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Computational Resource Setup:

All experiments were performed with 128GB RAM on an intel Xeon server with 3.5GHZ processors,
consisting of 4 1080Ti GPUs. Any of our models can easily fit into single 1080Ti GPUs – a multi
GPU setup was only used to speed up the computation. All models are coded in Tensorflow 2.2 and
we only use basic parallelism provided by the Tensorflow library to speed up computation.

Experimental Code: Code to support this work can be found at the following URL/repository:
https://github.com/ago109/lifelong pc.git.

Theoretical Foundations and Technical Details of Sequential Neural Coding

In this appendix section, we present definitions and mathematical derivations, answers to key ques-
tions, and further detail core intuitions related to sequential neural coding (i.e., the S-NCN system
presented in the main paper).

Definition Table: In Table 1, we explain what each mathematical symbol/operation/abbreviation in
the main paper represents.

Derivation of State & Weight Updates: As mentioned in the main paper, the S-NCN’s generative
circuit minimizes an objective function known as total discrepancy (ToD) when it is presented with
input stimuli (xi,yi)). The ToD is formally:

L(Θ) =

L−1∑
ℓ=0

1

2
(||zℓ − zℓµ||2)2 =

L−1∑
ℓ=0

1

2

∑
j

(
zℓ[j]− zℓµ[j]

)2
(1)

where zℓ[j] means that we extract the j-th element of vector zℓ (and we have simplified the expression
by squaring the square root operator of the L2 norm, giving us a sum of squared dimensions). Since
all of the latent states of the generative circuit are continuous, the updates will follow the form of the
exact gradient, i.e., differentiation (which would permit the use of gradient descent), to optimize the
latent variables and the synaptic weight parameters. Given this, the partial derivative of Equation 1
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Table 1: Table of key symbol/operator/abbreviation definitions.
Item Explanation

S-NCN Sequential neural coding network (model)
FNBG Functional neural basal ganglia (model)

v ∈ RD×1 A column vector v of shape D × 1
M ∈ RB×D A matrix M of shape B ×D

· Matrix/vector multiplication
⊙ Hadamard product (element-wise multiplication)

(v)T Transpose of v
||v||2 Euclidean norm of v
xj The jth data point (image) sampled from task Ti
yj The jth data label (one-hot encoded) sampled from task Ti
Pℓ The ℓ-th predictor/layer of the S-NCN generative circuit.
Jx Dimensionality of input xj

Jℓ Number of neurons in layer Pℓ of the S-NCN generative circuit.

with respect to any layer of neural activities (or latent state) zℓ would be:

∂L(Θ)

∂zℓ
=

(
∂zℓ−1

µ

∂zℓ
·
(
(zℓ−1 − zℓ−1

µ )
))

− (zℓ − zℓµ) (2)

=
[
(Wℓ)T · (zℓ−1 − zℓ−1

µ )
]
⊙ ∂ϕℓ(zℓ)

∂zℓ
− (zℓ − zℓµ) (3)

= (Wℓ)T · (eℓ−1)⊙ ∂ϕℓ(zℓ)

∂zℓ
− eℓ (4)

where we notice that the error neurons are derived directly from the ToD objective as well, i.e.,
eℓ = ∂∂L(Θ)

∂zℓ
µ

= zℓ − zℓµ (allowing us to write Equation 3 in terms of error neurons as in Equation 4).

Alternatively, by replacing the term ∂zℓ−1

∂zℓ with a learnable error matrix Eℓ instead, Equation 3 can
be simplified to the following:

∂L(Θ)

∂zℓ
≈ dℓ = Eℓ · eℓ−1 − eℓ (5)

which is a stable derivative-free perturbation dℓ (so long as the activation function ϕℓ() is monotoni-
cally increasing) to the neural activities (and as noted in [1], the dampening effect that the activation
derivative ∂ϕℓ(zℓ)

∂zℓ would have can be approximated with biologically-plausible dampening functions
if needed). The final update to the latent neural activities is then performed using a gradient-ascent
like operation, i.e., zℓ(k) = f ℓ(zℓ(k − 1) + βdℓ) (this was presented in the main paper).

Deriving the updates to the synaptic generative parameters is also done in a similar fashion as above,
i.e., by taking the gradient of ToD with respect to Wℓ.

∂L(Θ)

∂Wℓ
∝ ∆Wℓ =

∂L(Θ)

∂zℓµ
·
(
ϕℓ+1(zℓ+1)

)T
,where, zℓµ = Wℓ · ϕℓ+1(zℓ+1) (6)

= (zℓ − zℓµ) · (ϕℓ+1(zℓ+1))T = eℓ · (ϕℓ+1(zℓ+1))T . (7)

If we are using Eℓ feedback/error matrices (as we do in this paper), we can leverage a simple Hebbian
update ∆Eℓ = α

(
ϕℓ+1(zℓ+1) · (eℓ)T

)
[1] (which, if applied to Eℓ every time that Equation 7 is

applied to Wℓ, allows Eℓ to converge to the approximate transpose of Wℓ). Much as was done
for the states, synaptic weight matrices are updated via gradient ascent: Wℓ = Wℓ + λ∆Wℓ and
Eℓ = Eℓ + λ∆Eℓ (λ is the learning rate/step size).

