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ABSTRACT

Deployment efficiency is an important criterion for many real-world applications
of reinforcement learning (RL). Despite the community’s increasing interest, there
lacks a formal theoretical formulation for the problem. In this paper, we propose
such a formulation for deployment-efficient RL (DE-RL) from an “optimization
with constraints” perspective: we are interested in exploring an MDP and obtain-
ing a near-optimal policy within minimal deployment complexity, whereas in each
deployment the policy can sample a large batch of data. Using finite-horizon linear
MDPs as a concrete structural model, we reveal the fundamental limit in achieving
deployment efficiency by establishing information-theoretic lower bounds, and
provide algorithms that achieve the optimal deployment efficiency. Moreover, our
formulation for DE-RL is flexible and can serve as a building block for other prac-
tically relevant settings; we give “Safe DE-RL” and “Sample-Efficient DE-RL” as
two examples, which may be worth future investigation.

1 INTRODUCTION

In many real-world applications, deploying a new policy to replace the previous one is costly, while
generating a large batch of samples with an already deployed policy can be relatively fast and cheap.
For example, in recommendation systems (Afsar et al., 2021), education software (Bennane et al.,
2013), and healthcare (Yu et al., 2019), the new recommendation, teaching, or medical treatment
strategy must pass several internal tests to ensure safety and practicality before being deployed,
which can be time-consuming. On the other hand, the algorithm may be able to collect a large
amount of samples in a short period of time if the system serves a large population of users. Besides,
in robotics applications (Kober et al., 2013), deploying a new policy usually involves operations on
the hardware level, which requires non-negligible physical labor and long waiting periods, while
sampling trajectories is relatively less laborious. However, deployment efficiency was neglected
in most of existing RL literatures. Even for those few works considering this important criterion
(Bai et al., 2020; Gao et al., 2021; Matsushima et al., 2021), either their settings or methods have
limitations in the scenarios described above, or a formal mathematical formulation is missing. We
defer a detailed discussion of these related works to Section 1.1.

In order to close the gap between existing RL settings and real-world applications requiring high
deployment efficiency, our first contribution is to provide a formal definition and tractable objective
for Deployment-Efficient Reinforcement Learning (DE-RL) via an “optimization with constraints”
perspective. Roughly speaking, we are interested in minimizing the number of deploymentsK under
two constraints: (a) after deploying K times, the algorithm can return a near-optimal policy, and (b)
the number of trajectories collected in each deployment, denoted as N , is at the same level across
K deployments, and it can be large but should still be polynomial in standard parameters. Similar
to the notion of sample complexity in online RL, we will refer to K as deployment complexity.

˚Work done during the internship at Microsoft Research Asia.
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To provide a more quantitative understanding, we instantiate our DE-RL framework in finite-horizon
linear MDPs1 (Jin et al., 2019) and develop the essential theory. The main questions we address are:

Q1: What is the optimum of the deployment efficiency in our DE-RL setting?
Q2: Can we achieve the optimal deployment efficiency in our DE-RL setting?

When answering these questions, we separately study algorithms with or without being constrained
to deploy deterministic policies each time. While deploying more general forms of policies can
be practical (e.g., randomized experiments on a population of users can be viewed as deploying a
mixture of deterministic policies), most previous theoretical works in related settings exclusively fo-
cused on upper and lower bounds for algorithms using deterministic policies (Jin et al., 2019; Wang
et al., 2020b; Gao et al., 2021). As we will show, the origin of the difficulty in optimizing deploy-
ment efficiency and the principle in algorithm design to achieve optimal deployment efficiency are
generally different in these two settings, and therefore, we believe both of them are of independent
interests.

As our second contribution, in Section 3, we answer Q1 by providing information-theoretic lower
bounds for the required number of deployments under the constraints of (a) and (b) in Def 2.1. We
establish ΩpdHq and rΩpHq lower bounds for algorithms with and without the constraints of de-
ploying deterministic policies, respectively. Contrary to the impression given by previous empirical
works (Matsushima et al., 2021), even if we can deploy unrestricted policies, the minimal number
of deployments cannot be reduced to a constant without additional assumptions, which sheds light
on the fundamental limitation in achieving deployment efficiency. Besides, in the line of work on
“horizon-free RL” (e.g., Wang et al., 2020a), it is shown that RL problem is not significantly harder
than bandits (i.e., when H “ 1) when we consider sample complexity. In contrast, the H depen-
dence in our lower bound reveals some fundamental hardness that is specific to long-horizon RL,
particularly in the deployment-efficient setting. 2 Such hardness results were originally conjectured
by Jiang & Agarwal (2018), but no hardness has been shown in sample-complexity settings.

After identifying the limitation of deployment efficiency, as our third contribution, we address Q2 by
proposing novel algorithms whose deployment efficiency match the lower bounds. In Section 4.1,
we propose an algorithm deploying deterministic policies, which is based on Least-Square Value
Iteration with reward bonus (Jin et al., 2019) and a layer-by-layer exploration strategy, and can return
an ε-optimal policy within OpdHq deployments. As part of its analysis, we prove Lemma 4.2 as a
technical contribution, which can be regarded as a batched finite-sample version of the well-known
“Elliptical Potential Lemma”(Carpentier et al., 2020) and may be of independent interest. Moreover,
our analysis based on Lemma 4.2 can be applied to the reward-free setting (Jin et al., 2020; Wang
et al., 2020b) and achieve the same optimal deployment efficiency. In Section 4.2, we focus on
algorithms which can deploy arbitrary policies. They are much more challenging because it requires
us to find a provably exploratory stochastic policy without interacting with the environment. To our
knowledge, Agarwal et al. (2020b) is the only work tackling a similar problem, but their algorithm is
model-based which relies on a strong assumption about the realizability of the true dynamics and a
sampling oracle that allows the agent to sample data from the model, and how to solve the problem in
linear MDPs without a model class is still an open problem. To overcome this challenge, we propose
a model-free layer-by-layer exploration algorithm based on a novel covariance matrix estimation
technique, and prove that it requires ΘpHq deployments to return an ε-optimal policy, which only
differs from the lower bound rΩpHq by a logarithmic factor. Although the per-deployment sample
complexity of our algorithm has dependence on a “reachability coefficient” (see Def. 4.3), similar
quantities also appear in related works (Zanette et al., 2020; Agarwal et al., 2020b; Modi et al., 2021)
and we conjecture that it is unavoidable and leave the investigation to future work.

Finally, thanks to the flexibility of our “optimization with constraints” perspective, our DE-RL set-
ting can serve as a building block for more advanced and practically relevant settings where op-
timizing the number of deployments is an important consideration. In Appendix F, we propose
two potentially interesting settings: “Safe DE-RL” and “Sample-Efficient DE-RL”, by introducing
constraints regarding safety and sample efficiency, respectively.

1Although we focus on linear MDPs, the core idea can be extended to more general settings such as RL
with general function approximation (Kong et al., 2021).

2Although (Wang et al., 2020a) considered stationary MDP, as shown in our Corollary 3.3, the lower bounds
of deployment complexity is still related to H .
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1.1 CLOSELY RELATED WORKS

We defer the detailed discussion of previous literatures about pure online RL and pure offline RL
to Appendix A, and mainly focus on those literatures which considered deployment efficiency and
more related to us in this section.

To our knowledge, the term “deployment efficiency” was first coined by Matsushima et al. (2021),
but they did not provide a concrete mathematical formulation that is amendable to theoretical inves-
tigation. In existing theoretical works, low switching cost is a concept closely related to deployment
efficiency, and has been studied in both bandit (Esfandiari et al., 2020; Han et al., 2020; Gu et al.,
2021; Ruan et al., 2021) and RL settings (Bai et al., 2020; Gao et al., 2021; Kong et al., 2021).
Another related concept is concurrent RL, as proposed by Guo & Brunskill (2015). We highlight
the difference with them in two-folds from problem setting and techniques.

As for the problem setting, existing literature on low switching cost mainly focuses on sub-linear
regret guarantees, which does not directly implies a near-optimal policy after a number of policy
deployments3. Besides, low switching-cost RL algorithms (Bai et al., 2020; Gao et al., 2021; Kong
et al., 2021) rely on adaptive switching strategies (i.e., the interval between policy switching is not
fixed), which can be difficult to implement in practical scenarios. For example, in recommenda-
tion or education systems, once deployed, a policy usually needs to interact with the population of
users for a fair amount of time and generate a lot of data. Moreover, since policy preparation is
time-consuming (which is what motivates our work to begin with), it is practically difficult if not
impossible to change the policy immediately once collecting enough data for policy update, and it
will be a significant overhead compared to a short policy switch interval. Therefore, in applications
we target at, it is more reasonable to assume that the sample size in each deployment (i.e., between
policy switching) has the same order of magnitude and is large enough so that the overhead of policy
preparation can be ignored.

More importantly, on the technical side, previous theoretical works on low switching cost mostly use
deterministic policies in each deployment, which is easier to analyze. This issue also applies to the
work of Guo & Brunskill (2015) on concurrent PAC RL. However, if the agent can deploy stochastic
(and possibly non-Markov) policies (e.g., a mixture of deterministic policies), then intuitively—
and as reflected in our lower bounds—exploration can be done much more deployment-efficiently,
and we provide a stochastic policy algorithm that achieves an rOpHq deployment complexity and
overcomes the ΩpdHq lower bounds for deterministic policy algorithms (Gao et al., 2021).

2 PRELIMINARIES

Notation Throughout our paper, for n P Z`, we will denote rns “ t1, 2, ..., nu. r¨s denotes the
ceiling function. Unless otherwise specified, for vector x P Rd and matrix X P Rdˆd, }x} denotes
the vector l2-norm of x and }X} denotes the largest singular value of X . We will use standard
big-oh notations Op¨q,Ωp¨q,Θp¨q, and notations such as rOp¨q to suppress logarithmic factors.

2.1 EPISODIC REINFORCEMENT LEARNING

We consider an episodic Markov Decision Process denoted by MpS,A, H, P, rq, where S is the
state space, A is the finite action space,H is the horizon length, and P “ tPhuHh“1 and r “ trhuHh“1
denote the transition and the reward functions. At the beginning of each episode, the environment
will sample an initial state s1 from the initial state distribution d1. Then, for each time step h P rHs,
the agent selects an action ah P A, interacts with the environment, receives a reward rhpsh, ahq, and
transitions to the next state sh`1. The episode will terminate once sH`1 is reached.

A (Markov) policy πhp¨q at step h is a function mapping from S Ñ ∆pAq, where ∆pAq denotes
the probability simplex over the action space. With a slight abuse of notation, when πhp¨q is a
deterministic policy, we will assume πhp¨q : S Ñ A. A full (Markov) policy π “ tπ1, π2, ..., πHu
specifies such a mapping for each time step. We use V πh psq andQπhps, aq to denote the value function

3Although the conversion from sub-linear regret to polynominal sample complexity is possible (“online-to-
batch”), we show in Appendix A that to achieve accuracy ε after conversion, the number of deployments of
previous low-switching cost algorithms has dependence on ε, whereas our guarantee does not.
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and Q-function at step h P rHs, which are defined as:

V πh psq “ Er
H
ÿ

h1“h

rh1psh1 , ah1q|sh “ s, πs, Qπhps, aq “ Er
H
ÿ

h1“h

rh1psh1 , ah1q|sh “ s, ah “ a, πs

We also use V ˚h p¨q and Q˚hp¨, ¨q to denote the optimal value functions and use π˚ to denote the
optimal policy that maximizes the expected return Jpπq :“ Er

řH
h“1 rpsh, ahq|πs. In some occa-

sions, we use V πh ps; rq and Qπhps, a; rq to denote the value functions with respect to r as the reward
function for disambiguation purposes. The optimal value functions and the optimal policy will be
denoted by V ˚ps; rq, Q˚ps, a; rq, π˚r , respectively.

Non-Markov Policies While we focus on Markov policies in the above definition, some of our
results apply to or require more general forms of policies. For example, our lower bounds apply
to non-Markov policies that can depend on the history (e.g., S1 ˆ A1 ˆ R... ˆ Sh´1 ˆ Ah´1 ˆ

R ˆ Sh Ñ A for deterministic policies); our algorithm for arbitrary policies deploys a mixture of
deterministic Markov policies, which corresponds to choosing a deterministic policy from a given
set at the initial state, and following that policy for the entire trajectory. This can be viewed as a
non-Markov stochastic policy.

2.2 LINEAR MDP SETTING

We mainly focus on the linear MDP (Jin et al., 2019) satisfying the following assumptions:
Assumption A (Linear MDP Assumptions). An MDP M “ pS,A, H, P, rq is said to be a linear
MDP with a feature map φ : S ˆAÑ Rd if the following hold for any h P rHs:

• There are d unknown signed measures µh “ pµ
p1q
h , µ

p2q
h , ..., µ

pdq
h q over S such that for any

ps, a, s1q P S ˆAˆ S, Phps1|s, aq “ xµhps1q, φps, aqy.
• There exists an unknown vector θh P Rd such that for any ps, aq P SˆA, rhps, aq “ xφps, aq, θhy.

Similar to Jin et al. (2019) and Wang et al. (2020b), without loss of generality, we assume for all
ps, aq P S ˆ A and h P rHs, }φps, aq} ď 1, }µh} ď

?
d, and }θh} ď

?
d. In Section 3 we will

refer to linear MDPs with stationary dynamics, which is a special case when µ1 “ µ2 “ . . . µH and
θ1 “ θ2 “ . . . “ θH .

2.3 A CONCRETE DEFINITION OF DE-RL

In the following, we introduce our formulation for DE-RL in linear MDPs. For discussions of
comparison to existing works, please refer to Section 1.1.
Definition 2.1 (Deployment Complexity in Linear MDPs). We say that an algorithm has a deploy-
ment complexity K in linear MDPs if the following holds: given an arbitrary linear MDP under
Assumption A, for arbitrary ε and 0 ă δ ă 1, the algorithm will return a policy πK after K deploy-
ments and collecting at most N trajectories in each deployment, under the following constraints:

(a) With probability 1´ δ, πK is ε-optimal, i.e. JpπKq ě maxπ Jpπq ´ ε.

(b) The sample size N is polynominal, i.e. N “ polypd,H, 1
ε , log 1

δ q. Moreover, N should be fixed
a priori and cannot change adaptively from deployment to deployment.

Under this definition, the goal of Deployment-Efficient RL is to design algorithms with provable
guarantees of low deployment complexity.

Polynomial Size of N We emphasize that the restriction of polynomially large N is crucial to our
formulation, and not including it can result in degenerate solutions. For example, if N is allowed to
be exponentially large, we can finish exploration in 1 deployment in the arbitrary policy setting, by
deploying a mixture of exponentially many policies that form an ε-net of the policy space. Alterna-
tively, we can sample actions uniformly, and use importance sampling (Precup, 2000) to evaluate all
of them in an off-policy manner. None of these solutions are practically feasible and are excluded
by our restriction on N .
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3 LOWER BOUND FOR DEPLOYMENT COMPLEXITY IN RL

In this section, we provide information-theoretic lower bounds of the deployment complexity in our
DE-RL setting. We defer the lower bound construction and the proofs to Appendix B. As mentioned
in Section 2, we consider non-Markov policies when we refer to deterministic and stochastic policies
in this section, which strengthens our lower bounds as they apply to very general forms of policies.

We first study the algorithms which can only deploy deterministic policy at each deployment.
Theorem 3.1. [Lower bound for deterministic policies, informal] For any d ě 4, H and any algo-
rithm ψ that can only deploy a deterministic policy at each deployment, there exists a linear MDP
M satisfying Assumption A, such that the deployment complexity of ψ in M is K “ ΩpdHq.

The basic idea of our construction and the proof is that, intuitively, a linear MDP with dimension
d and horizon length H has ΩpdHq “independent directions”, while deterministic policies have
limited exploration capacity and only reach Θp1q direction in each deployment, which result in
ΩpdHq deployments in the worst case.

In the next theorem, we will show that, even if the algorithm can use arbitrary exploration strategy
(e.g. maximizing entropy, adding reward bonus), without additional assumptions, the number of
deployments K still has to depend on H and may not be reduced to a constant when H is large.
Theorem 3.2. [Lower bound for arbitrary policies, informal] For any d ě 4, H,N and any algo-
rithm ψ which can deploy arbitrary policies, there exists a linear MDP M satisfying Assumption A,
such that the deployment complexity of ψ in M is K “ ΩpH{rlogdpNHqsq “ rΩpHq.

The origin of the difficulty can be illustrated by a recursive dilemma: in the worst case, if the agent
does not have enough information at layer h, then it cannot identify a good policy to explore till
layer h ` ΩplogdpNHqq in 1 deployment, and so on and so forth. Given that we enforce N to
be polynomial, the agent can only push the “information boundary” forward by ΩplogdpNHqq “
rΩp1q layers per deployment. In many real-world applications, such difficulty can indeed exist. For
example, in healthcare, the entire treatment is often divided into multiple stages. If the treatment in
stage h is not effective, the patient may refuse to continue. This can result in insufficient samples
for identifying a policy that performs well in stage h` 1.

Stationary vs. non-stationary dynamics Since we consider non-stationary dynamics in As-
sump. A, one may suspect that the H-dependence in the lower bound is mainly due to such non-
stationarity. We show that this is not quite the case, and the H-dependence still exists for stationary
dynamics. In fact, our lower bound for non-stationary dynamics directly imply one for stationary
dynamics: given a finite horizon non-stationary MDP ĂM “ p rS,A, H, rP , rrq, we can construct a
stationary MDP M “ pS,A, H, P, rq by expanding the state space to S “ rS ˆ rHs so that the
new transition function P and reward function r are stationary across time steps. As a result, given
arbitrary d ě 4 and H ě 2, we can construct a hard non-stationary MDP instance ĂM with dimen-
sion rd “ maxt4, d{Hu and horizon rh “ d{rd “ mintH, d{4u, and convert it to a stationary MDP
M with dimension d and horizon h “ rh “ mintH, d{4u ď H . If there exists an algorithm which
can solve M in K deployments, then it can be used to solve ĂM in no more than K deployments.
Therefore, the lower bounds for stationary MDPs can be extended from Theorems 3.1 and 3.2, as
shown in the following corollary:
Corollary 3.3 (Extension to Stationary MDPs). For stationary linear MDP with d ě 4 and H ě 2,
suppose N “ polypd,H, 1

ε , log 1
δ q, the lower bound of deployment complexity would be Ωpdq for

deterministic policy algorithms, and Ωp mintd{4,Hu
rlogmaxtd{H,4uNHs

q “ rΩpmintd,Huq for algorithms which
can deploy arbitrary policies.

As we can see, the dependence on dimension and horizon will not be eliminated even if we make a
stronger assumption that the MDP is stationary. The intuition is that, although the transition function
is stationary, some states may not be reachable from the initial state distribution within a small
number of times, so the stationary MDP can effectively have a “layered” structure. For example, in
Atari games (Bellemare et al., 2013) (where many algorithms like DQN (Mnih et al., 2013) model
the environments as infinite-horizon discounted MDPs) such as Breakout, the agent cannot observe
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states where most of the bricks are knocked out at the initial stage of the trajectory. Therefore,
the agent still can only push forward the “information frontier” a few steps per deployment. That
said, it is possible reduce the deployment complexity lower bound in stationary MDPs by adding
more assumptions, such as the initial state distribution providing good coverage over the entire state
space, or all the states are reachable in the first few time steps. However, because these assumptions
do not always hold and may overly trivialize the exploration problem, we will not consider them
in our algorithm design. Besides, although our algorithms in the next section are designed for non-
stationary MDPs, they can be extended to stationary MDPs by sharing covariance matrices, and we
believe the analyses can also be extended to match the lower bound in Corollary 3.3.

