼 value of 1.0; 𝑝 𝑗 represents the
position of item 𝑗 in the user session, with larger values indicating
later positions; 𝑒 (𝑖, 𝑗) is defined in the Equation 2.

4.2 Item Embedding Based I2I searching
The recall strategy employed here is similar to collaborative fil-
tering based on covisit matrices. The only difference lies in the
calculation of similarity, which is based on the cosine similarity
between the embeddings of item 𝑖 and item 𝑗 . These embeddings are
generated using techniques decribed in the previous sections, such
as text transformer embeddings, graph embeddings, and item2vec
embeddings.

4.3 BPR Embedding Based U2I searching
This recall strategy involves retrieving items whose embeddings,
generated using BPR, are similar to the user’s embedding, also
generated using BPR.

5 RANKING
We use a popular GBDT model, Catboost [1], to rank the recalled
candidate items. In this section, we will provide details about the
ranking model.

5.1 Statistical Features
We create statistical features in three aspects: item, user, and user
crossing item.

• Item Statistics: Count of interactions in each locale, target
locale and all the locales; price in each locale and target
locale.

• User Statistic: Nunique and count of interacted items and
their brand, color, size, model, and author; mean, median,
max, and min price of interacted items.

• User Item Cross Statistics:
– Count of candidate item’s brand, color, size, model and
author in user-interacted items.

– Max, mean, min, sum, last and position-weighted sum of
covisit score of session’s items and candidate item.

– Min and last of character-level ASID difference of user-
interacted items and candidate item.

– Max, mean, min, sum, last and position-weighted sum of
character-level LCS (Longest contiguous matching subse-
quence) distance of user-interacted items and candidate
item.

– The rank number of the candidate item under each recall-
ing strategies.

5.2 Embedding Similarity Features
The similarity between the user and candidate item, based on the
embeddings described in Section 3, show a very impressive effect.
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• I2I embedding similarity. This refers to the similarity be-
tween the candidate item and the user interacted items. Equa-
tion 6 represents the process of calculating I2I similarity.

𝑆𝑖𝑚(𝑢, 𝑖) = 𝐴𝑔𝑔𝑟 (𝑐𝑜𝑠_𝑠𝑖𝑚(𝑒𝑖 , 𝑒 𝑗 ) | 𝑗 ∈ 𝑢) (6)

where 𝐴𝑔𝑔𝑟 is the aggregation function, such as max, mean,
min, and sum. 𝑒𝑖 and 𝑒 𝑗 are the embeddings of item 𝑖 and
item 𝑗 , which can be graph embeddings, text transformer
embeddings, and item2vec embeddings.

• U2I embedding similarity. As we factorize user and item with
BPR, it’s natural to use the similarity of user embedding and
item embedding as a feature.

5.3 Model
The ranking model in our final submission is an ensemble of two
models from different teammates. One model is from Jin Zhan
and Zhongshan Huang, and the other is from Weijia Zhang. To
ensure diversity, we did not collaborate much until the end of the
competition. Below are the details of our individual models and the
ensemble method.

5.3.1 Single Model. The first aspect of the model is the training
samples. Recalled candidate items that the user did not interact with
are labeled with 0, while those that the user interacted with are
labeled with 1. Due to significant class imbalance, downsampling is
applied. The negative samples are kept at a quantity of n times the
length of the positive samples. In Jin Zhan and Zhongshan Huang’s
model, n is 10, while in Weijia Zhang’s model, n is 20. As the data
for Task2 is much smaller than that of Task1, we found that training
Task2’s model with all the samples and training Task1’s model with
only Task1’s data gave the best score.

5.3.2 Ensemble. For more diversity, our models have different fea-
tures and make predictions on candidate items from different recall
strategies. Regarding the ensemble method, we first obtain the top
100 items of each user from the prediction of each model. Then,
we apply a weighted blending on the scores, where the weight of
Jin Zhan and Zhongshan Huang’s model is 7 and that of Weijia
Zhang’s model is 3.

6 EXPERIMENTS
6.1 Overall Performance
The performance of our models is listed in Table 2, where model
A is trained by Jin Zhan and Zhongshan Huang, and model B is
trained by Weijia Zhang. Model A also includes some of Weijia
Zhang’s features. In task 1, model A scores 0.4030, model B scores
0.3968, and the merged model scores 0.4047. In task 2, model A
scores 0.4580, model B scores 0.4468, and the merged model scores
0.4601.

Models Task1 Task2
A 0.4030 0.4580
B 0.3968 0.4468

Ensemble 0.4047 0.4601
Table 2: Overall Performance

6.2 Feature Importance
Model A is trained with all of Jin Zhan, Zhongshan Huang, and
Weijia Zhang’s features. Therefore, we present the importance of
the top 30 features of model A in Figure 2.

Figure 2: Top 30 Features’ Importance.
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