How would a model with symmetric connections behave? A model without separate feedback
connections (in contrast to the S-NCN we experiment that uses asymmetric forward/feedback weights)
would behave quite similarly yet favorably offer a reduction in memory cost (one does not need to store
separate feedback/error matrices in memory). In other words, one could certainly swap out Eℓ with
(Wℓ)T if this memory cost reduction was desired/necessary. However, by utilizing separate learnable
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feedback synapses, the S-NCN in the form presented in this study resolves the weight transport
problem, a well-known biological criticism of backprop where error/teaching information is carried
backwards along the same synapses that were used to forward propagate information.Interestingly
enough, in preliminary experimentation, we found that using separate learnable feedback synapses
improved the generative modeling/reconstruction ability of the generative cortex (particularly in
the online case). Although we will investigate this effect in future work, we note this change in
generative performance did not really seem to impact the classification accuracy (arguably because
discrimination is easier than generation).

Initializing Latent States: In the S-NCN’s generative circuit, there are several layers of neural
activities that are not clamped to data, e.g., z1, z2, ..., zL. These activity vectors, as mentioned in
the main paper, are initialized to zero vectors (i.e., zℓ = 0) before they are updated/modified by the
message passing that occurs over K steps of processing input stimuli (x,y). While these initially zero
vectors will eventually become non-zero vectors, particularly after a minimum of K = L steps (for
example: after k = 1, z1 will be non-zero given that the error neurons in layer 0 will be non-zero and
thus the layer 1 state perturbation vector d1 will contain non-zero entries; after k = 2, z2 will contain
non-zero values, and so on and so forth), it is entirely possible to randomly initialize these states with
non-zero vectors (though it is recommended to keep the magnitude of the randomly chosen initial
numbers relatively small). We leave investigation of alternative initialization schemes for future work.

Relationship to Surrogate Gradients: A particular line work that shares interesting relationships
with the generative circuit of the S-NCN is that of surrogate gradients, such as decoupled neural
interfaces (DNIs) [2, 3]. In essence, this class of methods aims to resolve one of backprop’s central
issues – the update-locking problem (where updates to one layer’s synaptic parameters must for
other layer’s updates to be computed as error/teaching information is backwards propagated down
a serial feedback pathway). The key module driving this class of methods is the introduction of
a gradient predictor, which can be adapted/taught to approximate actual gradients as produced by
backprop, ultimately, after training the predictor’s well enough removing the need for backprop
later in training and permitting parallel, asynchronous updates to be made to deep, even recurrent,
network architectures. In contrast to surrogate gradient-based approaches, the S-NCN works to
compute synaptic updates without resorting to predicting gradients given that its generative circuit is
naturally layer-wise parallelizable. In effect, each layer-wise prediction is made independently of the
others (unlike the typical forward passes in modern-day deep networks) and the synaptic updates
for each layer (both forward and error/feedback synapses) can be made without others having been
computed/completed. This opens the door to potential parallel asynchronous implementations of the
S-NCN that could drastically speed up its computation further. In contrast to DNIs, the S-NCN’s
generative cortex does not require training gradient predictors (DNIs typically require access to true
gradients provided by backprop in order to train them properly) and, without incurring synthetic
approximation errors (as in a fully-unlocked network using DNI, where now even the layer activities
require additional modules to be trained to predict actual layer-wise activities) furthermore, resolves
both update and forward locking problems. Crucially, the S-NCN’s updates are biologically plausible
– it only requires simple (multi-term) Hebbian updates for the generative cortex and competitive
Hebbian updates for the basal ganglia.

General S-NCN System Process Intuition: From a high-level intuitive point-of-view, the S-NCN
system described in the main paper is composed of two complementary neural circuits: 1) an
interactive generative (cortical) circuit that learns to predict its input stimuli (pixel images and their
respective labels), and 2) the functional neural basal ganglia (FNBG) which is a specialized circuit
that learns to group pixel images into unique “task” contexts. When presented with a sample or
mini-batch at any point within the task stream being sampled, the S-NCN does the following:

1. The FNBG task selection model determines if the currently sampled data is coming from
the same task that the S-NCN has currently been processing or if it comes from either
new/different task. (Note, not mentioned in the paper, the FNBG can also determine that the
current data belongs to a task that it has previously seen by letting its set of neurons compete
and determining if the winner has a very high dot product score – usually checked against a
threshold). Before letting the S-NCN generative circuit process/adapt to current data, if the
FNBG determines that the data is coming from a novel task, it will create a new task context
memory gℓ

t for each Mℓ to subsequently drive the S-NCN as it processes current data.
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2. Given the task context provided by the FNBG, the S-NCN generative circuit will then process
the current data over a fixed stimulus window (or for K discrete time steps), adjusting its
synapses so that it may better generate the input sensory sample better in the future as well
as predict its label. Note that the update to the S-NCN’s synapses will also trigger an update
to the task context memory vectors as well as an update to the FNBG’s synapses (which are
themselves adjusted through competitive Hebbian learning).

Task Shift Detection Intuition: To provide further intuition as to how the FNBG task selector
operates when detecting the occurrence of a novel task, i.e., “task shift detection”, we explain what
the key equations presented in the main paper are doing:

1. The FNBG lets the S-NCN generative circuit continue as it normally would and have it
make a prediction of both xj and yj . Then, it extracts the label error neuron vector e0y from
the generative model and computes its squared Euclidean norm ||e0y||22.