4 TOWARDS OPTIMAL DEPLOYMENT EFFICIENCY

In this section we provide algorithms with deployment-efficiency guarantees that nearly match the
lower bounds established in Section 3. Although our lower bound results in Section 3 consider non-
Markov policies, our algorithms in this section only use Markov policies (or a mixture of Markov
policies, in the arbitrary policy setting), which are simpler to implement and compute and are already
near-optimal in deployment efficiency.

Inspiration from Lower Bounds: a Layer-by-Layer Exploration Strategy The linear depen-
dence on H in the lower bounds implies a possibly deployment-efficient manner to explore, which
we call a layer-by-layer strategy: conditioning on sufficient exploration in previous h ´ 1 time
steps, we can use polypdq deployments to sufficiently explore the h-th time step, then we only need
H ¨ polypdq deployments to explore the entire MDP. If we can reduce the deployment cost in each
layer from polypdq to Θpdq or even Θp1q, then we can achieve the optimal deployment efficiency.
Besides, as another motivation, in Appendix C.4, we will briefly discuss the additional benefits of
the layer-by-layer strategy, which will be useful especially in “Safe DE-RL”. In Sections 4.1 and
4.2, we will introduce algorithms based on this idea and provide theoretical guarantees.

4.1 DEPLOYMENT-EFFICIENT RL WITH DETERMINISTIC POLICIES

Algorithm 1: Layer-by-Layer Batch Exploration Strategy for Linear MDPs Given Reward Func-
tion

1 Input: Failure probability δ ą 0, and target accuracy ε ą 0, β Ð cβ ¨ dH
a

logpdHδ´1ε´1q

for some cβ ą 0, total number of deployments K, batch size N ,
2 h1 Ð 1 // hk denotes the layer to explore in iteration k, for all k P rKs
3 for k “ 1, 2, ...,K do
4 Qkhk`1p¨, ¨q Ð 0 and V khk`1p¨q “ 0

5 for h “ hk, hk ´ 1, ..., 1 do
6 Λkh Ð I`

řk´1
τ“1

řN
n“1 φ

τn
h pφ

τn
h q

J, ukhp¨, ¨q Ð mintβ ¨
b

φp¨, ¨qJpΛkhq
´1φp¨, ¨q, Hu

7 wkh Ð pΛkhq
´1

řk´1
τ“1

řN
n“1 φ

τn
h ¨ V kh`1ps

τn
h`1q

8 Qkhp¨, ¨q Ð mintpwkhq
Jφp¨, ¨q ` rhp¨, ¨q ` u

k
hp¨, ¨q, Hu and V kh p¨q “ maxaPAQ

k
hp¨, aq

9 πkhp¨q Ð arg maxaPAQ
k
hp¨, aq

10 end
11 Define πk “ πk1 ˝ π

k
2 ... ˝ π

k
hk
˝ unifrhk`1:Hs

12 for n “ 1, ..., N do
13 Receive initial state skn1 „ d1

14 for h “ 1, 2, ...,H do Take action aknh Ð πkhps
kn
h q and observe sknh`1 „ Phps

k
h, a

k
hq ;

15 end

16 Compute ∆k Ð
2β
N

řN
n“1

řhk
h“1

b

φpsknh , aknh q
JpΛkhq

´1φpsknh , aknh q.

17 if ∆k ě
εhk
2H then hk`1 Ð hk ;

18 else if hk “ H then return πk ;
19 else hk`1 Ð hk ` 1 ;
20 end
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In this sub-section, we focus on the setting where each deployed policy is deterministic. In Alg 1,
we propose a provably deployment-efficient algorithm built on Least-Square Value Iteration with
UCB (Jin et al., 2019)4 and the “layer-by-layer” strategy. Briefly speaking, at deployment k, we
focus on exploration in previous hk layers, and compute πk1 , π

k
2 , ..., π

k
hk

by running LSVI-UCB in
an MDP truncated at step hk. After that, we deploy πk to collect N trajectories, and complete the
trajectory after time step hk with an arbitrary policy. (In the pseudocode we choose uniform, but the
choice is inconsequential.) In line 19, we compute ∆k with samples and use it to judge whether we
should move on to the next layer till all H layers have been explored. The theoretical guarantee is
listed below, and the missing proofs are deferred to Appendix C.
Theorem 4.1 (Deployment Complexity). For arbitrary ε, δ ą 0, and arbitrary cK ě 2, as long as

N ě c
´

cK
H4cK`1d3cK

ε2cK
log2cK pHdδε q

¯
1

cK´1

, where c is an absolute constant, by choosing

K “ cKdH ` 1. (1)

Algorithm 1 will terminate at iteration k ď K and return us a policy πk, and with probability 1´ δ,
Es1„d1rV ˚1 ps1q ´ V

πk

1 ps1qs ď ε.

As an interesting observation, Eq (1) reflects the trade-off between the magnitude of K and N
when K is small. To see this, when we increase cK and keep it at the constant level, K definitely
increases while N will be lower because its dependence on d,H, ε, δ decreases. Moreover, the
benefit of increasing cK is only remarkable when cK is small (e.g. we have N “ OpH9d6ε´4q if
cK “ 2, while N “ OpH5d3.6ε´2.4q if cK “ 6), and even for moderately large cK , the value of
N quickly approaches the limit limcKÑ8N “ cH

4d3

ε2 log2
pHdδε q. It is still an open problem that

whether the trade-off in Eq.1 is exact or not, and we leave it for the future work.

Another key step in proving the deployment efficiency of Alg. 1 is Lem. 4.2 below. In fact, by
directly applying Lem. 4.2 to LSVI-UCB (Jin et al., 2019) with large batch sizes, we can achieve
OpdHq deployment complexity in deterministic policy setting without exploring in a layer-by-layer
manner. We defer the discussion and the additional benefit of layer-by-layer strategy to Appx. C.4.
Lemma 4.2. [Batched Finite Sample Elliptical Potential Lemma] Consider a sequence of matrices
A0,AN , ...,ApK´1qN P Rdˆd with A0 “ Idˆd and AkN “ Apk´1qN ` Φk´1, where Φk´1 “
řkN
t“pk´1qN`1 φtφ

J
t and maxtďKN }φt} ď 1. We define: K` :“

!

k P rKs
ˇ

ˇ

ˇ
TrpA´1

pk´1qNΦk´1q ě

Nε
)

. For arbitrary ε ă 1, and arbitrary cK ě 2, if K “ cKdH ` 1, by choosing N ě

c
´

cK
HdcK
εcK logcK pHdε q

¯
1

cK´1

, where c is an absolute constant independent with cK , d,H, ε, we

have |K`| ď cKd ă K{H.

Extension to Reward-free setting Based on the similar methodology, we can design algorithms
for reward-free setting (Wang et al., 2020b) and obtain OpdHq deployment complexity. We defer
the algorithms and proofs to Appx. D, and summarize the main result in Thm. D.4.

4.2 DEPLOYMENT-EFFICIENT RL WITH ARBITRARY POLICIES

From the discussion of lower bounds in Section 3, we know that in order to reduce the deployment
complexity from ΩpdHq to rΩpHq, we have to utilize stochastic (and possibly non-Markov) policies
and try to explore as many different directions as possible in each deployment (as opposed to 1
direction in Algorithm 1). The key challenge is to find a stochastic policy—before the deployment
starts—which can sufficiently explore d independent directions.

In Alg. 2, we overcome this difficulty by a new covariance matrix estimation method (Alg. 6 in
Appx. E). The basic idea is that, for arbitrary policy π 5, the covariance matrix Λπh :“ EπrφφJs can

4In order to align with the algorithm in reward-free setting, slightly different from (Jin et al., 2019) but
similar to (Wang et al., 2020b), we run linear regression on PhVh instead of Qh.

5Here we mainly focus on evaluating deterministic policy or stochastic policy mixed from a finite number of
deterministic policies, because for the other stochastic policies, exactly computing the expectation over policy
distribution may be intractable.
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Algorithm 2: Deployment-Efficient RL with Covariance Matrix Estimation
1 Input: Accuracy level ε; Iteration number imax; Resolution ε0; Reward r; Bonus coefficient β.
2 for h “ 1, 2, ...,H do
3 Initialize πh,1 with an arbitrary deterministic policy ; rΣh,1 “ 2I , Πh “ tu.
4 for i “ 1, 2, ..., imax do
5 pΛ

πh,i
h Ð EstimateCovMatrixph,Dr1:h´1s,Σr1:h´1s, πh,iq # Alg 6, Appx E

6 rΣh,i`1 “ rΣh,i ` pΛ
πh,i
h

7 Vh,i`1, π̄h,i`1 Ð SolveOptQph,Dr1:h´1s,Σr1:h´1s, β, rΣh,i`1, ε0q # Alg 5, Appx E
8 if Vh,i`1 ď 3ν2

min{8 then break ;
9 Πh “ Πh

Ť

tπ̄h,i`1u

10 end
11 Σh “ I , Dh “ tu, πh,mix :“ unifpΠhq

12 for n “ 1, 2, ..., N do
13 Sample trajectories with πh,mix

14 Σh “ Σh ` φpsh,n, ah,nqφpsh,n, ah,nq
J, Dh “ Dh

Ť

tsh,n, ah,n, rh,n, sh`1,nu

15 end
16 end
17 return pπr Ð Alg 4pH, tD1, ..., DHu, rq

be estimated element-wise by running policy evaluation for π with φiφj as a reward function, where
i, j P rds and φi denotes the i-th component of vector φ.

However, a new challenge emerging is that, because the transition is stochastic, in order to guarantee
low evaluation error for all possible policies π̄h,i`1, we need an union bound over all policies to be
evaluated, which is challenging if the policy class is infinite. To overcome this issue, we discretize
the value functions in Algorithm 5 (see Appendix E) to allow for a union bound over the policy
space: after computing the Q-function by LSVI-UCB, before converting it to a greedy policy, we
first project it to an ε0-net of the entire Q-function class. In this way, the number of policy candidates
is finite and the projection error can be controlled as long as ε0 is small enough.

Using the above techniques, in Lines 3-10, we repeatedly use Alg 6 to estimate the accumulative
covariance matrix rΣh,i`1 and further eliminate uncertainty by calling Alg 5 to find a policy (ap-
proximately) maximizing uncertainty-based reward function rR :“ }φ}

rΣ´1
h,i`1

. For each h P rHs,
inductively conditioning on sufficient exploration in previous h ´ 1 layers, the errors of Alg 6 and
Alg 5 will be small, and we will find a finite set of policies Πh to cover all dimensions in layer h.
(This is similar to the notion of “policy cover” in Du et al. (2019); Agarwal et al. (2020a).) Then,
layer h can be explored sufficiently by deploying a uniform mixture of Π and choosing N large
enough (Lines 11-15). Also note that the algorithm does not use the reward information, and is
essentially a reward-free exploration algorithm. After exploring all H layers, we obtain a dataset
tD1, ..., DHu and can use Alg 4 for planning with any given reward function r satisfying Assump. A
to obtain a near-optimal policy.

Deployment complexity guarantees We first introduce a quantity denoted as νmin, which mea-
sures the reachability to each dimension in the linear MDP. In Appendix E.8, we will show that the
νmin is no less than the “explorability” coefficient in Definition 2 of Zanette et al. (2020) and ν2

min

is also lower bounded by the maximum of the smallest singular value of matrix EπrφφJs.
Definition 4.3 (Reachability Coefficient).

νh :“ min
}θ}“1

max
π

b

EπrpφJh θq2s ; νmin “ min
hPrHs

νh .

Now, we are ready to state the main theorem of this section, and defer the formal version and its
proofs to Appendix E. Our algorithm is effectively running reward-free exploration and therefore
our results hold for arbitrary linear reward functions.
Theorem 4.4. [Informal] For arbitrary 0 ă ε, δ ă 1, with proper choices of imax, ε0, β, we can
chooseN “ polypd,H, 1

ε , log 1
δ ,

1
νmin

q, such that, afterK “ H deployments, with probability 1´δ,

8
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Algorithm 2 will collect a dataset D “ tD1, ..., DHu, and if we run Alg 4 with D and arbitrary
reward function satisfying Assump. A, we will obtain pπr such that V pπr

1 ps1; rq ě V ˚1 ps1; rq ´ ε.

Proof Sketch Next, we briefly discuss the key steps of the proof. Since ε0 can be chosen to be
very small, we will ignore the bias induced by ε0 when providing intuitions. Our proof is based on
the induction condition below. We first assume it holds after h´ 1 deployments (which is true when
h “ 1), and then we try to prove at the h-th deployment we can explore layer h well enough so that
the condition holds for h.
Condition 4.5. [Induction Condition] Suppose after h ´ 1 deployments, we have the following
induction condition for some ξ ă 1{d, which will be determined later:

maxπ Eπr
řh´1

rh“1

b

φps
rh, arhq

JΣ´1
rh
φps

rh, arhqs ď
h´1
H ξ. (2)

The l.h.s. of Eq.(2) measures the uncertainty in previous h´ 1 layers after exploration. As a result,
with high probability, the following estimations will be accurate:

}pΛπh,i ´ Eπh,irφpsh, ahqφpsh, ahqJs}8,8 ď Opξq, (3)

where } ¨ }8,8 denotes the entry-wise maximum norm. This directly implies that:

}rΣh,i`1 ´ Σh,i`1s}8,8 ď i ¨Opξq.

where Σh,i`1 :“ 2I `
ři
i1“1 Eπh,i1 rφpsh, ahqφpsh, ahq

Js is the target value for rΣh,i`1 to approx-

imate. Besides, recall that in Algorithm 5, we use
b

φJrΣ´1
h,i`1φ as the reward function, and the

induction condition also implies that:

|Vh,i`1 ´max
π

Eπr}φpsh, ahq}rΣ´1
h,i`1

s| ďOpξq.

As a result, if ξ and the resolution ε0 are small enough, π̄h,i`1 would gradually reduce the uncer-
tainty and Vh,i`1 (also maxπ Eπr}φpsh, ahq}rΣ´1

h,i`1
s) will decrease. However, the bias is at the level

Opξq, and therefore, no matter how small ξ is, as long as ξ ą 0, it is still possible that the policies
in Πh do not cover all directions if some directions are very difficult to reach, and the error due
to such a bias will be at the same level of the required accuracy in induction condition, i.e. Opξq.
This is exactly where the “reachability coefficient” νmin definition helps. The introduction of νmin

provides a threshold, and as long as ξ is small enough so that the bias is lower than the threshold,
each dimension will be reached with substantial probability when the breaking criterion in Line 9 is
satisfied. As a result, by deploying unifpΠhq and collecting a sufficiently large dataset, the induction
condition will hold till layer H . Finally, combining the guarantee of Alg 4, we complete the proof.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a concrete theoretical formulation for DE-RL to fill the gap between ex-
isting RL literatures and real-world applications with deployment constraints. Based on our frame-
work, we establish lower bounds for deployment complexity in linear MDPs, and provide novel
algorithms and techniques to achieve optimal deployment efficiency. Besides, our formulation is
flexible and can serve as building blocks for other practically relevant settings related to DE-RL. We
conclude the paper with two such examples, defer a more detailed discussion to Appendix F, and
leave the investigation to future work.

Sample-Efficient DE-RL In our basic formulation in Definition 2.1, we focus on minimizing the
deployment complexity K and put very mild constraints on the per-deployment sample complexity
N . In practice, however, the latter is also an important consideration, and we may face additional
constraints on how large N can be, as they can be upper bounded by e.g. the number of customers
or patients our system is serving.

Safe DE-RL In real-world applications, safety is also an important criterion. The definition for
safety criterion in Safe DE-RL is still an open problem, but we believe it is an interesting setting
since it implies a trade-off between exploration and exploitation in deployment-efficient setting.

9
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A EXTENDED RELATED WORK

Online RL Online RL is a paradigm focusing on the challenge of strategic exploration. On the the-
oretical side, based on the “Optimism in Face of Uncertainty”(OFU) principle or posterior sampling
techniques, many provable algorithms have been developed for tabular MDPs (Jin et al., 2018; Azar
et al., 2017; Zanette & Brunskill, 2019; Agrawal & Jia, 2017; Agrawal et al., 2021), linear MDPs
(Jin et al., 2019; Agarwal et al., 2020a), general function approximation (Wang et al., 2020c; Russo
& Van Roy, 2013), or MDPs with structural assumptions (Jiang et al., 2017b; Du et al., 2019). More-
over, there is another stream of work studying how to guide exploration by utilizing state occupancy
(Hazan et al., 2019; Zhang et al., 2021). Beyond the learning in MDPs with pre-specified reward
function, recently, Jin et al. (2020); Wang et al. (2020b); Zanette et al. (2020) provide algorithms for
exploration in the scenarios where multiple reward functions are of interest. On the practical side,
there are empirical algorithms such as intrinsically-motivated exploration (Bellemare et al., 2016;
Campero et al., 2020), exploration with hand-crafted reward bonus (RND) (Burda et al., 2018), and
other more sophisticated strategies (Ecoffet et al., 2019). However, all of these exploration methods
do not take deployment efficiency into consideration, and will fail to sufficiently explore the MDP
and learn near-optimal policies in DE-RL setting where the number of deployments is very limited.

Offline RL Different from the online setting, where the agents are encouraged to explore rarely
visited states to identify the optimal policy, the pure offline RL setting serves as a framework for
utilizing historical data to learn a good policy without further interacting with the environment.
Therefore, the core problem of offline RL is the performance guarantee of the deployed policy,
which motivated multiple importance-sampling based off-policy policy evaluation and optimization
methods (Jiang & Li, 2016; Liu et al., 2018; Uehara et al., 2020; Yang et al., 2020; Nachum et al.,
2019; Lee et al., 2021), and the “Pessimism in Face of Uncertainty” framework (Liu et al., 2020;
Kumar et al., 2020; Fujimoto & Gu, 2021; Yu et al., 2020; Jin et al., 2021b; Xie et al., 2021a) in
contrast with OFU in online exploration setting. However, as suggested in Matsushima et al. (2021),
pure offline RL can be regarded as constraining the total number of deployments to be 1.

Bridging Online and Offline RL; Trade-off between Pessimism and Optimism As pointed
out by Xie et al. (2021b); Matsushima et al. (2021), there is a clear gap between existing online and
offline RL settings, and some efforts have been made towards bridging them. For example, Nair et al.
(2021); Pertsch et al. (2020); Bai et al. (2020) studied how to leverage pre-collected offline datasets
to learn a good prior to accelerate the online learning process. Moskovitz et al. (2021) proposed a
learning framework which can switch between optimism and pessimism by modeling the selection
as a bandit problem. None of these works give provable guarantees in our deployment-efficiency
setting.

Conversion from Linear Regret in Gao et al. (2021) to Sample Complexity Gao et al. (2021)
proposed an algorithm with the following guarantee: after interacting with the environments for
rK times (we use rK to distinguish with K in our setting), there exists a constant c such that the
algorithm’s regret is

ĂK
ÿ

k“1

V ˚ps1q ´ V
πkps1q “ c ¨

a

d3H4
rK ¨ ι “ c ¨

?
d3H3T ¨ ι

where we denote T “ rKH , and use ι to refer to the log terms. Besides, in π1, ..., πK there are only
OpdH log rKq policy switching.

As discussed in Section 3.1 by Jin et al. (2018), such a result can be convert to a PAC guarantee that,
by uniformly randomly select a policy π from π1, ..., πK , with probability at least 2/3, we should
have:

V ˚ps1q ´ V
πps1q “ rOp

c

d3H5

T
q “ rOp

d

d3H4

rK
q

In order to make sure the upper bound in the r.h.s. will be ε, we need:

rK “
d3H4

ε2
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and the required policy switching would be:

OpdH log rKq “ OpdH log
dH

ε
q

In contrast with our results in Section 4.1, there is an additional logarithmic dependence on d,H and
ε. Moreover, since their algorithm only deploys deterministic policies, their deployment complexity
has to depend on d, which is much higher than our stochastic policy algorithms in Section 4.2 when
d is large.

Methods R-F? Deployed Policy # Trajectories Deployment
Complexity

LSVI-UCB
(Jin et al., 2019) ˆ Deterministic rOpd

3H4

ε2 q

Reward-free LSVI-UCB
(Wang et al., 2020b) X Deterministic rOpd

3H6

ε2 q

FRANCIS
(Zanette et al., 2020) X Deterministic rOpd

3H5

ε2 q

Gao et al. (2021) ˆ Deterministic rOpd
3H4

ε2 q OpdH log dH
ε q

Q-type OLIVE
(Jiang et al., 2017a)
(Jin et al., 2021a)

ˆ Deterministic rOpd
3H6

ε2 q OpdH log 1
ε q

Simplified MOFFLE
(Modi et al., 2021) X Stochastic rOp d8H7

|A|13
minpε2ηmin,η5minq

q rOpHd
3
|A|4

η2min
q

Alg. 1 [Ours] ˆ Deterministic rOpd
4H5

ε2 q OpdHq

Alg. 3 + 4[Ours] X Deterministic rOpd
4H7

ε2 q OpdHq

Alg. 2[Ours] X Stochastic rOp d
7H3

ε2ν14
min
q H

Table 1: Comparison between our algorithms and online RL methods without considering deploy-
ment costraints in our setting defined in Def. 2.1, where R-F is the short note for Reward-Free. The
total number of trajectories cost by our methods is computed by K ¨ N . We omit log terms in rO.
For algorithm (Jin et al., 2019), we report the sample complexity after the conversion from regret.
For our deterministic policy algorithms, we report the asymptotic results when cK Ñ `8, which
can be achieved approximately when cK is a large constant (e.g. cK “ 100).

Investigation on Trade-off between Sample Complexity and Deployment Complexity In Table
1, we compare our algorithms and previous online RL works which did not consider deployment
efficiency to shed light on the trade-off between sample and deployment complexities. Besides
algorithms that are specialized to linear MDPs, we also include results such as Zanette et al. (2020),
which studied a more general linear approximation setting and can be adapted to our setting. As
stated in Def. 2 of Zanette et al. (2020), they also rely on some reachability assumption. To avoid
ambiguity, we use rνmin to refer to their reachability coefficient (as discussed in Appx E.8, rνmin

is no larger than and can be much smaller than our νmin). Because they also assume that ε ď
rOprνmin{

?
dq (see Thm 4.1 in their paper), their results have an implicit dependence on rν´2

min. In
addition, by using the class of linear functions w.r.t. φ, Q-type OLIVE (Jiang et al., 2017a; Jin
et al., 2021a) has rOpd

3H6

ε2 q sample complexity and OpdH logp1{εqq deployment complexity. Its
deployment complexity is close to our deterministic algorithm, but with additional dependence on
ε. We also want to highlight that OLIVE is known to be computationally intractable (Dann et al.,
2018), while our algorithms are computationally efficient. With the given feature φ in linear MDPs
and additional reachability assumption (not comparable to us), we can use a simplified version
of MOFFLE (Modi et al., 2021) by skipping their LearnRep subroutine. Though this version of
MOFFLE is computationally efficient and its deployment complexity does not depend on ε, it has
much worse sample complexity (ηmin is their reachability coefficient) and deployment complexity.
On the other hand, PCID (Du et al., 2019) and HOMER (Misra et al., 2020) achieve H deployment
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complexity in block MDPs. However, block MDPs are more restricted than linear MDPs and these
algorithms have worse sample and computational complexities.

It is worth to note that all our algorithms achieve the optimal dependence on ε (i.e., ε´2) in sample
complexity. For algorithms that deploy deterministic policies, we can see that our algorithm has
higher dependence on d and H in the sample complexity in both reward-known and reward-free
setting, while our deployment complexity is much lower. Our stochastic policy algorithm (last row)
is naturally a reward-free algorithm. Comparing with Wang et al. (2020b) and Zanette et al. (2020),
our sample complexity has higher dependence on d and the reachability coefficient νmin, while our
algorithm achieves the optimal deployment complexity and better dependence on H .

B ON THE LOWER BOUND OF DEPLOYMENT-EFFICIENT REINFORCEMENT
LEARNING

B.1 A HARD MDP INSTANCE TEMPLATE

In this sub-section, we first introduce a hard MDP template that is used in further proofs. As shown
in Figure 1, we construct a tabular MDP (which is a special case of linear MDP) where the horizon
length is H`1 and in each layer except the first one, there are d`2 states and 2d`1 different state
action pairs. The initial state is fixed as s0 and there are d` 2 different actions. It is easy to see that
we can represent the MDP by linear features with at most 2d` 1 dimensions, and construct reward
and transition function satisfying Assumption A. As a result, it is a linear MDP with dimension
2d ` 1 and horizon length H ` 1. Since there is only a constant-level blow up of dimension, the
dimension of these MDPs is still Θpdq, and we will directly use d instead of Θpdq in the rest of
the proof. The states in each layer h ě 1 can be divided into three groups and we introduce them
one-by-one in the following.

Group 1: Absorbing States (Green Color) The first group G1
h “ tu

1
h, u

2
hu consists of two ab-

sorbing states u1
h and u2

h, which can only take one action at each state ā1
h and ā2

h and transit to
u1
h`1 and u2

h`1 with probability 1, respectively. The reward function is defined as rhpu1
h, ā

1
hq “

rhpu
2
h, ā

2
hq “ 0.5 for all h ď H ´ 2 and rHpu1

H , ā
1
Hq “ 0.0, rHpu2

H , ā
2
Hq “ 1.0.

Group 2: Core States (Red Color) The second group G2
h “ ts

˚
hu only contains one state, which

we call it core state and denote it as s˚h. For example, in Figure 1, we have s˚1 “ sd1, s
˚
2 “ s1

2 and
s˚3 “ s2

3. In the “core state”, the agent can take d actions ra1
h,ra

2
h, . . . ,ra

d
h and transit deterministically

to s1
h`1, s

2
h`1, . . . , s

d
h`1. Besides, the reward function is rhps˚h,ra

i
hq “ 0.5 for all i P rds.

Group 3: Normal States (Blue Color) The third group G3
h “ ts

i
h|i P rds, s

i
h ‰ s˚hu is what we

call “normal states”, and each state sih P G
3
h can only take one action raih and will transit randomly to

one of the absorbing states in the next layer, i.e. G1
h`1. Besides, the reward function is rhpsih,ra

i
hq “

0.5 for arbitrary sih P G
3
h, and the transition function is P pu1

h`1|s
i
h,ra

i
hq “ P pu1

h`1|s
i
h,ra

i
hq “ 0.5,

except for a state action pair s# :“ si
#

h# , a
# :“ ai

#

h# at layer h# P rH ´ 1s with index i#, such that
s# R G2

h# and P pu1
h`1|s

i#

h# , a
i#

h#q “ 0.5 ´ ε and P pu2
h`1|s

i#

h# , a
i#

h#q “ 0.5 ` ε. In the following,
we will call s#, a# the “optimal state” and “optimal action” in this MDP. Note that the “optimal
state” can not be the core state.

We will use Mph#, i#, Icore “ ti1, i2, ..., iHuq with ih# ‰ i# to denote the MDP whose optimal
state is at layer h# and indexed by i#, and the core states in each layer are si1h , s

i2
h , ..., s

iH
H . As we

can see, the only optimal policy should be the one which can generate the following sequence of
states before transiting to absorb states at layer h# ` 1:

s0, s
i1
1 , s

i2
2 , ..., s

i
h#´1

h#´1
, si

#

h#

and the optimal value function would be 1
2H`ε. In order to achieve ε-optimal policy, the algorithm

should identify si
#

h# , which is the main origin of the difficulty in exploration.
Remark B.1 (Markov v.s. Non-Markov Policies). As we can see, the core states in each layer
are the only states with #actions ą 1, and for each core state, there exists and only exists one
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Figure 1: Lower Bound Instance Template. The states in each layer can be divided into three groups.
Group 1: absorbing states, marked with green; Group 2: core state, marked with red; Group 3:
normal states, marked with blue.

…

…

…

…

…

…

deterministic path (a sequence of states, actions and rewards) from initial state to it, which implies
that for arbitrary non-Markov policy, there exists an equivalent Markov policy. Therefore, in the rest
of the proofs in this section, we only focus on Markov policies.

B.2 LOWER BOUND FOR ALGORITHMS WHICH CAN DEPLOY DETERMINISTIC POLICIES ONLY

In the following, we will state the formal version of the lower bound theorem for deterministic policy
setting and its proof. The intuition of the proof is that we can construct a hard instance, which can be
regarded as a ΩpdHq multi-arm bandit problem, and we will show that in expectation the algorithm
need to “pull ΩpdHq arms” before identifying the optimal one.

Theorem B.2 (Lower bound for number of deployments in deterministic policy setting). For the
linear MDP problem with dimension d and horizon H , given arbitrary algorithm ψ (ψ can be
deterministic or stochastic), which can only deploy a deterministic policy but can collect arbitrary
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number of samples in each deployment, there exists a MDP problem where the optimal deterministic
policy π˚ is ε better than all the other deterministic policies, but the estimate policy pπ (which is also
a deterministic policy) of the best policy output by ψ after K deployments must have P pπ˚ ‰ pπq ě
1{10 unless the number of deployments K ą pd´ 1qpH ´ 1q{2 “ ΩpdHq.

Proof. First of all, we introduce how we construct hard instances.

Construction of Hard Instances We consider a set of MDPs M̄, where for each MDP in that set,
the core states (red color) in each layer are fixed to be s1

1, s
1
2, ..., s

1
H´1 and the only optimal states

which has different probability to transit to absorbing states are randomly selected from pd´1qpH´
1q normal states (blue color). Easy to see that, |M̄| “ pd´ 1qpH ´ 1q.

Because of the different position of optimal states, the optimal policies for each MDP in M̄ (i.e. the
policy which can transit from s0 to optimal state) is different. We will use π1, π2, ..., πpd´1qpH´1q

to refer to those different policies and use Mπi with 1 ď i ď pd ´ 1qpH ´ 1q to denote the MDP
in M̄ where πi is the optimal policy. For convenience, we will use M0 to denote the MDP where
all the normal states have equal probability to transit to different absorbing states, i.e., all states are
optimal states. Based on the introduction above, we define M :“ M̄

Ť

tM0u and use the MDPs in
M as hard instances.

Lower Bound for Average Failure Probability Next, we try to lower bound the average failure
probability, which works as a lower bound for the maximal failure probability among MDPs in
M. Since any randomized algorithm is just a distribution over deterministic ones, and it therefore
suffices to only consider deterministic algorithms ψ (Krishnamurthy et al., 2016).

Given an arbitrary algorithm ψ and k P rKs, we use ψpkq to denote the policy taken by ψ at the k-th
deployment (which is a random variable). Besides, we denote ψpK ` 1q as the output policy.

For arbitrary k P rKs, we use PMπi
,ψpψpkq “ πjq with 1 ď i, j ď pd ´ 1qpH ´ 1q to denote the

probability that ψ takes policy πj at deployment k when running ψ onMπi , and use PMπi
,ψpψpK`

1q “ πiq to denote the probability that the algorithm ψ returns policy πi as optimal arm after
running with K deployments under MDP Mπi . We are interested in providing an upper bound for
the expected success rate:

Pψ,M„Mpsuccessq :“
1

|M|
P psuccess in M0q `

1

|M|

|M̄|
ÿ

i“1

PMπi
,ψpψpK ` 1q “ πiq

“
1

|M|
`

1

|M|

|M̄|
ÿ

i“1

PMπi
,ψpψpK ` 1q “ πiq,

where we assume that all the policies in M0 are optimal policies.

In the following, we use Ek,πi to denote the event that the policy πi has been deployed at least
once in the first k deployments and PMπj

,ψp¨q to denote the probability of an event when running
algorithm ψ under MDP Mπj .

Next, we prove that, for arbitrary Mπi ,

PMπi
,ψpE

A
k,πiq “ PM0,ψpE

A
k,πiq @k P rK ` 1s. (4)

First of all, it holds for k “ 1, because at the beginning ψ has’t observe any data, and all its possible
behavior should be the same in both M0 and Mi, and therefore PMπi

,ψpE
A
1,πiq “ PM0,ψpE

A
1,πiq.

Next, we do induction. Suppose we already know it holds for 1, 2, ..., k, then consider the case for
k ` 1. Because ψ behave the same if the pre-collected episodes are the same, which is the only
information it will use for decision, we should have:

PMπi
,ψpψpk ` 1q “ πi X E

A
k,πiq “

ÿ

τPψpk`1q“πiXEAk,πi

PMπi
,ψpτq

“
ÿ

τPψpk`1q“πiXEAk,πi

PM0,ψpτq
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“PM0,ψpψpk ` 1q “ πi X E
A
k,πiq. (5)

The second equality is due to each trajectory τ P ψpk ` 1q “ πi X EAk,πi has the same probability
under M0 and Mi by the construction. Notice that in this induction step, we only consider the
trajectory with first pk` 1qN episodes because define the whole sample space and event only based
on the first pk ` 1qN episodes.

This implies that,

PMπi
,ψpE

A
k`1,πiq “PMπi

,ψpE
A
k,πiq ´ PMπi

,ψpψpk ` 1q “ πi X E
A
k,πiq

“PM0,ψpE
A
k,πiq ´ PM0,ψpψpk ` 1q “ πi X E

A
k,πiq

“PM0,ψpE
A
k`1,πiq.

Now we are ready to bound the failure rate. Suppose K ă pd´ 1qpH ´ 1q{2 ă |M|{2, we have:

1

|M|

|M̄|
ÿ

i“1

`

PMπi
,ψpψpK ` 1q “ πiq ´ PM0,ψpψpK ` 1q “ πiq

˘

“
1

|M|

|M̄|
ÿ

i“1

´

PMπi
,ψpψpK ` 1q “ πi X EK`1,πiq ´ PM0,ψpψpK ` 1q “ πi X EK`1,πiq

¯

`
1

|M|

|M̄|
ÿ

i“1

´

PMπi
,ψpψpK ` 1q “ πi X E

A
K`1,πiq ´ PM0,ψpψpK ` 1q “ πi X E

A
K`1,πiq

¯

“
1

|M|

|M̄|
ÿ

i“1

PMπi
,ψpEK`1,πiq

´

PMπi
,ψpψpK ` 1q “ πi|EK`1,πiq ´ PM0,ψpψpK ` 1q “ πi|EK`1,πiq

¯

(Eq.(5) and P pAXBq “ P pBqP pA|Bq)

ď
1

|M|

|M̄|
ÿ

i“1

PMπi
,ψpEK`1,πiq

(PMπi
,ψpψpK ` 1q “ πi|EK`1,πiq ´ PM0,ψpψpK ` 1q “ πi|EK`1,πiq ď 1)

“
1

|M|

|M̄|
ÿ

i“1

PM0,ψpEK`1,πiq ( Eq. (4))

ď
K

|M|

where the last step is because:

1

|M|

|M̄|
ÿ

i“1

PM0,ψpEK`1,πiq

“
1

|M|

|M̄|
ÿ

i“1

EM0,ψr1tπi is selectedus

ď
1

|M|

|M̄|
ÿ

i“1

EM0,ψr

K`1
ÿ

k“1

1tπi is selected at deployment kus

“
1

|M|
EM0,ψr

K`1
ÿ

k“1

|M̄|
ÿ

i“1

1tπi is selected at deployment kus

“
K ` 1

|M|
(ψ deploy deterministic policy each time)

ď
1

2
(Deployment time K ă |M|{2)
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As a result,

1

|M|
`

1

|M|

|M̄|
ÿ

i“1

PMπi
,ψpψpK ` 1q “ πiq ď

1

|M|
`

1

|M|

|M̄|
ÿ

i“1

PM0,ψpψpK ` 1q “ πiq `
1

2
ď

2

|M|
`

1

2
.

As long as d,H ě 3, we have |M| “ pd ´ 1qpH ´ 1q ` 1 ě 5 the failure rate will be higher than
1{10, which finishes the proof. ˝

B.3 PROOF FOR LOWER BOUND IN ARBITRARY SETTING

In the following, we provide a formal statement of the lower bound theorem for the arbitrary policy
setting and its proof.

Theorem B.3 (Lower bound for number of deployments in arbitrary setting). For the linear MDP
problem with given dimension d ě 2 and horizon H ě 3, N “ polypd,H, 1

ε , log 1
δ q, and arbitrary

given algorithm ψ. Unless the number of deployments K ą H´2
2rlogdNHs

“ ΩpH{ logdpNHqq “

rΩpHq, for any ε, there exists an MDP such that the output policy is not ε-optimal with probability
at least 1

2e . Here ψ can be deterministic or stochastic. The algorithm can deploy arbitrary policy
but can only collect N “ polypd,H, 1

ε , log 1
δ q samples in each deployment.

Proof. Since any randomized algorithm is just a distribution over deterministic ones, it suffices to
only consider deterministic algorithms ψ in the following proof (Krishnamurthy et al., 2016). The
crucial part here is notice that a deployment means we have a fixed distribution (occupancy) over
the state space and such distribution only depends on the prior information.

Construction of Hard Instances We have dH´2 ˆ d instances by enumerating the location of
core state from level 1 to H ´ 2 and the optimal normal state at level H ´ 1. We assign spi`1q%d

H´1

as the core state at level H ´ 1 if siH´1 is the optimal state. Notice that for this hard instance class,
we only consider the case that the optimal state is in level H ´ 1. We use M to denote this hard
instance class.

We make a few claims and later prove these claims and the theorem. We will use the notation Eipjq
to denote the event that at least one state at level j is reached by the i-th deployment. Also we notice
that in all the discussion an event is just a set of trajectories. For all related discussion, the state at
level L does not include the state in the absorbing chain. In addition, we will use PM,ψ to denote
the distribution of trajectories when executing algorithm ψ and uniformly taking an instance from
the hard instance class.

Claim 1. Assume L ď H ´ 2. Then for any deterministic algorithm ψ, we have

PM,ψpE1pLqq ď
N

dL´1
.

Claim 2. Assume L` L1 ď H ´ 2. We have that for any deterministic algorithm ψ,

PM,ψpE
A
kpL

1 ` Lqq ě p1´
N

dL´1
qP pEAk´1pL

1qq.

Proof of Claim 1 By the nature of the deterministic algorithm, we know that for any deterministic
algorithm ψ, the deployment is the same at the first time for all instances. The reason is that the
agent hasn’t observed anything, so the deployed policy has to be the same.

Let ppi, j, hq denote the probability of the first deployment policy to choose action j at node i at level
h under the first deployment policy. We know that ppi, j, hq for ψ is the same under all instances.