2. The FNBG maintains two particular scalar parameters µL and σ2
L, which are the mean and

variance of the squared Euclidean norm of the S-NCN’s label error neuron activities. The
key Equations 7-9 in the main paper depict how the FNBG updates these mean µL(t) and
variance σ2

L(t) parameters (based on an exponentially weighted moving mean and variance).
3. Once the FNBG updates these two statistical parameters, it then performs a check of

its current new mean µL(t) against the previous value (t − 1) of its mean and variance
parameters, i.e., µL(t− 1) and σ2

L(t− 1). This check is specifically (as in the main paper)
the following: µL(t) > µL(t− 1) + 2

√
σ2
L(t− 1) which says that, if the current mean of

the label error neuron activity (at time t) is greater than the sum of the previous mean (at time
t− 1) plus two times the previous standard deviation, the S-NCN system has encountered a
shift in task, which means that, if this inequality evaluates to true, the currently encountered
data sample comes from either a novel task or a previously encountered task (but not from
the current task). If this task shift inequality evaluates to true, the FNBG will not allow the
generative circuit to update its synapses and instead force it to recompute its prediction of
the current data using a newly generated task context. Otherwise, if the inequality evaluates
to false, then the FNBG will let the generative circuit continue and update its synapses.

General Design Motivation/Benefits: The key motivations behind the S-NCN’s design are: 1) to
develop a neurobiologically-inspired online approach to learn a generative model of p(x,y) (one
motivated by perceptual cortical circuits), 2) to develop an online information routing model (one
motivated/inspired by the basal ganglia) that suppresses/drives the neural activities in the generative
model of item (1) depending on the task that it decides that the system is operating on – this
crucially removes the need for user-provided task descriptors. In addition, by design, the S-NCN:
1) exhibits no need for activation function derivatives, 2) exhibits no update-locking (i.e., it is layer-
wise parallelizable), 3) does not require/need a global feedback pathway to drive/facilitate credit
assignment (i.e., side-stepping exploding/vanishing gradient problems), and 4) it resolves the weight
transport problem by using asymmetric generative and error-correction synapses (those these could
be tied/shared to reduce the S-NCN’s memory footprint if need be). In contrast to many current
lifelong learning approaches, the S-NCN differs in that it is a complementary system that focuses
on the relationship between the basal ganglia (as an information router) and (generative/predictive)
cortical regions. This is what allows the S-NCN system to offer the advantage of internal, automatic
task selection and task boundary detection, which few modern methods provide.

Although the S-NCN shares predictive processing’s (PP’s) iterative inference/learning (note that
[4] focused on PP’s auto-association abilities and further note that [1] focused on PP’s genera-
tive/sampling abilities); its ability to combat forgetting comes from the interaction between the task
selector and the generative circuit (the former drives lateral suppression/excitation in the latter).
Note that the S-NCN’s generative model could be useful for inducing a form of (internal) layer-wise
generative replay (each layer could refresh itself in a sleep phase). This we observe is additional,
untapped potential for using the S-NCN’s learned directed generative model in a spirit similar to the
backprop-based model of [5]. We argue that this self-induced form of replay could prove useful for
longer task sequences with far more tasks.

Empirically, we note that asymmetric forward and backwards (error) weights were found to work best
for NCN systems without activation derivatives in their state updates, yielding fewer inference steps.
However, since backwards weights converge to the approximate transpose of the forward ones, using
symmetric weights would reduce memory usage (see earlier discussion/section “How would a model
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with symmetric connections behave?”). We further remark that, although we do not explore them in
this work, fixed, random backward synapses (as in feedback alignment) would work as well, which
we found, in preliminary experimentation, reduced/harmed the S-NCN’s ACC by only a few points.

Relationship to Temporal Neural Coding: Prior related on temporal neural coding [6, 7] has
investigated the design and development of predictive coding frameworks for handling the modeling
of time-varying data points (such as frames in a video). However, in contrast to the generative circuit
in this work, these previous models were either not layer-wise parallelizable [6] or were created
under a specialized recurrent formulation of PC for processing data over multiple epochs [7] (such as
bouncing ball or digit videos). These models would not be naturally resistant to forgetting like the
S-NCN is, specifically given that the S-NCN is a complementary system where one circuit aids the
other in learning task-sensitive/dependent sub-networks. Furthermore, this earlier related work [6, 7]
focused on unsupervised sequence modeling and did not investigate discriminative forms of learning
(e.g., classification) where forgetting occurs, according to our experience, more quickly and its effects
are stronger/more easily observed. Note that in [7], although some improved memory retention across
the three sequence modeling tasks was observed, forgetting over tasks was still apparent, and any
improvement in memory retention could be be viewed more as a pleasant side-effect rather than the
result of a mechanism specialized for safe-guarding against forgetting.

On Weight Update Modulation

As presented in the main paper, the synaptic weight updates for the generative circuit of the S-NCN
applies modulation matrices to improve learning stability over time (specifically invoking a form of
synaptic scaling – note that these modulation matrices are not meant to mitigate the occurrence of
forgetting). The modulation factors are (locally) computed as a function of the synapses as follows:

m̂ℓ
W = Σ

Jℓ+1

j=1 W
ℓ[:, j], and, mℓ

W = min

(
γsm̂

ℓ
W

max(m̂ℓ
W )

, 1

)
(8)

Sℓ
W = (Wℓ ∗ 0 + 1)⊙mℓ

W (9)

where W[:, j] denotes the extraction of the jth column of W , max(m̂ℓ
W ) returns the maximum

scalar value of m̂ℓ
W , and γs = 2. We note that the first two formulae collapse the forward matrix

to a column vector of normalized multiplicative weighting factors and the third formula converts
the column vector to a tiled matrix of the same shape as Wℓ. The error weight modulation factor is
computed in fashion similar to that of the forward weights:

m̂ℓ
E = ΣJℓ

j=1E
ℓ[:, j], and,mℓ

E = min

(
2m̂ℓ

E

max(m̂ℓ
E)

, 1

)
(10)

Sℓ
E = (Eℓ ∗ 0 + 1)⊙mℓ

E (11)

where we observe that modulation factors are computed across the pre-synaptic dimension/side of
either matrix Wℓ or Eℓ. The multiplicative modulation terms come from the insight in neuroscience
that synaptic scaling, driven by competition across synapses, serves as a global (negative) feedback
mechanism for regulating the magnitude of synaptic adjustments [8, 9, 10]. From a practical
standpoint, we found that using the above modulation/scaling factors meant we did not have to craft
a synaptic normalization scheme (such as in sparse coding schemes, where the columns/rows of a
synaptic matrix must be normalized such that they of unit length each time the matrix is updated).