Note that there is a one to one correspondence between an MDP in the hard instance class and the
specified locations of core states in the layer 1, . . . ,H ´ 2 and the optimal state at level H ´ 1.
Therefore, we can use pi1, . . . , iH´2, sH´1q to denote any instance in the hard instance class, where
i1, . . . , iH´2 refers to the location of the core states and sH´1 refers to the location of the optimal
state. From the construction, we know that for instance pi1, . . . , iH´2, sH´1q, to arrive at level sL
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at level L, the path as to be s0, i1, . . . , iL´1, sL. Therefore the probability of a trajectory sampled
from ψ to reach state sL is

pps0, i1, 0qppi1, i2, 1q . . . ppiL´2, iL´1, L´ 2qppiL´1, sL, L´ 1q.

Here we use ppiL´1, sL, L ´ 1q denotes the probability of taking action at iL´1 to transit to
sL and similarly for others. In the deployment, ψ draws N episodes, so the probability of
executing ψ to reach any state sL at level L during the first deployment is no more than
Npps0, i1, 0qppi1, i2, 1q . . . ppiL´2, iL´1, L´ 2qppiL´1, sL, L´ 1q.

Calculating the sum over i1, . . . , iL´1 and sL gives us
ÿ

i1,i2,...,iL´1,sL

Npps0, i1, 0qppi1, i2, 1q . . . ppiL´2, iL´1, L´ 2qppiL´1, sL, L´ 1q

“N
ÿ

i1

pps0, i1, 0q
ÿ

i2

ppi1, i2, 1q . . .
ÿ

iL´2

ppiL´3, iL´2, L´ 3q
ÿ

iL´1

ppiL´2, iL´1, L´ 2q
ÿ

sL

ppiL´1, sL, L´ 1q

“N
ÿ

i1

pps0, i1, 0q
ÿ

i2

ppi1, i2, 1q . . .
ÿ

iL´2

ppiL´3, iL´2, L´ 3q
ÿ

iL´1

ppiL´2, iL´1, L´ 2q

“N
ÿ

i1

pps0, i1, 0q
ÿ

i2

ppi1, i2, 1q . . .
ÿ

iL´2

ppiL´3, iL´2, L´ 3q

“ . . .

“N. (6)

Therefore we have the following equation about PM,ψpE1pLqq

PM,ψpE1pLqq

“
1

|M|

ÿ

iL,...,iH´2,sH´1

ÿ

i1,...,iL´1

PI“pi1,...,iH´1,sH´1q,ψpE1pLqq

ď
1

dH´1

ÿ

iL,...,iH´2,sH´1

ÿ

i1,...,iL´1,sL

Npps0, i1, 0qppi1, i2, 1q . . . ppiL´2, iL´1, L´ 2qppiL´1, sL, L´ 1q

“
1

dH´1

ÿ

iL,...,iH´2,sH´1

N

“
N

dL´1
.

Proof of Claim 2 Let τ denote any possible concatenation of the first kN episodes we get in
the first k deployments. In this claim, it suffices to consider the kN episodes because the event
EkpL

1`LqXEAk´1pL
1q only depends on the first kN episodes. Therefore the sample space and the

event will be defined on any trajectory with kN episodes. For any τ , we know that ψ will output the
k-th deployment policy solely based on the τ r0, k ´ 1s and this map is deterministic (we use τ ri, js
to denote the iN ` 1 to jN episodes in τ ). In other words, ψ will map τ r0, k ´ 1s to a fixed policy
ψpτ r0, k ´ 1sq to deploy at the k-th time.

We have the following equation for any I PM

PI,ψpEkpL
1 ` Lq X EAk´1pL

1qq

“
ÿ

τPEkpL1`LqXEAk´1pL
1q

PI,ψpτq

“
ÿ

τPEkpL1`LqXEAk´1pL
1q

PI,ψpτ r0, k ´ 1sqPI,ψpτr0,k´1sqpτ rk ´ 1, ksq

“
ÿ

τ :τr0,k´1sPEAk´1pL
1q,τ 1:τ 1r0,k´1s“τr0,k´1s and τ 1rk´1,ks hit level L1 ` L

PI,ψpτ r0, k ´ 1sqPI,ψpτr0,k´1sqpτ
1rk ´ 1, ksq

“
ÿ

τ :τr0,k´1sPEAk´1pL
1q

PI,ψpτ r0, k ´ 1sq
ÿ

τ 1:τ 1r0,k´1s“τr0,k´1s and τ 1rk´1,ks hit level L1 ` L

PI,ψpτr0,k´1sqpτ
1rk ´ 1, ksq
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Notice that this equality does not generally hold for probability distribution PM,ψ .

Then we fix τ r0, k ´ 1s, such that τ r0, k ´ 1s P EAk´1pL
1q. We

also fix pi1, . . . , iL1´1q, piL1`L, . . . , iH´2, sH´1q and consider two instances
I1 “ pi1, . . . , iL1´1, i

1
L1 , . . . , i

1
L1`L´1, iL1`L, . . . , iH´2, sH´1q and I2 “

pi1, . . . , iL1´1, i
2
L1 , . . . , i

2
L1`L´1, iL1`L, . . . , iH´2, sH´1q. Therefore, we have that

PI1,ψpτ r0, k ´ 1sq “ PI2,ψpτ r0, k ´ 1sq (from the construction of I1, I2 and the property of
deterministic algorithm ψ). We use Ipi1, . . . , iL1´1, iL1`L, . . . , iH´2, sH´1q to denote the instance
class that has fixed pi1, . . . , iL1´1q, piL1`L, . . . , iH´2, sH´1q, but different piL1 , . . . iL1`L´1q. In
addition, we use Ipi1, . . . , iL1´1q to denote the instance class that has fixed pi1, . . . , iL1´1q, but
different piL1 , . . . iL1`L´1q and piL1`L, . . . , iH´2, sH´1q.

Since we have already fixed τ r0, k ´ 1s P EAk´1pL
1q here, ψpτ r0, k ´ 1sq is also fixed (for all I P

Ipi1, . . . , iL1´1, iL1`L, . . . , iH´2, sH´1q). Also notice that we are considering the probability of N
episodes τ 1rk´1 : ks. Therefore, we can follow Claim 1 and define ppi, j, hq for 0 ď h ď L1`L´1,
which represents the probability of choosing action j at node i at level h under the k-th deployment
policy. In the k-th deployment, ψ draws N episodes, so the probability of executing ψ to reach any
state sL1`L at level L1 ` L under instance I “ pi1, . . . , iH´2, sH´1q is

Npps0, i1, 0qppi1, i2, 1q . . . ppiL1`L´2, iL1`L´1, L
1 ` L´ 2qppiL1`L´1, sL1`L, L

1 ` L´ 1q

ďNppiL1´1, iL1 , L
1 ´ 1q . . . ppiL1`L´2, iL1`L´1, L

1 ` L´ 2qppiL1`L´1, sL1`L, L
1 ` L´ 1q.

Following the same step in Eq (6) by summing over iL1 , . . . , iL1`L´1 and sL1`L gives us
ÿ

IPIpi1,...,iL1´1,iL1`L,...,iH´2,sH´1q

ÿ

τ 1:τ 1r0,k´1s“τr0,k´1s and τ 1rk´1,ks hit level L1 ` L

PI,ψpτr0,k´1sqpτ
1rk ´ 1, ksq

ďN.

Now, we sum over all possible piL1`L, . . . , iH´2, sH´1q and take the average. For any fixed τ r0, k´
1s P EAk´1pL

1q we have

1

|Ipi1, . . . , iL1´1q|

ÿ

IPIpi1,...,iL1´1q

ÿ

τ 1:τ 1r0,k´1s“τr0,k´1s and τ 1rk´1,ks hit level L1 ` L

PI,ψpτr0,k´1sqpτ rk ´ 1, ksq

“
1

|Ipi1, . . . , iL1´1q|

ÿ

iL1`L,...,iH´2,sH´1

ÿ

IPIpi1,...,iL1´1,iL1`L,...,iH´2,sH´1q

ÿ

τ 1:τ 1r0,k´1s“τr0,k´1s and τ 1rk´1,ks hit level L1 ` L

PI,ψpτr0,k´1sqpτ rk ´ 1, ksq

ď
1

|Ipi1, . . . , iL1´1q|

ÿ

iL1`L,...,iH´2,sH´1

N

“
dH´L

1
´L

dH´L1
N

“
1

dL
N.

Moreover, summing over all τ r0, k ´ 1s P EAk´1pL
1q, gives us i1, . . . , iL1´1

PM,ψpEkpL
1 ` Lq X EAk´1pL

1qq

“
1

|M|

ÿ

i1,...,iL1´1

ÿ

IPIpi1,...,iL1´1q

ÿ

τr0,k´1sPEAk´1pL
1q

PI,ψpτ r0, k ´ 1sq

ÿ

τ 1:τ 1r0,k´1s“τr0,k´1s and τ 1rk´1,ks hit level L1 ` L

PI,ψpτr0,k´1sqpτ
1rk ´ 1, ksq
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“
1

|M|

ÿ

τr0,k´1sPEAk´1pL
1q

ÿ

i1,...,iL1´1

Pi1,...,iL1´1,ψpτ r0, k ´ 1sq

ÿ

IPIpi1,...,iL1´1q

ÿ

τ 1:τ 1r0,k´1s“τr0,k´1s and τ 1rk´1,ks hit level L1 ` L

PI,ψpτr0,k´1sqpτ
1rk ´ 1, ksq

ď
1

|M|

ÿ

τr0,k´1sPEAk´1pL
1q

ÿ

i1,...,iL1´1

Pi1,...,iL1´1,ψpτ r0, k ´ 1sq|Ipi1, . . . , iL1´1q|
N

dL

“
N

dL
|Ipi1, . . . , iL1´1q|

|M|

ÿ

τr0,k´1sPEAk´1pL
1q

ÿ

i1,...,iL1´1

Pi1,...,iL1´1,ψpτ r0, k ´ 1sq

“
N

dL

ÿ

τr0,k´1sPEAk´1pL
1q

PM,ψpτ r0, k ´ 1sq

“
N

dL
PM,ψpE

A
k´1pL

1qq.

In the second equality, we use Pi1,...,iL1´1,ψ
because for any fixed τ r0, k ´ 1s P EAk´1pL

1q and all
I P Ipi1, . . . , iL1´1q, Pi1,...,iL1´1,ψ

pτ r0, k ´ 1sq are the same.

Finally, we have

PM,ψpE
A
kpL

1 ` Lqq ě PM,ψpE
A
kpL

1 ` Lq X EAk´1pL
1qq

“ PM,ψpE
A
k´1pL

1qq ´ PM,ψpEkpL
1 ` Lq X EAk´1pL

1qq

ě p1´
N

dL
qP pEAk´1pL

1qq

ě p1´
N

dL´1
qP pEAk´1pL

1qq.

Proof of the Theorem If KL ď H ´ 2, then applying Claim 2 for K ´ 1 times and applying
Claim 1 tells us

PM,ψpE
A
KpKLqq “PM,ψpE

A
KppK ´ 1qL` Lqq ě p1´

N

dL´1
qP pEAK´1ppK ´ 1qLqq

ě . . . ě p1´
N

dL´1
qK´1P pEA1pLqq ě p1´

N

dL´1
qK .

We can set L “ rlogdNHs` 1 and K ď H´2
2rlogdNHs

. Then for H ě 3, we get KL ď H ´ 2 and

PM,ψpdoes not hit any state at level H ´ 2q ě p1´
N

drlogdNHs
q

H´2
2rlogd NHs

ě p1´
N

NH
q

H´2
2rlogd NHs

ě p1´
1

H
qH

ě
1

e
.

Let event F denote the event (a set of length KN episodes trajectories) that any state at level H ´ 2
is not hit. Then we have PM,ψpF q ě 1 ´ 1

e . We use Ipi1, . . . , iH´2q to denote the instance class
that has fixed core states pi1, . . . , iH´2q but different optimal states sH´1.

Consider any fixed τ P F . Similar as the proof in the prior claims, by the property of deterministic
algorithm, we can define ppi, j, hq for h “ H ´ 2, which represents the probability of the output
policy ψτ pK ` 1q under trajectory τ to choose action j at node i at level H ´ 2. Then we have

ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

PI,ψpψτ pK ` 1q chooses optimal state)
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“
ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

PI,ψppψτ pK ` 1qqpiH´2q “ sH´1q

“
ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

ppiH´2, sH´1, H ´ 2q

“
ÿ

sH´1

ppiH´2, sH´1, H ´ 2q

“1.

Summing over τ P F gives us
ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

PI,ψpF X the output policy chooses optimal stateq

“
ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

ÿ

τPF

PI,ψpτqPI,ψpψτ pK ` 1q chooses optimal state)

“
ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

ÿ

τPF

Pi1,...,iH´2,ψpτqPI,ψpψτ pK ` 1q chooses optimal state)

“
ÿ

τPF

Pi1,...,iH´2,ψpτq
ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

PI,ψpψτ pK ` 1q chooses optimal state)

“
ÿ

τPF

Pi1,...,iH´2,ψpτq

“Pi1,...,iH´2,ψpF q.

In the second equality, we notice that for all instance I P I “ pi1, . . . , iH´2, sH´1q, PI,ψpτq are the
same, so this probability distribution essentially depends on i1, . . . , iH´2. In the third inequality, we
change the order of the summation.

Finally, summing over i1, . . . , iH´2 and taking average yields that

PM,ψpF X the output policy chooses optimal stateq

“
1

dH´1

ÿ

i1,...,iH´2

ÿ

I“pi1,...,iH´2,sH´1qPIpi1,...,iH´2q

PI,ψpF X the output policy chooses optimal stateq

“
1

dH´1

ÿ

i1,...,iH´2

Pi1,...,iH´2,ψpF q

“
1

dH´1

ÿ

i1,...,iH´2

1

d

ÿ

sH´1

PI“pi1,...,iH´2,sH´1q,ψpF q

(PI,ψpF q does not depend on the optimal state)

“
1

d
PM,ψpF q

Therefore, we get the probability of not choosing the optimal state is

PM,ψp the output policy does not choose the optimal stateq
ěPM,ψpF X the output policy does not choose the optimal stateq
“PM,ψpF q ´ PM,ψpF X the output policy chooses the optimal stateq

“
d´ 1

d
PM,ψpF q

ě
1

2
¨

1

e
.

From the construction, we know that any policy that does not choose optimal state (thus also does
not choose the optimal action associated with the optimal state) is ε sub-optimal. This implies that
with probability at least 1

2e , the output policy is at least ε sub-optimal. ˝

24



Published as a conference paper at ICLR 2022

C DEPLOYMENT-EFFICIENT RL WITH DETERMINISTIC POLICIES AND
GIVEN REWARD FUNCTION

C.1 ADDITIONAL NOTATIONS

In the appendix, we will frequently consider the MDP truncated at rh ď H , and we will use:

V πh ps|
rhq “ Er

rh
ÿ

h1“h

rh1psh1 , ah1q|sh “ s, πs, Qπhps, a|
rhq “ Er

rh
ÿ

h1“h

rh1psh1 , ah1q|sh “ s, ah “ a, πs

to denote the value function in truncated MDP for arbitrary h ď rh, and also extend the definition in
Section 2 to V ˚h p¨|rhq, Q

˚
hp¨, ¨|

rhq, π˚
|rh

for optimal policy setting and V ˚h p¨, r|rhq, Q
˚
hp¨, ¨, r|

rhq, π˚r|h for
reward-free setting.

C.2 AUXILIARY LEMMA

Lemma C.1 (Elliptical Potential Lemma; Lemma 26 of Agarwal et al. (2020b)). Consider a se-
quence of d ˆ d positive semi-definite matrices X1, ..., XT with maxt TrpXtq ď 1 and define
M0 “ λI, ...,Mt “Mt´1 `Xt. Then

T
ÿ

t“1

TrpXtM
´1
t´1q ď p1` 1{λqd logp1` T {dq.

Lemma C.2 (Abbasi-yadkori et al. (2011)). Suppose A,B P Rdˆd are two positive definite matrices
satisfying A ľ B, then for any x P Rd, we have:

}x}2A ď }x}
2
B

detpAq

detpBq
.

Next, we prove a lemma to bridge between trace and determinant, which is crucial to prove our key
technique in Lemma 4.2.
Lemma C.3. [Bridge between Trace and Determinant] Consider a sequence of matrices
A0,AN , ...,ApK´1qN with A0 “ I and AkN “ Apk´1qN ` Φk´1, where Φk´1 “
řkN
t“pk´1qN`1 φtφ

J
t . We have

TrpA´1
pk´1qNΦk´1q ď

detpAkN q

detpApk´1qN q
log

detpAkN q

detpApk´1qN q
.

Proof. Consider a more general case, given matrix Y ľ I , we have the following inequality

TrpI´Y´1q ď log detpYq ď TrpY ´ Iq.

By replacing Y with I`A´1X in the above inequality, we have:

TrppA`Xq´1Xq “TrppI`A´1Xq´1pA´1Xqq “ TrppI`A´1Xq´1pI`A´1X´ Iq

“TrpI´ pI`A´1Xq´1q

ď log detpI`A´1Xq “ log
detpA`Xq

detpAq
.

By assigning A “ Apk´1qN and X “ Φk´1, and applying Lemma C.2, we have:

TrpA´1
pk´1qNΦk´1q “

kN
ÿ

t“pk´1qN`1

}φt}
2
A´1
pk´1qN

ď

kN
ÿ

t“pk´1qN`1

}φt}
2
A´1
kN

detAkN

detpApk´1qN q
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“TrpA´1
kNΦk´1q

detAkN

detpApk´1qN q

ď
detAkN

detpApk´1qN q
log

detAkN

detpApk´1qN q

which finished the proof. ˝

Lemma 4.2. [Batched Finite Sample Elliptical Potential Lemma] Consider a sequence of matrices
A0,AN , ...,ApK´1qN P Rdˆd with A0 “ Idˆd and AkN “ Apk´1qN ` Φk´1, where Φk´1 “
řkN
t“pk´1qN`1 φtφ

J
t and maxtďKN }φt} ď 1. We define: K` :“

!

k P rKs
ˇ

ˇ

ˇ
TrpA´1

pk´1qNΦk´1q ě

Nε
)

. For arbitrary ε ă 1, and arbitrary cK ě 2, if K “ cKdH ` 1, by choosing N ě

c
´

cK
HdcK
εcK logcK pHdε q

¯
1

cK´1

, where c is an absolute constant independent with cK , d,H, ε, we

have |K`| ď cKd ă K{H.

Proof. Suppose we have TrpA´1
pk´1qNΦk´1q ě Nε, by applying Lemma C.3 we must have:

Nε ď
detpAkN q

detpApk´1qN q
log

detpAkN q

detpApk´1qN q
ď

detpAkN q

detpApk´1qN q
logpdetpAkN qq

ďd
detpAkN q

detpApk´1qN q
logp1`KN{dq (detpAq ď pTrpAq{dqd)

which implies that,

Nε

d logp1`KN{dq
ď

detpAkN q

detpApk´1qN q

Therefore,

|K`| log
Nε

d logp1`KN{dq
ď

ÿ

kPK
log

detpAkN q

detpApk´1qN q
ď

K
ÿ

k“1

log
detpAkN q

detpApk´1qN q

“ log
detpAKN q

detpA0q
ď d logp1`KN{dq

which implies that, conditioning on N ě d
ε logp1`KN{dq, we have:

|K`| ď d
logp1`KN{dq

logp Nε
d logp1`KN{dq q

Now, we are interested in find the mimimum N , under the constraint that |K`| ď cKd. To solve
this problem, we first choose an arbitrary p ď cK , and find a N such that,

logp1`KN{dq

logp Nε
d logp1`KN{dq q

ď p

In order to guarantee the above, we need:

Nε ě d logp1`KN{dq, p
Nε

d logp1`KN{dq
qp ě 1`KN{d

The first constraint can be satisfied easily with N ě c1
d
ε log dH

ε for some constant c1. Since usually
KN{d ą 1, the second constraint can be directly satisfied if:

p
Nε

d logp1`KN{dq
qp ě 2KN{d

Recall K “ cKdH ` 1, it can be satisfied by choosing

N ě c2

´

cK
Hdp

εp
logpp

Hd

ε
q

¯
1
p´1

(7)
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where c2 is an absolute constant. Therefore, we can find an absolute number c such that,

N “ c
´

cK
Hdp

εp
logpp

Hd

ε
q

¯
1
p´1

ě maxtc1
d

ε
logp

d

ε
q, c2

´

cK
Hdp

εp
logpp

Hd

ε
q

¯
1
p´1

u

to make sure that

|K`| ď pd

Since in Eq.(7), it’s required that 1{pp ´ 1q ă 8, we should constraint that p ą 1 and therefore,
cK ě 2. Because the dependence of d,H, 1

ε , log dH
ε are decreasing as p increases, by assigning

p “ cK and 1 ă p ď cK , N will be minimized when p “ cK . Then, we finished the proof. ˝

C.3 ANALYSIS FOR ALGORITHMS

Next, we will use the above lemma to bound the difference between JpπKq and Jpπ˚q. We first
prove a lemma similar to Lemma B.3 in (Jin et al., 2019) and Lemma A.1 in (Wang et al., 2020b).
Lemma C.4 (Concentration Lemma). We use E1 to denote the event that, when running Algorithm
1, the following inequality holds for all k P rKs and h P rhks and arbitrary V kh`1 occurs in Alg 1.

›

›

›

k´1
ÿ

τ“1

N
ÿ

n“1

φτnh

´

V kh`1ps
τn
h`1q ´

ÿ

s1PS
Phps

1|sτnh , aτnh qV
k
h`1ps

1q

¯
›

›

›

pΛkhq
´1
ď c ¨ dH

a

logpdKNH{δq

Under Assumption A, there exists some absolute constant c ě 0, such that P pE1q ě 1´ δ{2.

Proof. The proof is almost identical to Lemma B.3 in (Jin et al., 2019), so we omit it here. The only
difference is that we have an inner summation from n “ 1 to N and we truncate the horizon at hk
in iteration k. ˝

Lemma C.5 (Overestimation). On the event E1 in Lemma C.4, which holds with probability 1´δ{2,
for all k P rKs and n P rN s,

V ˚1 ps
kn
1 |hkq ď V k1 ps

kn
1 q

where recall that V k1 is the function computed at iteration k in Alg.1 and V ˚1 p¨|hkq “

Er
řhk
h“1 rhpsh, ahq|π

˚
r1:hks

s denote the optimal value function in the MDP truncated at layer hk
and π˚

r1:hks
is the optimal policy in the truncated MDP.

Besides, we also have:

Es1„d1rV ˚1 ps1|hkq ´ V
πkps1|hkqs ď 2βEs1,a1,...,shk ,ahk„πk r

hk
ÿ

h“1

}φpsh, ahq}pΛkhq´1s

Proof. First of all, by applying Lemma C.4 above, after a similar discussion to the proof of Lemma
3.1 in (Wang et al., 2020b), we can show that

|φps, aqJwkh ´
ÿ

s1PS
Phps

1|s, aqV kh`1ps
1q| ď β}φps, aq}pΛkhq´1 , @s P S, a P A, h P rhks

and the overestimation

V ˚h ps|hkq ď V kh psq, @s P S, h P rhks

As a result,

Es1„d1rV ˚1 ps1|hkq ´ V
πkps1|hkqs

ďEs1„d1rV k1 ps1q ´ V
πkps1|hkqs

“Es1„d1,a1„πk rQk1ps1, a1q ´Q
πkps1, a1|hkqs

“Es1„d1,a1„πk rmintpwk1 q
Jφps1, a1q ` r1ps1, a1q ` u

k
1ps1, a1q, Hu ´ r1ps1, a1q ´

ÿ

s2PS
P1ps2|s1, a1qV

πk
2 ps2|hkqqs

27



Published as a conference paper at ICLR 2022

“Es1„d1,a1„πk rmintpwk1 q
Jφps1, a1q, H ´ r1ps1, a1q ´ u

k
1ps1, a1qu ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2qs

` Es1„d1,a1„πk r
ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2q ´

ÿ

s2PS
P1ps2|s1, a1qV

πk
2 ps2|hkqqs ` Es„µruk1ps1, a1qs

ďEs1„d1,a1„πk r
ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2q ´

ÿ

s2PS
P1ps2|s1, a1qV

πk
2 ps2|hkqqs ` 2Es„µruk1ps1, a1qs

“Es1„d1,a1,s2,a2„πk rV k2 ps2q ´ V
πk
2 ps2|hkqs ` 2Es„µruk1ps1, a1qs

ď...

ď2Es1„d1,a1,...,shk ,ahk„πk r
hk
ÿ

h“1

ukhpsh, ahqs

ď2βEs1„d1,a1,...,shk ,ahk„πk r
hk
ÿ

h“1

}φpsh, ahq}pΛkhq´1s

where in the second inequality, we use the following fact

mintpwk1 q
Jφps1, a1q, H ´ r1ps1, a1q ´ u

k
1ps1, a1qu ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2q

“mintpwk1 q
Jφps1, a1q ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2q, H ´ r

k
1 ps1, a1q ´ u

k
1ps1, a1q ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2qu

ďmintβ}φps1, a1q}pΛk1 q
´1 , Hu “ uk1ps1, a1q

˝

Now we are ready to prove the following theorem restated from Theorem 4.1 in a more detailed
version, where we include the guarantees during the execution of the algorithm.

Theorem C.6. [Deployment Complexity] For arbitrary ε, δ ą 0, and arbitrary cK ě 2, as long as

N ě c
´

cK
H4cK`1d3cK

ε2cK
log2cK pHdδε q

¯
1

cK´1

, where c is an absolute constant and independent with
cK , d,H, ε, δ, by choosing

K “ cKdH ` 1. (8)

Algorithm 1 will terminate at iteration kH ď K and return us a policy πkH , and with probability
1´ δ, (1) Es1„d1rV ˚1 ps1q ´ V

πkH
1 ps1qs ď ε. (2) for each h P rH ´ 1s, there exists an iteration kh,

such that hkh “ h but hkh`1 “ h`1, and πkh is an ε-optimal policy for the MDP truncated at step
h;

Proof. As stated in the theorem, we use kh to denote the number of deployment after which the
algorithm switch the exploration from layer h to layer h ` 1, i.e. hkh “ h and hkh`1 “ h ` 1.
According to the definition and the algorithm, we must have ∆kh ď

εhkh
2H , and for arbitrary kh´1 `

1 ď k ď kh ´ 1, ∆k ě
εhk
2H (if kh´1 ` 1 ą kh ´ 1, then it means ∆kh´1`1 is small enough and the

algorithm directly switch the exploration to the next layer, and we can skip the discussion below ).
Therefore, for arbitrary kh´1 ` 1 ď k ď kh ´ 1, during the k-th deployment, there exists h P rhks,
such that,

ε

2H
ď

∆k

hk
ď

2β

N

N
ÿ

n“1

}φpsknh , aknh q}pΛkhq´1 ď 2β

g

f

f

e

1

N

N
ÿ

n“1

}φpsknh , aknh q}
2
pΛkhq

´1

where the second inequality is because the average is less than the maximum. The above implies
that

1

N

N
ÿ

n“1

}φpsknh , aknh q}
2
pΛkhq

´1 “
1

N
Tr

´

pΛkhq
´1

´

N
ÿ

n“1

φpsknh , aknh qφps
kn
h , aknh q

J
¯¯

ě
ε2

16H2β2
(9)
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According to Lemma 4.2, there exists constant c, c1, such that by choosing N according to Eq.(10)
below, the event in Eq.(9) will not happen more than dcK times at each layer h P rhks.

N ě c
´

cK
H4cK`1d3cK

ε2cK
log2cK p

Hd

εδ
q

¯
1

cK´1

ě c1
´

cK
H2cK`1dcKβ2cK

ε2cK
logcK p

Hdβ

ε
q

¯
1

cK´1

(10)

Recall that ε ă 1 and the covariance matrices in each layer is initialized by Idˆd. Therefore, at the
first deployment, although the computation of π1 does not consider the layers h ě 2, Eq.(9) happens
in each layer h P rHs. We use ζpk, jq to denote the total number of times events in Eq.(9) happens
for layer j previous to deployment k, as a result,

kh ď
h
ÿ

j“1

ζpkh, jq ´ ph´ 1q ` h ď cKdh` 1, @h P rHs

where we minus h ´ 1 because such event must happen at the first deployment for each h P rHs
and we should remove the repeated computation; and we add another h back is because there are
h times we waste the samples (i.e. for those k such that ∆k ă

εhk
2H ). Therefore, we must have

kH ď cKdH ` 1 “ K.

Moreover, because at iteration k “ kh, we have ∆kh ď ε{2, according to Hoeffding inequality, with
probability 1´ δ{2, for each deployment k, we must have:

Es1,a1,...,shk ,ahk„πk r2β
hk
ÿ

h“1

}φpsh, ahq}pΛkhq´1s ď ∆k ` 2βH

c

1

2N
logp

K

δ
q (11)

Therefore, by choosing

N ě
8β2H2

ε2
logp

K

δ
q “ Op

d2H4

ε2
log2

p
K

δ
qq (12)

we must have,

Es1,a1,...,sh,ah„πkh r2β
h
ÿ

h1“1

}φpsh1 , ah1q}pΛk
h1
q´1s ď ∆kh `

ε

2
“ ε, @h P rHs

Therefore, after a combination of Eq.(10) and Eq.(12), we can conclude that, for arbitrary cK ě 2 ,
there exists absolute constant c, such that by choosing

N ě c
´

cK
H4cK`1d3cK

ε2cK
log2cK p

Hd

εδ
q

¯
1

cK´1

the algorithm will stop at kH ď K, and with probability 1 ´ δ (on the event of E1 in C.4 and the
Hoeffding inequality above), we must have:

Es1„d1rV ˚1 ps1q ´ V
πkps1qs ď Es1,a1,...,shk ,ahk„πk`1

r2β
hk
ÿ

h“1

}φpsh, ahq}pΛkhq´1s ď ε

and an additional benefits that for each h P rH´1s, πkh is an ε-optimal policy at the MDP truncated
at h step, or equivalently,

Es1„d1rV ˚1 ps1|hq ´ V
πkh
1 ps1|hqs ď ε. (13)

˝

C.4 ADDITIONAL SAFETY GUARANTEE BROUGHT WITH LAYER-BY-LAYER STRATEGY

The layer-by-layer strategy brings another advantage that, if we finish the exploration of the first h
layers, based on the samples collected so far, we can obtain a policy pπ|h, which is an ε-optimal in
the MDP truncated at step h, or equivalently:

Jpπ˚q ´ Jppπ|hq ě H ´ h`Opεq, @h P rHs
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We formally state these guarantees in Theorem C.6 (a detailed version of Theorem 4.1), Theorem
D.4 and Theorem E.9 (the formal version of Theorem 4.4). Such a property may be valuable in
certain application scenarios. For example, in “Safe DE-RL”, which we will discuss in Appendix
F, pπ|h can be used as the pessimistic policy in Algorithm 7 and guarantee the monotonic policy
improvement criterion. Besides, in some real-world settings, we may hope to maintain a sub-optimal
but gradually improving policy before we complete the execution of the entire algorithm.

If we replace Line 7-8 in LSVI-UCB (Algorithm 1) in Jin et al. (2019) with Line 13-18 in our
Algorithm 1, the similar analysis can be done based on Lemma 4.2, and the same ΘpdHq deployment
complexity can be derived. However, the direct extension based on LSVI-UCB does not have the
above safety guarantee. It is only guaranteed to return a near-optimal policy after K “ ΘpdHq
deployments, but if we interrupt the algorithm after some k ă K deployments, there is no guarantee
about what the best possible policy would be based on the data collected so far.

D REWARD-FREE DEPLOYMENT-EFFICIENT RL WITH DETERMINISTIC
POLICIES

D.1 ALGORITHM

Similar to other algorithms in reward-free setting (Wang et al., 2020b; Jin et al., 2020), our algorithm
includes an “Exploration Phase” to uniformly explore the entire MDP, and a “Planning Phase” to
return near-optimal policy given an arbitrary reward function. The crucial part is to collect a well-
covered dataset in the online “exploration phase”, which is sufficient for the batch RL algorithm
(Antos et al., 2008; Munos & Szepesvári, 2008; Chen & Jiang, 2019) in the offline “planning phase”
to work.

Our algorithm in Alg.3 and Alg.4 is based on (Wang et al., 2020b) and the layer-by-layer strategy.
The main difference with Algorithm 1 is in two-folds. First, similar to (Wang et al., 2020b), we
replace the reward function with 1{H of the bonus term. Secondly, we use a smaller threshold for
∆k comparing with Algorithm 1.

D.2 ANALYSIS FOR ALG 3 AND ALG 4

We first show a lemma adapted from Lemma C.4 for Alg 3. Since the proof is similar, we omit it
here.
Lemma D.1 (Concentration for DE-RL in Reward-Free Setting). We use E2 to denote the event
that, when running Algorithm 3, the following inequality holds for all k P rKs and h P rhks and all
V “ V kh`1 occurs in Alg 3 or V “ Vh occurs in Alg 4:

›

›

›

k´1
ÿ

τ“1

N
ÿ

n“1

φτnh

´

V psτnh`1q ´
ÿ

s1PS
Phps

1|sτnh , aτnh qV ps
1q

¯
›

›

›

pΛkhq
´1
ď c ¨ dH

a

logpdKNH{δq

Under Assumption A, there exists some absolute constant c ě 0, such that P pE2q ě 1´ δ{2.

Proof. The proof is almost identical to Lemma 3.1 in (Wang et al., 2020b), so we omit it here. The
only difference is that we have an inner summation from n “ 1 to N and we truncate the horizon at
hk in iteration k. ˝

Next, we prove a lemma simlar to Lemma C.5 based on Lemma D.1.
Lemma D.2 (Overestimation). On the event E2 in Lemma D.1, which holds with probability 1´δ{2,
in Algorithm 3, for all k P rKs and n P rN s,

V ˚1 ps
kn
1 , rk|hkq ď V k1 ps

kn
1 q

and

Es1„d1rV ˚1 ps, rk|hkqs ď Es1„d1rV k1 psqs ď p2H ` 1qEs1„d1rV πkps, rk|hkqs

Proof. We first prove the overestimation inequality.
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Algorithm 3: Reward-Free DE-RL with Deterministic Policies in Linear MDPs: Exploration
Phase

1 Input: Failure probability δ ą 0, and target accuracy ε ą 0, β Ð cβ ¨ dH
a

logpdHδ´1ε´1q

for some cβ ą 0, total number of deployments K, batch size N
2 Initialize h1 “ 1
3 D1 “ tu, D2 “ tu, ..., DH “ tu

4 for k “ 1, 2, ...,K do
5 Qkhk`1p¨, ¨q Ð 0 and V khk`1p¨q “ 0

6 for h “ hk, hk ´ 1, ..., 1 do
7 Λkh Ð I `

řk
τ“1

řN
n“1 φ

τn
h pφ

τn
h q

J

8 ukhp¨, ¨q Ð mintβ ¨
b

φp¨, ¨qJpΛkhq
´1φp¨, ¨q, Hu

9 Define the exploration-driven reward function rkhp¨, ¨q Ð ukhp¨, ¨q{H

10 wkh Ð pΛkhq
´1

řk´1
τ“1

řN
n“1 φ

τn
h ¨ V kh`1ps

τn
h`1q

11 Qkhp¨, ¨q Ð mintpwkhq
Jφp¨, ¨q ` rkhp¨, ¨q ` u

k
hp¨, ¨q, Hu and V kh p¨q “ maxaPAQ

k
hp¨, aq

12 πkhp¨q Ð arg maxaPAQ
k
hp¨, aq

13 end
14 Define πk “ πk1 ˝ π

k
2 ˝ ...π

k
hk
˝ unifrhk`1:Hs

15 for n “ 1, ..., N do
16 Receive initial state skn1 „ d1

17 for h “ 1, 2, ...,H do
18 Take action aknh Ð πkpsknh q and observe sknh`1 „ Phps

k
h, a

k
hq

19 Dh “ Dh

Ť

tpsknh , aknh qu
20 end
21 end

22 Compute ∆k Ð
2β
N

řN
n“1

řhk
h“1

b

φpsknh , aknh q
JpΛkhq

´1φpsknh , aknh q.

23 if ∆k ă
εhk

p4H`2qH then
24 if hk “ H then return D “ tD1, D2, ..., DHu ;
25 else hk Ð hk ` 1 ;
26 end
27 end

Algorithm 4: Reward-Free DE-RL with Deterministic Policies in Linear MDPs: Planning Phase

1 Input: Horizon length rh; Dataset D “ tpsknh , aknh qk,n,hPrKsˆrNsˆrrhsu, reward function
r “ trhuhPrrhs

2 Q
rh`1p¨, ¨q Ð 0 and V

rh`1p¨q Ð 0

3 for h “ rh,rh´ 1, ..., 1 do
4 Λh Ð I `

řK
τ“1

řN
n“1 φps

τn
h , aτnh qφps

τn
h , aτnh q

J

5 Let uplanh p¨, ¨q Ð mintβ
a

φp¨, ¨qJpΛhq´1φp¨, ¨q,rhu

6 wh Ð pΛhq
´1

řK
τ“1 φps

τn
h , aτnh q ¨ Vh`1ps

τn
h`1, aq

7 Qhp¨, ¨q Ð mintwJh φp¨, ¨q ` rhp¨, ¨q ` u
plan
h p¨, ¨q,rhu and Vhp¨q “ maxaPAQhp¨, aq

8 πhp¨q Ð arg maxaPAQhp¨, aq
9 end

10 return πr|rh “ tπhuhPrrhs, pV1p¨, r|rhq :“ V1p¨q

Overestimation First of all, similar to the proof of Lemma 3.1 in (Wang et al., 2020b), on the
event of E2 defined in Lemma C.4, which holds with probability 1´ δ{2, we have:

|φps, aqJwkh ´
ÿ

s1PS
Phps

1|s, aqV kh`1ps
1q| ď β ¨ }φps, aq}pΛkhq´1 , @s, a P S ˆA, k P rKs, h P rhks

(14)
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Then, we can use induction to show the overestimation. For h “ hk ` 1, we have:

0 “ V ˚hk`1ps, r
k|hkq ď V khk`1psq “ 0, @s P S

Suppose for some h P rhks, we have

V ˚h`1ps, r
k|hkq ď V kh`1psq, @s P S

Then, @s P S, we have

V ˚h ps, r
k|hkq “max

a
prkhps, aq `

ÿ

s1PS
Phps

1|s, aqV ˚h`1ps
1, rk|hkqq

ďmax
a
prkhps, aq `

ÿ

s1PS
Phps

1|s, aqV kh`1ps
1qq, H

ďmintmax
a
prkhps, aq ` φps, aq

Jwkh ` β}φps, aq}pΛkhq´1q, Hu

“max
a

mintrkhps, aq ` φps, aq
Jwkh ` β}φps, aq}pΛkhq´1 , Hu

“V kh psq

where in the last inequality, we apply Eq.(14).