We remark that the modulation factors we introduce could instead be adapted such that they are
useful for mitigating forgetting instead, as has been done in other continual learning approaches
[11, 12, 13, 14]. This could help to reduce the cost for growing out new task contexts each time a
new task is encountered. For example, one could adapt the modulation factor matrices to instead be
conditioned on the output of the S-NCN’s functional neural basal ganglia (or another type of task
selector circuit, such as one that mimics the cognitive control capabilities of the prefrontal cortex).

On Partial Pattern Completion

In the event that incomplete input xi is provided to the S-NCN, i.e., portions of xi are masked out by
the variable m ∈ {0, 1}J0×1, as mentioned in the main paper, we may infer the remaining portions
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of xi by using the relevant output error neurons of the S-NCN and treating the bottom sensory/input
layer z0x as a partial latent state. Specifically, we update the missing portions, i.e., 1−m, of z0 as:

z0x = x⊙m+
(
z0x − βe0x

)
⊙ (1−m) (12)

where e0x = z0x − z0µ,x (error neuron signals related to xi).

Parameter Optimization Setup and Baseline Details

S-NCN Optimization: For the S-NCN, we used SGD with a learning rate of λ = 0.01 (this rate was
only minorly tuned on the validation set of the first task in preliminary investigation) and mini-batches
each containing 10 samples. Based on preliminary experiments, the S-NCN, in general, was found
to be robust w.r.t. such hyper-parameters. However, the final meta-parameter values used, i.e.,
β = 0.05, K = 10, ηg = 0.9, ηe = 0.01, α = 0.98, were obtained by conducting a grid search
(using the validation sets to find best generalization). This meant that we searched over the ranges:
β = [0.01, 0.1], K = [5, 30], ηg = [0.5, 1.0], ηe = [0.005, 0.25], α = [0.5, 1.0].

Baseline Descriptions: The baselines include an MLP trained exclusively with backprop (Back-
prop), an MLP trained by backprop but regularized by drop-out (Backprop+DO), Elastic Weight
Consolidation (EWC) [15], EWC further regularized by drop-out (EWC-DO), the mean incremental
moment matching method (IMM) or Mean-IMM [16], the Mode-IMM method [16], the Mean-IMM
method combined with either DropTransfer (DT+Mean-IMM) or L2-transfer (L2-Mean-IMM) or
both (L2+DT+Mean-IMM) [16], the Md-IMM method combined with either DropTransfer (DT+Md-
IMM) or L2-Transfer (L2+Md-IMM) or both (L2-DT-Mode-IMM) [16], and the state-of-the-art
competitive model, hard attention to task (HAT) [17]. Furthermore, as mentioned in the main paper,
we examine other methods including those based on replay/rehearsal: naı̈ve rehearsal with memory
(NR+M), EWC, synaptic intelligence (SI), MAS [18], Lwf [19], GEM [20], ICarl [21], Lucir [22],
and Mnemonics [23]. With respect to very modern baselines, we also include, in the main paper,
results for the greedy sampler and dumb learner (GDumb) [24, 25], experience replay (ER) [26, 25],
and average gradient episodic memory (A-GEM) [27, 25].

Baseline Meta-parameter Tuning: For all baselines we take/use the hyper-parameters from each
model/algorithm’s source work as a starting point and tuned each, using grid search, the batch size,
learning rate, number of hidden units in each layer of the target MLP classifier, and optimizer choice.
We tuned across the following ranges: learning rate range was [3e− 5, 0.1], the optimizer choice was
tuned across the discrete set [“SGD”, “momentum”, “Adam”, “AdamW”], the hidden layer size range
was [128, 512], and number of layers range was [2−5]. For each baseline, we tuned hyper-parameters
based on their accuracy on each task’s development set (as mentioned in the next sub-section). For
IMM, we used the same settings proposed in the original paper as a starting point [16]. However,
we found that HAT [17] was quite sensitive to the choice of its two key hyper-parameters: 1) the
stability parameter smax, and 2) the “compressibility” parameter c. After extensive tuning, we used
smax = 450 and c = 0.78. For other baseline-specific hyperparameters, e.g., A-GEM has a gamma
and soft-constraint meta-parameter, we used the best-practice values reported in the literature (as we
found that these values worked well in general, even after some preliminary experimentation).

Limitations (Expanded Discussion): Our model jointly predicts the target label and learns to
generate the sensory input, further driven/modulated by a simple complementary neural system
that mitigates neural cross-talk. The dual nature of our model/system helps to uncover distributed
representations that facilitate robust learning and adaptation over sequences of tasks/datasets. Even
though this design scheme provides flexibility and seems to offer many advantages compared to other
backprop-based models, it does come with several limitations. Mainly, finding the true posterior
distribution over latent neural activities is harder than just learning a forward mapping between inputs
and output targets and, notably, it can be expensive to find a good set of neural activity values as the
problem complexity increases (notably the K hyper-parameter, which controls the amount of steps
taken per data point/mini-batch by the S-NCN to iteratively infer a potential maximum a posterior
estimate of its state variables). Currently, the S-NCN conducts inference and learning through a sort
of expectation-maximization process and, fortunately, in the problems we studied, the value of K
was fairly low (only 10 to 20 steps at most were needed to find useful state values per sample/mini-
batch). However, for more complex data types, such as natural images with multiple objects and
even background scenery, the value of K will quite likely need to be much higher, increasing
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Model General Hyperparameters
MNIST FMNIST NotMNIST

Model Configuration Configuration Configuration

EWC lr = 1e-3, SGD
NH = 1024, NL = 2

lr = 1e-4, SGD+M
NH = 512, NL = 3

lr = 1e-3, SGD
NH = 1024, NL = 2

VCL lr = 2e-4, Adam
NH = 512, NL = 3

lr = 2e-4, SGD+M
NH = 512, NL = 3

lr = 2e-4, Adam
NH = 512, NL = 3

IMM lr = 2e-3, SGD+M
NH = 512, NL = 3

lr = 1e-5, SGD
NH = 512, NL = 3

lr = 1e-4, SGD+M
NH = 512, NL = 3

HAT lr = 1e-4, SGD
NH = 512, NL = 3

lr = 2e-4, SGD
NH = 512, NL = 3

lr = 2e-4, SGD+M
NH = 512, NL = 3

A-GEM lr = 1e-4, SGD+M
NH = 512, NL = 3

lr = 2e-5, SGD
NH = 512, NL = 3

lr = 2e-4, SGD+M
NH = 512, NL = 3

ER lr = 2e-4, Adam
NH = 512, NL = 3

lr = 1e-4, AdamW
NH = 512, NL = 3

lr = 1e-4, AdamW
NH = 512, NL = 3

EWC lr = 1e-3, SGD+M
NH = 1024, NL = 2

lr = 1e-3, SGD+M
NH = 1024, NL = 2

lr = 1e-3, SGD
NH = 512, NL = 3

NR+M lr = 1e-4, SGD+M
NH = 512, NL = 3

lr = 1e-3, SGD+M
NH = 512, NL = 3

lr = 1e-4, SGD
NH = 512, NL = 3

SI lr = 1e-3, SGD
NH = 512, NL = 3

lr = 1e-3, SGD+M
NH = 512, NL = 3

lr = 1e-3, SGD
NH = 512, NL = 3

MAS lr = 1e-4, Adam
NH = 512, NL = 3

lr = 1e-4, Adam
NH = 512, NL = 3

lr = 2e-4, Adam
NH = 512, NL = 3

Lwf lr = 1e-3, SGD
NH = 1024, NL = 2

lr = 1e-3, SGD
NH = 1024, NL = 2

lr = 1e-3, SGD
NH = 1024, NL = 2

ICarl lr = 1e-3, SGD+M
NH = 1024, NL = 2

lr = 1e-3, SGD+M
NH = 1000, NL = 2

lr = 1e-4, SGD+M
NH = 1000, NL = 2

Lucir lr = 1e-4, Adam
NH = 512, NL = 3

lr = 2e-4, AdamW
NH = 512, NL = 3

lr = 2e-5, AdamW
NH = 512, NL = 3

GDumb lr = 2e-4, AdamW
NH = 512, NL = 3

lr = 2e-5, Adam
NH = 512, NL = 3

lr = 2e-4, AdamW
NH =512 , NL = 3

Mnem lr = 1e-4, Adam
NH = 512, NL = 3

lr = 2e-5, Adam
NH = 500, NL = 3

lr = 2e-4, Adam
NH = 512, NL = 3

S-NCN lr = 0.0105, SGD
NH = 500, NL = 3

lr = 0.01, SGD
NH = 500, NL = 3

lr = 0.011, SGD
NH = 500, NL = 3

Table 2: General hyper-parameter values selected from tuning. Models above double horizontal
line are multi-head models and models below it are single-head models. “NH” stands for “number
of hidden neurons”, “NL” stands for “number of hidden layers”, “lr” stands for “learning rate”,
and optimizer choice is either “SGD” for “stochastic gradient descent” (“SGA” means “stochastic
gradient ascent”), “Adam”, “AdamW”, and ‘SGD+M” for “SGD with momentum”).

the computation time needed to conduct online inference. This drawback could be mitigated by
integrating amortized inference, e.g., predictive sparse decomposition [28], and by designing custom
software/hardware implementations to exploit the S-NCN’s layer-wise parallelism.

Furthermore, the fact that the S-NCN (in its current form/implementation in this study) must solve
a dual optimization problem that entails jointly learning to predict the target label and generate the
sensory input (image) might compromise the model’s overall accuracy when tested on large-scale
images. It is often an easier problem to directly learn a conditional mapping between the input and
label as opposed to learning a full generative model as the S-NCN does [29]. Future work should
explore adapting the S-NCN to only learn a conditional mapping as opposed to a full joint distribution
over inputs and labels as well as potential mechanisms for pre-training the generative side of the
system (which would allow freezing of the synaptic weights for generation and only require updating
discriminative parameters – this could potentially reduce the value of K even for more complex
sensory inputs). Another drawback, yet also simultaneously a strength, is the fact that the S-NCN is
attempting to optimize (online) total discrepancy as opposed to a single, global surface loss. While
total discrepancy is one important key to breaking free of backprop and its limitations it also creates a
more challenging optimization problem in general, i.e., the neural system must now not only match
the values created by data but also ensure its internal activities and its local predictions of each
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of them are aligned. While the overall complementary system mitigates catastrophic interference
(or the neural cross-talk that would trigger the loss/deletion of previously acquired knowledge),
this primarily affects measurements of backward transfer (BWT) but could potentially damage the
model’s per-task performance, i.e., the main diagonal of its task matrix. Since we do not impose
any strong distributional assumptions over the latent activities (such as a clean Gaussian prior as is
often done in variational autoencoders), if the S-NCN’s estimated value of the latent activities are
far from the true posterior, then the S-NCN might produce sub-optimal performance, especially for
complex problems. Even though all continual learning systems suffer from this issue (especially
most modern-day continual learning ANNs), our model’s dual optimization nature could experience
this problem more frequently. We believe that integrating memory-aware retrieval from synapses, a
mechanism guided by (a brain-like form of) replay, could help direct the system to be closer to the
true posterior by avoiding bad local minima when learning continuously.