Relationship between V k1 p¨q and V πkp¨, rkq

Es1„d1rV k1 ps1q ´ V
πkps1, r

k|hkqs

“Es1„d1,a1„πk rQk1ps1, a1q ´Q
πkps1, a1, r

k|hkqs

“Es1„d1,a1„πk rmintpwk1 q
Jφps1, a1q ` r

k
1 ps1, a1q ` u

k
1ps1, a1q, Hu

´ rk1 ps1, a1q ´
ÿ

s2PS
P1ps2|s1, a1qV

πk
2 ps2, r

k|hkqqs

ďEs1„d1,a1„πk rmintpwk1 q
Jφps1, a1q, H ´ r

k
1 ps1, a1q ´ u

k
1ps1, a1qu ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2qs

` Es1„d1,a1„πk r
ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2q ´

ÿ

s2PS
P1ps2|s1, a1qV

πk
2 ps2, r

k|hkqqs ` Es„d1ruk1ps1, a1qs

ďEs1„d1,a1„πk r
ÿ

s1PS
P1ps2|s1, a1qV

k
2 ps2q ´

ÿ

s2PS
P1ps2|s1, a1qV

πk
2 ps2, r

k|hkqqs ` 2Es„d1ruk1ps1, a1qs

“Es1„d1,a1,s2,a2„πk rV k2 ps2q ´ V
πk
2 ps2, r

k|hkqs ` 2Es„d1ruk1ps1, a1qs

ď...

ď2Es1„d1,a1,...,shk ,ahk„πk r
H
ÿ

h“1

ukhpsh, ahqs

“2HEs1„d1rV πkps, rk|hkqs

where in the first inequality, we add and subtract
ř

s2PS P1ps2|s1, a1qV
k
2 ps2q, and in the second

inequality, we use the following fact

mintpwk1 q
Jφps1, a1q, H ´ r

k
1 ps1, a1q ´ u

k
1ps1, a1qu ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2q

“mintpwk1 q
Jφps1, a1q ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2q, H ´ r

k
1 ps1, a1q ´ u

k
1ps1, a1q ´

ÿ

s2PS
P1ps2|s1, a1qV

k
2 ps2qu

ďmintβ}φps1, a1q}pΛk1 q
´1 , Hu “ uk1ps1, a1q

˝

Next, we provide some analysis for Algorithm 4, which will help us to understand what we want to
do in Algorithm 3
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Lemma D.3. On the event E2 in Lemma D.1, which holds with probability 1 ´ δ{2, if we as-
sign rh “ hk in Algorithm 4 and assign D to be the samples collected till deployment k, i.e.
D “ tpsknh , aknh qk,n,hPrKsˆrNsˆrhksu, then for arbitrary reward function r satisfying the linear
Assumption A, the policy πr|rh returned by Alg 4 would satisfy:

Es1„d1rV
π˚
r|rh

1 ps1, r|rhq ´ V
π
r|rh

1 ps1, r|rhqs ď 2HEs1„d1rV
π˚
rplan|rh

1 ps1, r
plan|rhqs (15)

where rplan :“ uplan{rh.

Proof. By applying the similar technique in the analysis of Es1„d1rV k1 ps1q ´ V πkps1, r
k|rhqs in

Lemma D.2 after replacing rk with r, we have:

Es1„d1rV
π˚
r|rh

1 ps1, r|rhq ´ V
π
r|rh

1 ps1, r|rhqs ďEs1„d1rpV1ps1, r|rhq ´ V
π
r|rh

1 ps1, r|rhqs ď 2Es1„d1rV
π
r|rh

1 ps1, u
planqs

where pV1 denotes the value function returned by Alg 4 Besides,

2Es1„d1rV
π
r|rh

1 ps1, u
planqs “2rhEs1„d1rV

π
r|rh

1 ps1, r
plan|rhqs ď 2HEs1„d1rV

π˚
rplan|rh

1 ps1, r
plan|rhqs

then, we finish the proof. ˝

From Eq.(15) in Lemma D.3, we can see that, after exploring with Algorithm 3, the sub-optimality
gap between π˚ and π returned by Alg.4 can be bounded by the value of the optimal policy w.r.t.
rK , which we will further bound in the next theorem.

Now we are ready to prove the main theorem.

Theorem D.4. For arbitrary ε, δ ą 0, by assigning K “ cKdH ` 1 for some cK ě 2, as long as

N ě c
´

cK
H6cK`1d3cK

ε2cK
log2cK p

Hd

δε
q

¯
1

cK´1
)

(16)

where c is an absolute constant and independent with cK , d,H, ε, δ, then, Alg 3 will terminate at
iteration kH ď K and return us a dataset D “ tD1, D2, ..., DHu, such that given arbitrary reward
function r satisfying Assumption A, by running Alg 4 with D and r, with probability 1 ´ δ, we can
obtain a policy πr satisfying Es„d1rV ˚1 ps, rq ´ V πps, rqs ď ε.

Moreover, for each h P rH ´ 1s, there exists iteration kh, such that hkh “ h but hkh`1 “ h ` 1,
and if we run Alg 4 with the reward function r and the dataset Alg 3 has collected till k “ kh, we
can obtain a policy πr|h, which is an ε-optimal policy for MDP truncated at step h.

Proof. The proof is similar to Theorem 4.1. As stated in theorem, we use kh to denote the number
of deployment when the algorithm switch the exploration from layer h to layer h` 1, i.e. hkh “ h

and hkh`1 “ h` 1. According to the definition and the algorithm, we must have ∆kh ď
εhkh

p4H`2qH ,

and for arbitrary kh´1 ` 1 ď k ď kh ´ 1, we must have ∆k ě
εhk

p4H`2qH (if kh´1 ` 1 ą kh ´ 1,
then it means ∆kh´1`1 is small enough and the algorithm directly switch the exploration to the next
layer, and we can skip the discussion below). Therefore, for arbitrary kh´1 ` 1 ď k ď kh ´ 1,
during the k-th deployment, there exists h P rhks, such that,

ε

p4H ` 2qH
ď

∆k

hk
ď

2β

N

N
ÿ

n“1

}φpsknh , aknh q}pΛkhq´1 ď 2β

g

f

f

e

1

N

N
ÿ

n“1

}φpsknh , aknh q}
2
pΛkhq

´1

which implies that

1

N

N
ÿ

n“1

}φpsknh , aknh q}
2
pΛkhq

´1 ě
ε2

16H2p2H ` 1q2β2
(17)
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According to Lemma 4.2, there exists an absolute constant c, for arbitrary ε ă 1, by choosing N
according to Eq.(18) below, the events in Eq.(17) will not happen more than cKd times at each layer
h P rHs.

N ě c
´

cK
H6cK`1d3cK

ε2cK
log2cK p

Hd

εδ
q

¯
1

cK´1

(18)

We use ζpk, jq to denote the total number of times Eq.(9) happens for layer j till deployment kh.
With a similar discussion as Theorem 4.1, we have:

kh ď
h
ÿ

j“1

ζpkh, jq ´ ph´ 1q ` h ď cKdh` 1, @h P rHs

Moreover, we must have ∆kh ď
ε

4H`2 for each h P rHs, and according to Hoeffding inequality,
with probability 1´ δ{2, for each step k, we must have

Es1,a1,...,sh,ah„πkh r2β
h
ÿ

h1“1

}φpsh1 , ah1q}pΛk
h1
q´1s ď ∆kh ` 2βH

c

1

2N
logp

K

δ
q

Therefore, by choosing

N ě
8β2H2p2H ` 1q2

ε2
logp

K

δ
q “ Op

d2H6

ε2
log2

p
K

δ
qq (19)

we have,

Es1,a1,...,sh,ah„πkh r2β
h
ÿ

h1“1

}φpsh1 , ah1q}pΛk
h1
q´1s ď ∆kh `

ε

4H ` 2
“

ε

2H ` 1

For arbitrary h P rHs, in Algorithm 4, if we assign rh “ h and D “ tpsknh , aknh qk,n,hPrkhsˆrNsˆrhsu,
note that rplan “ rkh , by applying Lemma D.2 and Lemma D.3 we have:

Es1„d1rV
π˚
r|rh

1 ps1, r|rhq ´ V
π
r|rh

1 ps1, r|rhqs ď 2HEs1„d1rV
π˚
rplan|rh

1 ps1, r
plan|rhqs

“2HEs1„d1rV ˚1 ps1, r
kh |hqs ď 2Hp2H ` 1qEs1„d1rV πkh ps1, r

kh |hqs

“p2H ` 1qEs1,a1,...,sh,ah„πkh r2β
h
ÿ

h1“1

}φpsh1 , ah1q}pΛk
h1
q´1s ď ε

Therefore, after a combination of Eq.(18) and Eq.(19), we can conclude that, for arbitrary cK ě 2 ,
there exists absolute constant c, such that by choosing

N ě c
´

cK
H6cK`1d3cK

ε2cK
log2cK p

Hd

δε
q

¯
1

cK´1

Alg 3 will terminate at kH ď K, and with probability 1 ´ δ (on the event in Lemma D.1
and Hoeffding inequality above), for each h P rHs, if we feed Alg 4 with rh “ h, D “

tpsknh , aknh qk,n,hPrkhsˆrNsˆrhsu and arbitrary linear reward function r, the policy πr|h returned by
Alg 4 should satisfy:

Es1„d1rV
πr|h
1 ps1, r|hqs ě Es1„d1rV

π˚
r|h

1 ps1, r|hqs ´ ε

˝

E DE-RL WITH ARBITRARY DEPLOYED POLICIES

In the proof for this section, without loss of generality, we assume the initial state is fixed, which will
makes the notation and derivation simpler without trivialize the results. For the case where initial
state is sampled from some fixed distribution, our algorithms and results can be extended simply by
considering the concentration error related to the initial state distribution.
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Algorithm 5: SolveOptQ
1 Input: Time step h; Dataset in previous steps tD1, ..., Dh´1u; Unregularized Covariance

Matrices tΣ1, ...Σh´1u; Bonus factor β; Matrix to construct reward function ΣR; Discretize
resolution ε0 ď

1
2dpN`1q

2 Rp¨, ¨q Ð
a

φp¨, ¨qJp2I ` ΣRq´1φp¨, ¨q

3 Zh Ð Discretizationpp2I ` ΣRq
´1, ε0

2

4d q, R̄p¨, ¨q Ð
a

φp¨, ¨qJZhφp¨, ¨q

4 Qhp¨, ¨q “ Rp¨, ¨q, Vhp¨q “ maxaQhp¨, aq, Q̄hp¨, ¨q “ R̄p¨, ¨q, V̄hp¨q “ maxa Q̄hp¨, aq

5 π̄hp¨q “ arg maxa Q̄hp¨, aq

6 for rh “ h´ 1, ..., 1 do
7 w

rh Ð Σ´1
rh

ř

ps
rh
,a

rh
,s

rh`1
qPD

rh
φps

rh, arhq ¨ Vrh`1psrh`1q

8 u
rh :“ βrφp¨, ¨qJΣ´1

rh
φp¨, ¨qs1{2

9 Q
rhp¨, ¨q Ð mintwJ

rh
φp¨, ¨q ` u

rh, 1u, Vrhp¨q Ð maxaQrhp¨, aq

10 w̄
rh Ð Discretizationpw

rh,
ε0
2d q, Zrh Ð Discretizationpβ2Σ´1

rh
, ε0

2

4d q

11 ū
rh :“ rφp¨, ¨qJZ

rhφp¨, ¨qs
1{2

12 Q̄
rhp¨, ¨q Ð mintw̄J

rh
φp¨, ¨q ` ū

rh, 1u, V̄rhp¨q Ð maxa Q̄rhp¨, aq

13 π̄
rhp¨q Ð arg maxa Q̄rhp¨, aq

14 end
15 return V1ps1q, π̄ :“ π̄1 ˝ π̄2 ˝ ...π̄h

Algorithm 6: EstimateCovMatrix
1 Input: Time step h; Dataset in previous steps tD1, ..., Dh´1u; Covariance Matrices
tΣ1, ...Σh´1u; Deterministic Policy to evaluate π̄ “ tπ̄1, π̄2, ..., π̄hu

2 Initialize a zero matrix rΛπh “ O
3 for i “ 1, 2, ..., d do
4 for j “ i, i` 1, ..., d do
5 Define rRij , such that, rRijh p¨, ¨q “

1`φip¨,¨qφjp¨,¨q
2 and rRij

rh
“ 0 for all rh P rh´ 1s;

6 pQπ̄hp¨, ¨q “
rRijh p¨, ¨q, pV

π̄
h p¨q “

pQπ̄hp¨, π̄hp¨qq

7 for rh “ h´ 1, ..., 1 do
8 pwπ̄

rh
Ð Σ´1

rh

ř

ps
rh
,a

rh
,s

rh`1
qPD

rh
φpst, atq ¨ pV

π̄
rh`1
ps

rh`1q

9 pQπ̄
rh
p¨, ¨q Ð mint rRij

rh
p¨, ¨q ` p pwπ̄

rh
qJφp¨, ¨q, 1u

10 pV π̄
rh
p¨q “ pQπ̄

rh
p¨, π̄

rhp¨qq

11 end
12 prΛπ̄

rh
qij Ð pV π̄1 ps1q; prΛπ̄

rh
qji Ð pV π̄1 ps1q

13 end
14 end
15 pΛπ̄

rh
“ 2prΛπ̄

rh
q ´ 1

16 return pΛπ̄
rh

E.1 ALGORITHMS

We first introduce the definition for Discretization function:

Definition E.1 (Discretization function). Given vector w “ pw1, w2, ..., wdq
J P Rd or matrix

Σ “ pΣijqi,jPrds P Rdˆd as input, we have:

Discretizationpw, ε0q “ pε0r
w1

ε0
s, ε0r

w2

ε0
s, ..., ε0r

wd
ε0

sq, DiscretizationpΣ, ε0q “ pε0r
Σij
ε0

sqi,jPrds

where r¨s is the ceiling function.
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In Algorithm 6, we are trying to estimate the expected covariance matrix under policy π̄ by policy
evaluation. The basic idea is that, the expected covariance matrix can be represented by:

Esh,ah„π̄rφpsh, ahqφpsh, ahqJs “
`

Eπ̄rφipsh, ahqφjpsh, ahqs
˘

ij
“

`

V π̄ps1, R
ijq

˘

ij

where we use paijqij to denote a matrix whose element indexed by i in row and j in column is
aij . In another word, the element in the covariance matrix indexed by ij is equal to the value
function of policy π̄ with Rijh psh, ahq :“ φipsh, ahqφjpsh, ahq as reward function at the last layer
(and use zero reward in previous layers), where φi denotes the i-th elements of vector φ. Because
the techniques rely on the reward is non-negative and bounded in r0, 1s, by leveraging the fact that
|φip¨, ¨q| ď }φp¨, ¨q} ď 1, we shift and scale Rij to obtain rRij and use it for policy evaluation.

In Alg 5, we maintance two Q functions Qh and Q̄h. The learning of Qh is based on LSVI-UCB,
while Q̄h is a “discretized version” for Qh computed by discretizing wh, β2Σ´1

h (or Σ´1
R at layer

h) elementwisely with resolution ε0, and Q̄h will be used to compute π̄h for deployment. The main
reason why we discretize Qh is to make sure the number of greedy policies π̄ is bounded, so that we
can use union bound and upper bound the error when using Alg6 to estimate the covariance matrix.
In Section E.5, we will analyze the error resulting from discretization, and we will upper bound the
estimation error Algorithm 6.

E.2 FUNCTION CLASSES AND ε0-COVER

We first introduce some useful function classes and their ε0-cover.

Notation for Value Function Classes and Policy Classes We first introduce some new notations
for value and policy classes. Similar to Eq.(6) in (Jin et al., 2019), we define the greedy value
function class

V˚L,B “ tV p¨q|V p¨q “ max
a

mintφp¨, aqJw `
b

φp¨, aqJΣφp¨, aq, 1u, }w} ď L, }Σ} ď Bu

and the Q function class:

QL,B “ tQp¨, ¨q|Qp¨, ¨q “ mintφp¨, ¨qJw `
b

φp¨, ¨qJΣφp¨, ¨q, 1u, }w} ď L, }Σ} ď Bu

Besides, suppose we have a deterministic policy class Π with finite candidates (i.e. |Π| ď 8), we
use VL,B ˆΠ to denote:

VL,B ˆΠ “ tV p¨q|V p¨q “ mintφp¨, πp¨qqJw `
b

φp¨, πp¨qqJΣφp¨, πp¨qq, 1u, }w} ď L, }Σ} ď B, π P Πu

Recall that in Alg.6, we will use a special reward function, and we need to consider it in the union
bound. We denote:

Vφ ˆΠ “ tV |V p¨q “
1` φip¨, πp¨qqφjp¨, πp¨qq

2
, i, j P rds, π P Πu

and easy to check |Vφ ˆΠ| “ d2|Π|.

Moreover, if we have a Q function class Q, we will use ΠQ to denote the class of greedy policies
induced from Q, i.e.

ΠQ :“ tπp¨q “ arg maxQp¨, aq|Q P Qu.

Discretization with Resolution ε0 In the following, we will use Cw,L,ε0 to denote the ε0-cover
for w P Rd with }w} ď L, concretely,

Cw,L,ε0 “ tw||
wi
ε0
| P rr

L

ε0
ss,@i P rdsu

where r¨s is the ceiling function.

Similarly, we will use CΣ,B,ε0 to denote the ε0-cover for matrix Σ P Rdˆd with maxi,j |Σij | ď B

CΣ,B,ε0 “ tΣ||
Σij
ε0
| P rr

B

ε0
ss,@i, j P rdsu.
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Easy to check that:

log |Cw,L,ε0 | ď d log
2L

ε0
, log |CΣ,B,ε0 | ď d2 log

2B

ε0

Recall the definition of Discretize function in Def. E.1, easy to check that:

}Discretizepw, ε0q ´ w} ď dε0, }DiscretizepΣ, ε0q ´ Σ} ď }DiscretizepΣ, ε0q ´ Σ}F ď dε0

ε0-cover Before we introduce our notations for ε0-net, we first show a useful lemma:

Lemma E.2. For arbitrary w,Σ, denote w̄ “ Discretizepw, ε02d q and Σ̄ “ DiscretizepΣ, ε0
2

4d q.
Consider the following two functions and their greedy policies, where }φp¨, ¨q} ď 1

Qps, aq “ mintwJφp¨, aq `
b

φp¨, aqJΣφp¨, aq, 1u, π “ arg max
a

Qps, aq

Q̄ps, aq “ mintw̄Jφp¨, aq `
b

φp¨, aqJΣ̄φp¨, aq, 1u, π̄ “ arg max
a

Q̄ps, aq

then we have:

|Qps, πpsqq ´Qps, π̄psqq| ď 2ε0, @s P S,
}Q´ Q̄}8 ď ε0, sup

s
|max

a
Qp¨, aq ´max

a
Q̄p¨, aq| ď ε0

Proof. After similar derivation as Eq.(28) in (Jin et al., 2019), we can show that

sup
s
|max

a
Qp¨, aq ´max

a
Q̄p¨, aq| ď}Q´ Q̄}8

ď sup
s,a

ˇ

ˇ

ˇ
wJφp¨, ¨q `

b

φp¨, ¨qJΣφp¨, ¨q ´ w̄Jφp¨, ¨q ´
b

φp¨, ¨qJΣ̄φp¨, ¨q
ˇ

ˇ

ˇ

ď}w ´ w̄} `
b

}Σ´ Σ̄}F ď d
ε0

2d
`

c

d
ε0

2

4d
ď ε0

Because π and π̄ are greedy policies, we have:

0 ďQps, πpsqq ´Qps, π̄psqq ď Qps, πpsqq ´ Q̄ps, πpsqq ` Q̄ps, π̄psqq ´Qps, π̄psqq

ď2}Q´ Q̄}8 ď 2ε0. ˝

Now, we consider the following Q function class and V function class,

Q̄L,B,ε0 :“ tQ|Qp¨, ¨q “ mintwJφp¨, ¨q `
b

φp¨, ¨qJΣφp¨, ¨q, 1u, w P Cw,L, ε02d ,Σ P CΣ,dB,
ε0

2

4d

u

V̄˚L,B,ε0 :“ tV |V p¨q “ max
a

mintwJφp¨, aq `
b

φp¨, aqJΣφp¨, aq, 1u, w P Cw,L, ε02d ,Σ P CΣ,dB,
ε0

2

4d

u

based on Lemma E.2, and another important fact that maxi,j |aij | ď }A}F ď d}A}, we know that
Q̄L,B,ε0 is an ε0-cover of QL,B , i.e. for arbitrary Q P QL,B , there exists Q̄ P Q̄L,B,ε0 , such that
}Q´ Q̄} ď ε0. Similarly, V̄˚L,B,ε0 is also an ε0-cover of V˚L,B .

Besides, we will use ΠQ̄L,B,ε0
to denote the collection of greedy policy induced from elements in

Q̄L,B,ε0 .

We also define V̄L,B,ε0 ˆΠ, which is an ε0 cover for VL,B ˆΠ.

V̄L,B,ε0 ˆΠ :“ tV |V p¨q “ mintφp¨, πp¨qqJw `
b

φp¨, πp¨qqJΣφp¨, πp¨qq, 1u, w P Cw,L, ε02d ,Σ P CΣ,dB,
ε0

2

4d

, π P Πu

Obviously, |V̄L,B,ε0 ˆΠ| “ |Π| ¨ |Cw,L, ε02d | ¨ |CΣ,dB,
ε0

2

4d

|.

Besides, because Vφ ˆΠ is already a finite set, it is an ε0-cover of itself.
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E.3 CONSTRAINTS IN ADVANCE

Induction Condition Related to Accumulative Error Recall the induction condition in 4.5, and
we restate it here.
Condition 4.5. [Induction Condition] Suppose after h ´ 1 deployments, we have the following
induction condition for some ξ ă 1{d, which will be determined later:

maxπ Eπr
řh´1

rh“1

b

φps
rh, arhq

JΣ´1
rh
φps

rh, arhqs ď
h´1
H ξ. (2)

Constraints for the Validity of the Algorithm Besides, in order to make sure the algorithm can
run successfully, we add the following constaints:

ΣR ľ´
1

2
I (20)

Z
rh ľ0, @rh P rh´ 1s (21)

I ľZh ľ 0 (22)

where constraint (22) for Zh is to make sure the reward R̄ locates in r0, 1s interval.

Recall the definition of Σ
rh “ I `

řN
n“1 φpsrh, arhqφpsrh, arhq

J, therefore,

σminpβ
2Σ´1

rh
q “ β2{σmaxpΣrhq ě

β2

1`N

According to Lemma E.11, to make sure Z
rh ľ 0, we need the following constraint on ε0

d
ε0

2

4d
ď

β2

pN ` 1q
(23)

which is equivalent to ε0 ď β{
?
N ` 1.

As for Zh, the constraint is equivalent to:

2I ` ΣR ľ p1`
ε0

2

4
qI, p2I ` ΣRq

´1 ľ
ε0

2

4
I

and can be rewritten to

I ` ΣR ľ
ε0

2

4
I,

4

ε0
2
I ľ 2I ` ΣR (24)

E.4 CONCENTRATION BOUND

Based on the notations above, we are already to claim that:

Claim 3. By choosing L “
?
dN,B “ β2 ` dε0 for some ε0 ď 1{d, during the running of

Algorithm 2

• In Alg 5, for each h P rHs and rh P rhs, and the Q̄
rh and π̄

rh generated while running the
algorithm, we must have Q̄

rh P Q̄L,B,ε0 and π̄
rh P ΠQ̄L,B,ε0

. Besides, Q
rh P QL,B and

V
rh P V

˚
L,B

• In Alg 6, for all rh P rhs, we have π̄
rh P ΠQ̄L,B,ε0

, and for arbitrary value function pV π̄
rh

generated in it, we have pV π̄
rh
P pVL,B ˆΠQ̄L,B,ε0

q Y pVφ ˆΠQ̄L,B,ε0
q and therefore, there

exists V P pV̄L,B,ε0 ˆΠQ̄L,B,ε0
q Y pVφ ˆΠQ̄L,B,ε0

q such that }V ´ pV π̄
rh
} ď ε0

Proof. Algorithm 5: First we bound the norm of the weights wh in Algorithm 5. For arbitrary
v P Rd and }v} “ 1, we have:

|vJw
rh| “|vΣ´1

rh

ÿ

ps
rh
,a

rh
,s

rh`1
qPD

rh

φps
rh, arhqVrh`1psrh`1q| ď |vΣ´1

rh

ÿ

ps
rh
,a

rh
,s

rh`1
qPD

rh

φps
rh, arhq|
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ď

d

|
ÿ

ps
rh
,a

rh
,s

rh`1
qPD

rh

vJΣ´1
rh
v||

ÿ

ps
rh
,a

rh
,s

rh`1
qPD

rh

φps
rh, arhq

JΣ´1
rh
φps

rh, arhq|

ď}v}
b

d|D
rh| “ }v}

?
dN

therefore, }w
rh} ď

?
dN . Besides, according to Lemma E.11 and constraint (24), we have:

}β2Σ´1
rh
} ď β2, }Z

rh} ď}β
2Σ´1

rh
} ` dε0 ď β2 ` dε0 @h P rh´ 1s

}p2I ` ΣRq
´1} ď 1, }Zh} ď}p2I ` ΣRq

´1} ` dε0 ď 1` dε0

Recall B “ β2 ` dε0 and β ą 1, the claim about Alg 5 is true.

Algorithm 6: The discussion about the value range of pwπ̄
rh

is similar to above. Therefore, all the
value functions occurred in the previous h´ 1 layers would belong to VL,B ˆΠ, except that the last
layer should belong to Vφ ˆ Π. Besides, since Alg 6 is only used to estimate the policies returned
by Alg 5, we should have Π “ ΠQ̄L,B,ε0

. As a result, the claim for Alg 6 is correct. ˝

Recall Lemma D.4 from (Jin et al., 2019), which holds for arbitrary V with covering number Nε0
and sups |V psq| ď H . Next, we state a slightly generalized version by replacing sups |V psq| ď H
with sups |V psq| ď 1, since in our Alg. 5 and Alg. 6 Vmax “ 1. This is also the main reason why
we only need the coefficient of the bonus term β “ rOpdq instead of rOpdHq in Alg. 5 so that we can
achieve better dependence on H .
Lemma E.3 ((Revised) Lemma D.4 in (Jin et al., 2019)). Let tsτu8τ“1, be a stochastic process
on state space S with corresponding filtration tFτu8τ“1. Let tφτu8τ“0 be an Rd-valued stochastic
process where φτ P Fτ´1 and }φτ } ď 1. Let Λt “ λI `

řt
τ“1 φτφ

J
τ . Then for any δ ą 0, with

probability at least 1´ δ, for all t ě 0, and any V P V so that sups |V psq| ď 1, we have:

›

›

›

t
ÿ

τ“1

φτtV psτ q ´ ErV pxτ q|Fτ´1su

›

›

›

2

Λ´1
t

ď 4r
d

2
log

t` λ

λ
` log

Nε0

δ
s `

8t2ε0
2

λ

where Nε0 is the ε0-covering number of V w.r.t. the distance distpV, V 1q “ sups |V psq ´ V psq
1|

Now we are ready to prove the main concentration result for Algorithm 2:
Theorem E.4. Consider value function class V :“ V˚L,B Y pVL,B ˆΠQ̄L,B,ε0

q Y pVφ ˆΠQ̄L,B,ε0
q

with L “ 1, B “ β2 ` dε0. According to Claim 3, V covers all possible value functions occurs
when running Alg 2. We use E to denote the even that the following inequality holds for arbitrary
V P V and arbitrary k P rKs “ rHs, h P rHs:

›

›

›

k´1
ÿ

τ“1

N
ÿ

n“1

φτnh

´

V psτn
rh`1
q ´

ÿ

s1PS
Phps

1|sτnh , aτnh qV ps
1q

¯
›

›

›

pΣhq´1
ď c ¨ d

a

logpdNβH{ε0δq

As long as

ε0 ď 1{N (25)

there exists some constant c, such that P pEq ě 1´ δ{2.

Proof. We consider the value function class:

V :“ V˚L,B Y pVL,B ˆΠQ̄L,B,ε0
q Y pVφ ˆΠQ̄L,B,ε0

q

and we have an ε0-cover for it, which we denote as:

Vε0 :“ V̄˚L,B,ε0 Y pV̄L,B,ε0 ˆΠQ̄L,B,ε0
q Y pVφ ˆΠQ̄L,B,ε0

q

Besides, there exists c1 ą 0, s.t.

log |Vε0 | ď log |Vφ ˆΠQ̄L,B,ε0
| ` log |V̄˚L,B,ε0 | ` log |V̄L,B,ε0 ˆΠQ̄L,B,ε0

|

ď log |Vφ ˆ Q̄L,B,ε0 | ` log |V̄˚L,B,ε0 | ` log |V̄L,B,ε0 ˆ Q̄L,B,ε0 |
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ďc1d2 log
dHNβ

ε0

By plugging into Lemma E.3 and considering the union bound over k P rKs and h P rHs (note that
K “ H), we have with probability 1´ δ{2,

›

›

›

k´1
ÿ

τ“1

N
ÿ

n“1

φτnh

´

V psτn
rh`1
q ´

ÿ

s1PS
Phps

1|sτnh , aτnh qV ps
1q

¯
›

›

›

2

pΛkhq
´1
ď c2d2 log

dHNβ

ε0δ
` 8N2ε0

2

When ε0 ď
1
N , the first term will dominate, and there must exists c such that

›

›

›

k´1
ÿ

τ“1

N
ÿ

n“1

φτnh

´

V psτn
rh`1
q ´

ÿ

s1PS
Phps

1|sτnh , aτnh qV ps
1q

¯
›

›

›

pΛkhq
´1
ď c ¨ d

a

logpdNβH{ε0δq

˝

E.5 BIAS ANALYSIS

Lemma E.5 (Overestimation in Alg 5). Suppose we choose

β “ c1βd

c

log
dHN

ε0δ
(26)

for some cβ ą 0. During the running of Alg 2, on the condition 4.5 and on the event of E in Theorem
E.4, which holds with probability 1´ δ{2, for arbitrary h P rHs and rh ď h´ 1, the parameter w

rh
and value function V

rh`1 occurs in Algorithm 5 should satisfy:

|φps, aqJw
rh ´

ÿ

s1PS
P
rhps

1|s, aqV
rh`1ps

1q| ď β}φps, aq}Σ´1
rh

and

V ˚
rh
psq ď V

rhpsq ď V ˚
rh
psq ` Eπr

h
ÿ

h1“rh

β}φpsh1 , ah1q}Σ´1

h1
s ď V ˚

rh
psq ` βξ

Proof. The proof is mainly based on Theorem E.4, and the steps are similar to Lemma B.3 in (Jin
et al., 2019) and Lemma 3.1 in (Wang et al., 2020b) and we omit here. ˝

Lemma E.6 (Bias Accumulation in Alg 5). On the induction condition 4.5 and on the events in
Theorem E.4 which holds with probability 1´ δ{2, if

ε0 ď
βξ

2H
(27)

in Algorithm 5, for arbitrary R̄ generated, we have:

V ˚1 ps1; R̄q ´ V π̄1 ps1; R̄q ď 3βξ

where recall that we use V πps; R̄q to denote the value function with R̄ as reward function.

Proof. We will use πhp¨q :“ arg maxaQhp¨, aq to denote the optimal policy w.r.t. the Q function
without discretization, although we do not deploy it in practice. According to Lemma E.2, we should
have maxs,h |Qhps, πpsqq ´Qhps, π̄psqq| ď 2ε0 for arbitrary h P rhs.

Recall that π̄ “ π̄1 ˝ π̄2... ˝ π̄h

V ˚1 ps1q ´ V
π̄
1 ps1q ď V1ps1q ´ V

π̄
1 ps1q (Lemma E.5; Overestimation)

“Q1ps1, π1ps1qq ´Q
π̄
1 ps1, π̄1ps1qq ď Q1ps1, π̄1ps1qq ´Q

π̄
1 ps1, π̄1ps1qq ` 2ε0 (Lemma E.2)

“Es1„d1,a1„π̄1
rmintφps1, a1qw

J
1 ` u1ps1, a1q, Hu ´ P2V2ps1, a1q ` P2V2ps1, a1q ´ P2V

π̄
2 ps1, a1qs ` 2ε0

ďEs1„d1,a1„π̄1,s2„P2p¨|s1,a1qrV2ps2q ´ V
π̄
2 ps2qs ` 2βEs1„d1,a1„π̄1r}φps1, a1q}Σ´1

1
s ` 2ε0

ď...
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ď2βEs1„d1,a1,s2,...,sh´1,ah´1„π̄r

h´1
ÿ

rh“1

}φps
rh, arhq}Σ´1

rh

s ` 2ph´ 1qε0 ` Esh,ah„π̄rVhpshq ´ V π̄h pshqs

ď2βξ ` 2hε0 ď 3βξ (Condition 4.5)

˝

Lemma E.7 (Bias of Linear Regression in Alg 6). During the running of Alg 2, on the event of E in
Theorem E.4, which holds with probability 1´δ{2, for arbitrary h P rHs,rh P rh´1s, and arbitrary
π, pwπ

rh
and pV π

rh`1
occurs in Alg 6, we have:

|φps, aqJ pwπh ´
ÿ

s1PS
Phps

1|s, aqpV π
rh`1
ps1q| ď β}φps, aq}Σ´1

h

where β is the same as Lemma E.5.

The proofs for the above Lemma is based on Theorem E.4 and Claim 3 and is similar to Lemma 3.1
in (Wang et al., 2020b), so we omit it here.
Lemma E.8 (Policy Evaluation Error in Alg 6). During the running of Algorithm 2, on the events
of E in Theorem E.4, which holds with probability 1´δ{2, and on the induction condition in 4.5, for
arbitrary h P rHs and i, j P rds, and arbitrary policy π and their evaluation results pV π Algorithm
6, we have:

|V πps1; rRijq ´ pV π1 ps1q| ď βξ

where we use rRij to denote the reward function used in Algorithm 6.

Proof. As a result of Lemma.E.7 , for arbitrary rRij , we have:

|pV π1 ps1q ´ V
π
1 ps1; rRijq| “| pQπ1 ps1, a1q ´Q

π
1 ps1, a1; rRijq|

“|φps1, a1q
J
pwπ1 ´

ÿ

s2

Phps2|s1, a1qV
πps2; rRijq|

ď|φps1, a1q
J
pwπ1 ´

ÿ

s2

Phps2|s1, a1qpV
π
2 ps2q| ` Eπ|pV π2 ps2q ´Q

π
2 ps2, πps2q; rR

ijq|

ďβ}φps1, a1q}Σ´1
1
` Es2 |V πps2q ´Q

π
2 ps2, πps2q; rR

ijq|

...

ďβEs1,a1,...,sh´1,ah´1„πr

h´1
ÿ

t“1

}φpst, atq}Σ´1
t
s

ďβ
h´ 1

H
ξ ď βξ

˝

E.6 MAIN THEOREM AND PROOF

Now, we restate Theorem 4.4 in a formal version below:
Theorem E.9 (Formal Version of Theorem 4.4). For arbitrary 0 ă ε, δ ă 1, there exists absolute
constants ci, cβ and cN , such that by choosing

imax “ ci
d

ν4
min

log
d

νmin
, β “ cβd

c

log
dH

εδνmin
,

N “ c
´ H2d3

ε2ν2
min

`
H2d7

ν14
min

¯

log2 dH

εδνmin
, ε0 “

1

N
.

with probability 1 ´ δ, after K “ H deployments, by running Alg 4 with the collected dataset
D “ tD1, ..., DHu and arbitrary r satisfying the linear assumption in A (in Line of Algorithm 2),
we will obtain a policy pπ such that V π1 ps1; rq ě V π

˚

1 ps1; rq ´ ε.
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As additional guarantees, after h deployments, by running Alg 4 with the collected dataset
tD1, D2..., Dhu and reward function r, we will obtain a policy π|h which is ε-optimal in the MDP
truncated at step h.

Proof. We will use Σh,i :“ 2I `
ři´1
j“1 Eπj rφpsh, ahqφpsh, ahqJs to denote the matrix which rΣh,i

approximates in Alg. 2, and use Rh,i :“
b

φp¨, ¨qJΣ´1
h,iφp¨, ¨q to denote the reward function used in

Alg 5 if the covariance matrix estimation is perfect (i.e. rΣh,i “ Σh,i).

The proof consists of three steps. In step 1, we try to show that the inner loop of Alg 2 will terminate
and Πh will contain a set of exploratory policies. In step 2, we will analyze the samples generated
by a mixture of policies in Πh. In the last step, we determine the choice of hyper-parameters and fill
the gaps of pre-assumed constraints and induction conditions.

Step 1: Exploration Ability for Policies in Πh In the inner loop (line 5 - 12) in Algorithm 2,
our goal is to find a set of policies Πh, such that if the algorithm stops at iteration i, the following
uncertainty measure is as small as possible

V ˚h,i`1ps1;Rh,iq :“ max
π

Eπr}φpsh, ahq}Σ´1
h,i
s (28)

To achieve this goal, we repeatedly use Alg 6 to estimate the covariance matrix of the policy and
append it to rΣh,i as an approximation of Σh,i, and use Alg 5 to find a near-optimal policy to maxi-
mizing the uncertainty-based reward function rR, by sampling trajectories with which we can reduce
the uncertainty Q˚h,i in Eq.(28).