Additionally, with respect to our proposed task selection mechanism (the functional neural basal
ganglia circuit), one notable drawback is that a small refractory period is imposed in order to ensure
that enough data is accumulated from the stream to update the competitive task selector’s weights.
This would be an issue for task streams that constantly introduce tasks with fewer samples than
the pre-set refractory period. A subject of our future work is to improve the power /adaptability
of the task selection model in the face of more volatile task sequence streams. Another limitation
is that the S-NCN is, in effect, a dynamically-expanding architecture: there is an overhead for the
task-context memory – one new task context vector would need to be generated/grown for each new
(disjoint) task is encountered. While this required parameter growth/generation is not as high as other
dynamically-expanding architecture approaches (such as progressive networks [30] or dynamically-
expanding networks [31], where many new parameters must be created per task). While the inclusion
of relatively few, additional context vector parameters is more desirable, requiring the growing out
of parameters at a rate far less than methods such as [30, 31]. To mitigate the cost that even the
S-NCN imposes, we remark that the S-NCN’s generative cortex could be adapted to induce its
own form of layer-wise replay as one alternative, similar to [5], or that another circuit could be
designed to potentially learn how to compress these task contexts by reducing redundancy exploiting
overlap/redundancy between contexts (serving as a form of efficient long-term memory).

Finally, a more obvious drawback is that the S-NCN’s error synapses also increase the memory
footprint of the overall model. It would be advisable, when using/applying a model like the S-NCN
on other continual learning problems, to select the number of hidden layers and number of neurons in
each layer based on model capacity, i.e., compute the total number of (generative and error) synapses
that would result from making the neural structure more complex or deeper. A more long-term,
promising means of mitigating the increased memory footprint would be to design error units further
inspired by actual neurons – instead of assuming a one-to-one mapping (one error neuron per state
neuron), design small pools of neurons that are responsible for computing the mismatch activities for
large groups of state neurons. This is a key solution to investigate in future work.

Creating Task Orderings #1 and #2

To create our sequential learning benchmarks, we utilize the MNIST, Fashion MNIST, and Google
Draw datasets to create various sets of “subtasks”, or rather, classification problems that involve
different classes of the original set of each full dataset. In this paper, we create a 6 task sequence,
{T1, T2, T3, T4, T5, T6}, from these datasets, where two tasks are generated from each specific dataset.
To create the task splits, we create data subsets based on minimizing the amount of knowledge transfer
across data splits, specifically by examining the amount of stroke overlap in the images across classes,
yielding a challenging problem. For equal number of classes, the splits we created were: MNIST
set #1, M1 = {0, 8, 3, 5, 2}, MNIST set #2, M2 = {1, 4, 6, 7, 9}, Fashion MNIST set #1, FM1 = {top,
trouser, pullover, dress, coat}, Fashion MNIST set #2, FM2 = {sandal, shirt, sneaker, bag, ankle
boot}, Google Draw set #1, GD1 = {objects that were car or bike variants }, and Google Draw set
#2, GD2 = {objects belong to variants of airplanes or submarines }. For a task sequence, we create
two scenarios: 1) where number of classes are equal for all tasks (i.e., 5 classes in our setup), and
2) where number of classes are unequal (number of classes per task was chosen randomly, omitting
the number 5 as an option). In our experiments, we investigate two task orderings (Ordering #1 and
Ordering #2). We compute the color index similarity [32] between every pair of tasks (as a proxy
for task similarity) and randomly chose Orderings # 1 and # 2 so that the color similarity between
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adjacent tasks was higher for Ordering #1 (“High Color Sim.” for high color similarity) than for
Ordering #2 (“Low Color Sim.” for low color similarity), hence task transfer should be easier for
Ordering #1 than #2. These particular orderings could be considered to be “harder“ and “easier”
task orderings, respectively, since it is possible that a the difference in color-index would make it
easier to differentiate the tasks (the diversity of inputs from the first few tasks might even improve the
performance, as it would be in the case of Ordering # 2). We can see this reflected by the fact that
all models (the S-NCN and the baselines) perform a bit better in general on Ordering # 2 (low color
similarity or “easier” ordering) than on Ordering # 1 (high color similarity or “harder” ordering).