First, we take a look at the estimation error of the accumulative covariance matrix when running
Algorithm 2. On the conditions in Lemma E.8, we can bound the elementwise estimation error of
Σh,i:

|prΣh,iqjk ´ pΣh,iqjk| ď i ¨ βξ, @j, k P rds

As a result of Lemma E.11, we have:

| rRh,ipsh, ahq ´Rh,ipsh, ahq| “|
b

φJrΣ´1
h,iφ´

b

φJΣ´1
h,iφ|

ď

d

i ¨ dβξ

1´ i ¨ dβξ
ď

d

imaxdβξ

1´ imaxdβξ

ď
ν2

min

8
(29)

where the last but two step is because we at most repeat it imax iterations at each layer h, and we
introduce the following constraint for ξ during the derivation, to make sure the bias is small and all
the iterms occurs in the derivation is well defined:

ξ ď
ν4

min

32imaxdβ
(30)

Next, we want to find a good choice of imax to make sure Vh,i`1 will not always be large and the
for-loop will break for some i ď imax. We first provide an upper bound for Vh,i`1:

Vh,i`1ps1q ďV
πh,i`1ps1; rRh,iq ` βξ (Lemma E.5)

ďV π̄h,i`1ps1; rRh,iq ` 4βξ (V π ´ V π̄ ď V ˚ ´ V π̄; Lemma E.6)

ďV π̄h,i`1ps1;Rh,iq ` 4βξ `
ν2

min

8
(bias of reward)

ďV π̄h,i`1ps1;Rh,iq `
ν2

min

4
(Constraints on ξ in Eq.(30))

Next, we try to show that V π̄h,i`1ps1;Rh,iq can not always be large. According to Elliptical Potential
Lemma in Lemma C.1, we have:

imax
ÿ

i“1

V π̄h,i`1ps1;Rh,iq “
imax
ÿ

i“1

Eπ̄h,i`1
r}φpsh, ahq}Σ´1

h,i
s
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ď

imax
ÿ

i“1

c

Eπ̄h,i`1
r}φpsh, ahq}2Σ´1

h,i

s

ď

g

f

f

eimax

imax
ÿ

i“1

Eπ̄h,i`1
r}φpsh, ahq}2Σ´1

h,i

s

“

g

f

f

eimax

imax
ÿ

i“1

TrpEπ̄h,i`1
rφpsh, ahqφpsh, ahqJsΣ

´1
h,iq

ď
a

2imaxd logp1` imax{dq

where in the last step, we use the definition of Σh,i. Therefore,

min
i
V π̄h,i`1ps1;Rh,iq ď

1

imax

imax
ÿ

i“1

V π̄h,i`1ps1;Rh,iq ď

d

2
d logp1` imax{dq

imax

In order to guarantee mini V
π̄h,i`1ps1;Rh,iq ď ν2

min{8, we require:
d

2
d logp1` imax{dq

imax
ď ν2

min{8

which can be satisfied by:

imax “ ci
d

ν4
min

log
d

νmin
(31)

for some absolute constant ci.

Combining the above results, we can conclude that the inner loop in Alg 2 will break at some
i ă imax, such that Vh,i`1 ď 3ν2

min{8, and guarantee that:

max
π

Eπr}φpsh, ahq}Σ´1
h,i
s :“V ˚h,i`1ps1;Rh,iq

ďV ˚h,i`1ps1; rRh,iq `
ν2

min

8
(reward estimation error Eq.(29))

ďVh,i`1ps1q `
ν2

min

8
(Overestimation in Lemma E.5)

ďV π̄h,i`1ps1;Rh,iq `
ν2

min

4
`
ν2

min

8

ď
ν2

min

2

Step 2: Policy Deployment and Concentration Error For uniform mixture policy πh,mix :“
UnifpΠhq, by applying Lemma E.13, Lemma E.14 and the results above, we must have:

max
π

Eπr
b

φpsh, ahqJpI `NEπh,mixrφφJsq´1φpsh, ahqs

“max
π

Eπr

d

φpsh, ahqJpI `
N

|Πh|
|Πh|Eπh,mixrφφJsq´1φpsh, ahqs

ď

d

2

1`N{|Πh|
max
π

Eπr
b

φpsh, ahqJpI ` |Πh|Eπh,mixrφφJsq´1φpsh, ahqs

ď

d

1

1`N{imax
νmin ď

c

imax

N
νmin

and this is the motivation of breaking criterion in Line 8 in Alg 2.
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In the following, we will use Σ´h :“ Σh ´ I “
řN
n“1 φpsh,nah,nqφpsh,n, ah,nq

J to denote the
matrix of sampled feature without regularization terms, according to Lemma E.10, with probability
1´ δ{2, we have:

}
1

N
σmaxpNEπh,mixrφφJs ´ Σ´h q} ď

4
?
N

log
8dH

δ
, @h P rHs

Follow the same steps in the proof of Lemma E.14, we know that

σminpNEπh,mixrφφJsq “
N

|Πh|
σminp|Πh|Eπh,mixrφφJsq ě

N

|Πh|
ě

N

imax
.

As a result,

min
x:}x}“1

xJΣhx “ min
x:}x}“1

xJpI `NEπh,mixrφφJsqx` xJpNEπh,mixrφφJs ´ Σ´h qx

ěσminpI `NEπh,mixrφφJsq ´ σmaxpNEπh,mixrφφJs ´ Σ´h q

ě1` p
N

2imax
´ 4
?
N log

8dH

δ
q

which implies that, as long as

N ě 16i2max log2 8dH

δ
(32)

we have

σmaxpΣ
´1
h q ď

1

1`N{2imax ´
?
N log 8dH

δ

ď
4imax

N

Therefore, for arbitrary π, we have:

|Eπr
b

φpsh, ahqJpI `NEπh,mixrφφJsq´1φpsh, ahqs ´ Eπr
b

φpsh, ahqJpΣhq´1φpsh, ahqs|

ďEπr
b

|φpsh, ahqJpI `NEπh,mixrφφJsq´1φpsh, ahq ´ φpsh, ahqJpΣhq´1φpsh, ahq|s

ďEπr
c

|φpsh, ahqJ
´

pI `NEπh,mixrφφJsq´1 ´ pΣhq´1
¯

φpsh, ahq|s

“Eπr
b

|φpsh, ahqJpI `NEπh,mixrφφJsq´1
`

NEπh,mixrφφJs ´ Σ´h
˘

pΣhq´1φpsh, ahq|s

ď

c

σmaxppI `NEπh,mixrφφJsq´1q
4imax

N
σmaxpNEπh,mixrφφJs ´ Σ´h q

ď

d

1

1`N{imax

16imax
?
N

log
8d

δ
(imaxEπh,mixrφφJs ľ |Πh|Eπh,mixrφφJs ľ 1)

ď
4imax

N3{4

c

log
8dH

δ

As a result,

max
π

Eπr
b

φpsh, ahqJpΣhq´1φpsh, ahqs

ďmax
π

Eπr
b

φpsh, ahqJpI `NEπh,mixrφφJsq´1φpsh, ahqs `
4imax

N3{4

c

log
8dH

δ

ď

c

imax

N
νmin `

4imax

N3{4

c

log
8dH

δ

In order to make sure the induction conditions holds, we need
c

imax

N
νmin `

4imax

N3{4

c

log
8dH

δ
ď ξ{H
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As long as we tighten the constraint in 32 to:

N ě 256
i2max

ν4
min

log2 8dH

δ
“ rOp

d2

ν12
min

q (33)

the induction conditions can be satisfied when

2

c

imax

N
νmin ď ξ{2H

or equivalently,

N ě
16H2ν2

minimax

ξ2
“ Op

H2d

ξ2ν2
min

q

Step 3: Determine Hyper-parameters

(1) Resolution ε0 Recall that we still have a constraint for Zh in (24)

I ` ΣR ľ
ε0

2

4
I,

4

ε0
2
I ľ 2I ` ΣR

Since we already determined imax in Eq.(31), also recall our constraints on ξ in (30) the above
constraints for ε0 can be satisfied as long as:

ε0 ď

c

1

imax
(34)

Combining all the constraints of ε0, including (23), (25), (27) and (34), we conclude that:

ε0 ď mint
1

N
,

β
?
N ` 1

,
1

?
imax

,
βξ

H
u “

1

N

(2) Induction error ξ Besides the constraint in (30), we need another one to make sure the quality
of the final output policy. By applying Lemma D.3 for planning algorithm Alg. 2, if the induction
condition (4.5) holds till h P rHs, Alg. 4 will return us a policy pπ such that:

V ˚ ´ V π ď 2βmax
π

Eπr
H
ÿ

rh“1

}φps
rh, arhq}Σ´1

rh

s ď 2βξ

To make sure V ˚ ´ V pπ ď ε, we require ξ ď ε
2β , which implies that

ξ ď mint
ν4

min

32imaxdβ
,
ε

2β
u

Choice of N and β Since ε0 “
1
N , by plugging it into Eq.(26), we may choose β to be:

β “ c2βd

c

log
dHN

δ

Now, we are ready to compute N . When ξ “ ε
2β ď

ν4
min

32imaxdβ
, we have:

N “ Op
H2d

ξ2ν2
min

q “ Op
H2d3

ε2ν2
min

q log
dH

εδνmin

and otherwise, we have:

N “ Op
H2d

ξ2ν2
min

q “ Op
H2d7

ν14
min

q log
dH

εδνmin

Combining the additional constraint to control the concentration error in Eq.(33), the total number
of complexity would at the level:

N ě c
´ H2d3

ε2ν2
min

`
H2d7

ν14
min

¯

log2 dH

εδνmin

and therefore,

β “ cβd

c

log
dH

δενmin

for some cβ .
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Near-Optimal Guarantee Under the events in Theorem E.4, considering the failure rate of con-
centration inequality in Step 2, we can conclude that the induction condition holds for h P rHs with
probability 1´ δ. Combining our discussion about choice of ξ above, the probability that Alg 2 will
return us an ε-optimal policy would be 1´ δ.

The additional guarantee in Theorem E.9 can be directly obtained by considering the induction
condition at layer h P rHs. ˝

E.7 TECHNICAL LEMMA

Lemma E.10 (Matrix Bernstein Theorem (Theorem 6.1.1 in (Tropp, 2015))). Consider a finite
sequence tSku of independent, random matrices with common dimension d1 ˆ d2. Assume that

ESk “ 0 and }Sk} ď L for each index k

Introduce the random matrix
Z “

ÿ

k

Sk

Let vpZq be the matrix variance statistic of the sum:
vpZq “maxt}EpZZ˚q}, }EpZ˚Zq}u

“maxt}
ÿ

k

EpSkS˚kq}, }
ÿ

k

EpS˚kSkq}u

Then,

E}Z} ď
a

2vpZq logpd1 ` d2q `
1

3
L logpd1 ` d2q

Furthermore, for all t ě 0

Pt}Z} ě tu ď pd1 ` d2q exp
´

´t2{2

vpZq ` Lt{3

¯

Lemma E.11 (Matrix Perturbation). Given a positive definite matrix A ą I and ∆ satisfying
|∆ij | ď ε ă 1{d, define matrix A` “ A ` ∆, then for arbitrary φ P Rd with }φ} ď 1, we
have:

A` ą 0, |φJpA` ´Aqφ| ď dε, |φJpA´1
` ´A´1qφ| ď

dε

1´ dε
which implies that

}A`} ď }A} ` }∆} ď }A} ` }∆}F ď }A} ` dε, }A´1
` } ě }A

´1} ´
dε

1´ dε
Moreover,

|}φ}A´1
`
´ }φ}A´1 | ď

b

|}φ}2
A´1
`

´ }φ}2
A´1 | ď

c

dε

1´ dε

Proof. First of all, easy to see that
σmaxp∆q ď }∆}F ď dε

and therefore we have
σminpA`q “ min

x:}x}“1
xJAx` xJ∆x ą 1´ dε ą 0.

where we use σmin and σmax to denote the smallest and the largest sigular value, respectively, and
use } ¨ }F to refer to the Frobenius norm. Therefore,

|φJpA` ´Aqφ| “ |φ
J∆φ| ď dε

and

|φJpA´1
` ´A´1qφ| “ |φJA´1

` pA` ´AqA
´1φ| ď σmaxpA

´1
` qσmaxpA` ´AqσmaxpA

´1q ď
dε

1´ dε
Moreover,

|}φ}A´1
`
´ }φ}A´1 | ď

b

|}φ}A´1
`
´ }φ}A´1 | ¨ |}φ}A´1

`
` }φ}A´1 | “

b

|φJpA´1
` ´A´1qφ| ď

c

dε

1´ dε
˝
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Next, we will try to prove that, with a proper choice ofN , Algorithm 2 will explore layer h to satisfy
the recursive induction condition.
Lemma E.12 (Random Matrix Estimation Error). Denote Λπh “ EπrφφJs. Based on the same
induction condition 2, we have:

|}φ}pΛπq´1 ´ }φ}
ppΛπq´1 | ď

c

dε

1´ dε
, @}φ} ď 1

Proof. Based on Lemma E.8, we have:

|Λπij ´
pΛπij | ď

h´ 1

H
ε ď ε

and as a result of Lemma E.11, we finish the proof. ˝

Lemma E.13. Given a matrix A ľ λI with λ ą 0, and φ satisfies }φ} ď 1, then we have:

φJpcI ` nAq´1φ ď
λ` c

λn` c
φJpcI `Aq´1φ, @n ą 1, c ą 0

Proof. Because A ľ λI , we have

cI ` nA “cI `
cpn´ 1q

λ` c
A` pn´

cpn´ 1q

λ` c
qA ľ

´

1`
λpn´ 1q

λ` c

¯

cI ` pn´
cpn´ 1q

λ` c
qA

“
λn` c

λ` c

´

cI `A
¯

Therefore,

φJpcI ` nAq´1φ ď
λ` c

λn` c
φJpcI `Aqφ

˝

Lemma E.14. Given a matrix A ľ 0, suppose maxπ Eπr}φ}pcI`Aq´1s ď rε ď ν2
min{p2

?
cq, where

c ą 0 is a constant, where νmin is defined in Definition 4.3, we have:

max
π

Eπr}φ}pcI`nAq´1s ď

d

c` 1
?
cpc` nq

rε

Proof. Because }φ}pcI`Aq´1 ď }φ}pcIq´1 ď 1{
?
c, we must have:

max
π

TrppcI `Aq´1EπrφφJsq “ max
π

Eπr}φ}2pcI`Aq´1s ď
1
?
c

max
π

Eπr}φ}pcI`Aq´1s ď
rε
?
c

Consider the SVD of A “ UJΣU with Σ “ pσiiqi“1,...,d and U “ ru1, u2..., uds, then we have:

@π,
rε
?
c
ě TrppcI `Aq´1EπrφφJsq “ TrppcI ` Σq´1UJEπrφφJsUq “

d
ÿ

i“1

Eπr|φJui|2s
c` σii

.

According to the Definition 4.3, we have:

rε
?
c
ě

maxπ Eπr|φJui|2s
c` σii

ě
ν2

min

c` σii
, @i P rds

which implies that

σii ě

?
cν2

min

rε
´ c ě c, @i P rds

By applying Lemma E.13 and assign λ “ c, we have:

max
π

Eπr}φ}pcI`nAq´1s ď max
π

b

Eπr}φ}2pcI`nAq´1s ď max
π

c

2c

c` cn
Eπr}φ}2pcI`Aq´1s ď

d

2
?
cp1` nq

rε

˝

47



Published as a conference paper at ICLR 2022

E.8 MORE ABOUT OUR REACHABILITY COEFFICIENT

Recall the definition of reachability coefficient in (Zanette et al., 2020) is:

min
hPrHs

min
}θ}“1

max
π
|EπrφhsJθ|

Easy to see that, for arbitrary θ with }θ} “ 1, we have

max
π

b

EπrpφJh θq2s ě max
π

Eπr|φJh θ|s ě max
π
|EπrφJh θs|

Therefore,

νmin “ min
hPrHs

νh “ min
hPrHs

min
}θ}“1

max
π

b

EπrpφJh θq2s ě min
hPrHs

min
}θ}“1

max
π
|EπrφJh θs|

Besides, according to the min-max theorem, νh is also lower bounded by
b

maxπ σminpEπrφhφJh sq,
to see this,

max
π

σminpEπrφhφJh sq “ max
π

min
}θ}“1

θJEπrφhφJh sθ “ max
π

min
}θ}“1

EπrpφJθq2s ď min
}θ}“1

max
π

EπrpφJθq2s

In fact, the value of maxπ σminpEπrφhφJh sq is also related to the ”Well-Explored Dataset” assump-
tion in many previous literature in offline setting (Jin et al., 2021b), where it is assumed that there
exists a behavior policy such that the minimum singular value of the covariance matrix is lower
bounded. Therefore, we can conclude that our reachability coefficient νmin is also lower bounded
by, e.g. c in Corollary 4.6 in (Jin et al., 2021b).

F EXTENDED DEPLOYMENT-EFFICIENT RL SETTING

F.1 SAMPLE-EFFICIENT DE-RL

In applications such as recommendation systems, the value of N cannot exceed the number of
users our system serves during a period of time. Therefore, as an interesting extension to our
framework, we can revise the constraint (b) in Definition 2.1 and explicitly assign an upper
bound for N . Concretely, we may consider the following alternatives: (b’) The sample size
N ď dc1Hc2ε´c3 logc4 dH

εδ , where c1, c2, c3, c4 ą 0 are some constant fixed according to the real
situation. Under these revised constraints, the lower bound for K may be different.

In fact, given constraints in the form of N ď N0, our results in Section 4 already implies an upper
bound for K, since we can emulate 1 deployment of our algorithm that uses a large N ą N0 by
deploying the same policy for rN{N0s times. However, this may result in sub-optimal deployment
complexity since we are not adaptively updating our policy within those N{N0 deployments. It
would be an interesting open problem to identify the fine-grained trade-off between K and N0 in
such a setting.

F.2 SAFE DE-RL

Monotonic Policy Improvement Constraint In many applications, improvement of service qual-
ity after policy update is highly desired, and can be incorporated in our formulation by adding an
additional constraint into Def 2.1:

pcq Jpπi`1q ě Jpπiq ´ ε. (35)

Because we require the deployed policy has substantial probability to visit unfamiliar states so that
the agent can identify the near-optimal policy as shown in Def 2.1-(a), we relax the strict policy
improvement with an small budget term ε ą 0 for exploration.

Trade-off between Pessimism and Optimism The balance between satisfying two contradictory
constraints: (a) and (c), implies that a proper algorithm should leverage both pessimism and op-
timism in face of uncertainty. In Algorithm 7, we propose a simple but effective mixture policy
srategy, where we treat pessimistic and optimistic algorithm as black boxes and mix the learned
policies with a coefficient α. One key property of the mixed policy is that:
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Algorithm 7: Mixture Policy Strategy
1 for k=1,2,...,K do
2 D “ tD1, D2, ..., Dku

3 πk,pessim Ð PessimismBased OfflineAlgorithmpDq
4 πk,optim Ð OptimismBased BatchExplorationStrategypDq
5 // Mix policy in trajectory level, i.e. w.p. 1´ α, τ „ πpessim; w.p. α, τ „ πoptim

6 πk Ð p1´ αqπk,pessim ` απk,optim

7 Dk “ tτn „ πk,@n P rN su
8 end

Property F.1 (Policy improvement for mixture policy).

Jpπkq ´ Jpπk´1q ě Jpπk,pessimq ´ Jpπk´1q ´Opαq (36)

As a result, as long as the offline algorithm (which we treat as a black box here) has some policy
improvement guarantee, such as (Kumar et al., 2020; Liu et al., 2020; Laroche et al., 2019), then
Eq.(36) implies a substantial policy improvement if α is chosen appropraitely. Besides, if we use
Algorithms in Section 4.1 or 4.2, and collecting rN “ ΘpN{αq samples, the guarantees in Theorem
4.1 and Theorem 4.4 can be extended correspondingly. Therefore, Alg 7 will return us a near-optimal
policy after K deployments while satisfying the safety constraint (c) in (35).
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