Expanded Results for Task Orderings # 1 and # 2

Metrics for Quantifying Memory Retention: The formulas for ACC and BWT are:

ACC =
1

T

T∑
i=1

RT,i, BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i. (13)

In addition, we propose two additional, complementary metrics, with the motivation that these
metrics examine aspects of forgetting and capacity not clearly captured by ACC or BWT. Our two
measures, True BWT (TBWT) and Cumulative BWT for task Tt (CBWT(t)), are defined as follows:

CBWT(t) =
1

T − t

T∑
i=t+1

Ri,t −Rt,t (14)

TBWT =
1

T − 1

T−1∑
i=1

RT,i −Gi,i (15)

where Gi,i is the performance of an independent classifier trained on task i (in our experiments,
this was a full capacity MLP trained via backprop). TBWT relates the degradation in prior task
performance by replacing the diagonal of task matrix R with a “gold standard”, which is the
performance of a model that, in isolation, is able to allocate its full capacity to a particular task.
CBWT(t) is a task-specific metric, where we instead examine a particular column of R, and measure
the total amount of forgetting throughout the sequential learning process, instead of simply examining
the final performance at the end (bottom row of R) as BWT can only do. CBWT(t) would punish
models that suffer large dips in performance in the middle of learning (but not necessarily at the end),
and would be better suited for characterizing forgetting in stream settings than BWT.

Discussion: Results are reported in Tables 3 and 4 (an expanded version of the original one
in the main paper). Each simulation was run 10 times, each trial using a unique seed for pseudo-
random number generation, we report both mean and standard deviation. As we observe in our
experimental results, we see that all of our S-NCN models exhibit improved memory retention over
simple baselines, such as backprop, and more notably, EWC. However, we see that incorporating
task-driven lateral inhibition in facilitating gradual forgetting as opposed to catastrophic forgetting,
as evidenced by the very competitive performance of both Lat1-S-NCN and Lat2-S-NCNs, with
Lat1-S-NCN outperforming all baselines consistently, in terms of both ACC and BWT. This result is
robust across both task sequences and equal/ unequal class settings. It is further important to note that
the meta-parameter settings used for the various S-NCNs were only tweaked minorly with the same
values across all of the settings/scenarios. The observation that lateral inhibition improves the neural
computation of our interactive network further corroborates the result of [33], though it focused on
models trained via contrastive Hebbian learning.

Upon examination of Table 3, in terms of TBWT and CBWT(1)1, the proposed lateral S-NCNs still
outperform the baselines. The key difference is that we see that the lateral S-NCNs actually do retain
prior information throughout learning and do not simply just recover it at the end.

1We measure CBWT for task T1, since this measures total forgetting over the full length of the task sequence.
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Table 4: Generalization metrics (10 trials) for sequence orderings # 1 & #2 (higher values are better).

Ordering #1: {M1,M2, GD1, FM1, FM2, GD2} (High Color Sim.)
Equal Unequal

ACC BWT ACC BWT
Backprop 0.241± 0.050 −0.759± 0.030 0.185± 0.048 −0.791± 0.048
Backprop+DO 0.251± 0.049 −0.711± 0.030 0.178± 0.049 −0.733± 0.049
EWC 0.280± 0.023 −0.714± 0.030 0.185± 0.046 −0.726± 0.039
EWC+DO 0.231± 0.029 −0.687± 0.029 0.184± 0.044 −0.710± 0.038
Mean-IMM 0.279± 0.019 −0.465± 0.024 0.210± 0.041 −0.499± 0.043
Md-IMM 0.521± 0.027 −0.392± 0.023 0.480± 0.039 −0.240± 0.040
DT+Mean-IMM 0.321± 0.023 −0.430± 0.020 0.300± 0.044 −0.471± 0.044
DT+Md-IMM 0.530± 0.024 −0.387± 0.021 0.551± 0.042 −0.220± 0.042
L2+Mean-IMM 0.301± 0.022 −0.443± 0.022 0.250± 0.038 −0.492± 0.046
L2+Md-IMM 0.491± 0.020 −0.376± 0.023 0.480± 0.039 −0.235± 0.041
L2+DT+Mean-IMM 0.354± 0.029 −0.390± 0.021 0.351± 0.039 −0.421± 0.046
L2+DT+Md-IMM 0.532± 0.025 −0.237± 0.027 0.520± 0.040 −0.240± 0.045
HAT 0.550± 0.019 −0.211± 0.020 0.492± 0.031 −0.231± 0.036
S-NCN (ours) 0.421± 0.022 −0.408± 0.026 0.352± 0.016 −0.476± 0.020
S-NCN-relu (ours) 0.398± 0.009 −0.430± 0.012 0.352± 0.008 −0.470± 0.011
Lat1-S-NCN (ours) 0.716± 0.013 −0.031± 0.017 0.713± 0.011 −0.041± 0.012
Lat2-S-NCN (ours) 0.573± 0.020 −0.236± 0.0258 0.554± 0.038 −0.235± 0.042

Ordering #2: {GD2,M1, FM2,M2, GD1, FM1} (Low Color Sim.)
ACC BWT ACC BWT

Backprop 0.303± 0.030 −0.644± 0.037 0.287± 0.043 −0.671± 0.043
Backprop+DO 0.285± 0.032 −0.587± 0.031 0.266± 0.042 −0.610± 0.044
EWC 0.303± 0.031 −0.643± 0.033 0.291± 0.039 −0.663± 0.047
EWC+DO 0.302± 0.033 −0.558± 0.032 0.281± 0.039 −0.586± 0.046
Mean-IMM 0.453± 0.026 −0.170± 0.031 0.402± 0.036 −0.274± 0.035
Md-IMM 0.584± 0.027 −0.091± 0.030 0.533± 0.034 −0.230± 0.036
DT+Mean-IMM 0.558± 0.021 −0.128± 0.029 0.510± 0.033 −0.254± 0.035
DT+Md-IMM 0.591± 0.020 −0.088± 0.032 0.528± 0.036 −0.211± 0.039
L2+Mean-IMM 0.465± 0.021 −0.156± 0.033 0.430± 0.039 −0.271± 0.032
L2+Md-IMM 0.576± 0.028 −0.99± 0.038 0.511± 0.036 −0.266± 0.039
L2+DT+Mean-IMM 0.587± 0.025 −0.105± 0.033 0.528± 0.038 −0.253± 0.043
L2+DT+Md-IMM 0.630± 0.029 −0.076± 0.030 0.551± 0.037 −0.201± 0.041
HAT 0.596± 0.026 −0.114± 0.029 0.563± 0.031 −0.210± 0.044
S-NCN (ours) 0.444± 0.017 −0.393± 0.0210 0.272± 0.013 −0.587± 0.014
S-NCN-relu (ours) 0.431± 0.009 −0.398± 0.010 0.286± 0.007 −0.559± 0.008
Lat1-S-NCN (ours) 0.721± 0.014 −0.042± 0.013 0.667± 0.011 −0.097± 0.013
Lat2-S-NCN (ours) 0.633± 0.028 −0.170± 0.033 0.5778± 0.035 −0.211± 0.042

Expanded Benchmark Results

To start, we describe the three forms of the lateral competition we designed for the S-NCN. They
were specifically as follows:

1. f ℓ(zℓ,gℓ
t) = I · zℓ, which means that the lateral inhibitory matrix is fixed to a diagonal

matrix I and forces the model to ignore the task embedding (in the Appendix, we denote
this as “NoLat-S-NCN”),

2. f ℓ(zℓ,gℓ
t) =

(
I⊙Vℓ

)
· zℓ, where the matrix Vℓ = BKWTA(gℓ

t ,K) · BKWTA((gℓ
t)

T ,K)
and BKWTA(v,K) is the binarized K winners-take-all function, yielding a binary vector
with 1 at the index of each of the K winning units (in the Appendix, we denote this as
“Lat1-S-NCN”),

3. f ℓ(zℓ,gℓ
t) = max

(
0, zℓ−

(
(Vℓ⊙ (gℓ

t · (gℓ
t)

T )) ·zℓ
))

, where: Vℓ
i,j = {α, if i ̸= j, else, 0}

(in the Appendix, we denote this as “Lat2-S-NCN”).

In the last two forms of the competition function, we see that lateral inhibition is a function of an
evolving context vector gℓ, triggered by the presence of the task signal ti. The above competition
functions correspond to different designs of lateral suppression patterns: (1) corresponds to no lateral
suppression, (2) corresponds to shutting off neurons that are not task-relevant driven by a task selector,
(3) corresponds to a task-driven, real-valued lateral matrix that scales neural activities.
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On the custom benchmarks (including both orderings #1 and #2), we evaluate four variations of the
S-NCN: 1) an S-NCN, with hyperbolic tangent activations and no context-dependent lateral inhibition
(S-NCN), 2) an S-NCN with sparsity created by the use of a linear rectifier activation function and
no lateral inhibition (S-NCN-relu), 3) an S-NCN with the second variant of our proposed lateral
inhibition (Lat1-S-NCN), and 4) an S-NCN with the third variant of our proposed lateral inhibition
(Lat2-S-NCN) (All variants used: β = 0.05, K = 10, ηg = 0.9, ηe = 0.01, α = 0.98). The last
two S-NCN models (“Lat1-S-NCN” and “Lat2-S-NCN”) were driven by the FNBG model that we
described in Section 3.3 (“The Neural Task Selection Model”).

We compare our S-NCN model (specifically, our best-performing one from the experiment in the last
section – the Lat1-S-NCN) to the following approaches that have been proposed over the years to
combat catastrophic interference: Naive rehearsal with memory (NR+M1 & NR+M2), EWC, synaptic
intelligence (SI), MAS [18], Lwf [19], GEM [20], DGR [34], Rtf [35], ICarl [21], Lucir [22], Bic [36],
and Mnemonics [23]. In Table 5, we report model ACC and BWT, averaged over 10 trials, offering
not only an extensive and comprehensive comparison of competitive methods, but also demonstrating
that, for all three benchmarks, our proposed S-NCN outperforms all of them, demonstrating the
power afforded by challenging the very assumptions underlying modern-day artificial neural systems
and designing models with stronger grounding in neuro-biology. Furthermore, it is astounding to
see that the S-NCN outperforms/matches performance with not only the single-head models but also
with the multi-head models (except GEM), which enjoy an easier version of the problem since they
are permitted to utilize a different classifier per task. Finally, it is critical to note that our proposed S-
NCN is a complementary neural system that learns without explicitly-provided task descriptors,
i.e., in other words, the model learns to compose its own task contexts in a data-dependent manner.

Note that, in the online setting, split FashionMNIST appears to be simpler, given that the S-NCN
readily learns to generate rough forms of bigger objects (shirt/shoes/pants) and associate these with
labels early whereas digits/characters are a bit more intricate and take longer to learn.

S-NCN Task Accuracy Curves

See Figure 1 (below) for a visual depiction of the S-NCN’s task accuracy over time across tasks for
all three continual learning benchmarks investigated in this paper.
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Figure 1: Task accuracy curves for the S-NCN measured across the five tasks within the (Left
column) Split MNIST, (Middle column) Split Fashion MNIST, and (Right column) Split NotMNIST
benchmarks (red vertical lines indicate actual task boundaries). Y-axis depicts the fraction correct
while the x-axis depicts (online) training iteration (or one single epoch/pass through each task).
Each row, as indicated by the Y-axis label, represents the perspective of a different task, e.g., row 1
corresponds to performance on Task 1 as the S-NCN learns across all tasks, row 2 corresponds to
performance on Task 2 as the S-NCN learns across all tasks, etc.
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