
A Proof for Claim 1

Proof. We start with recalling some related notations and definitions. In Section 4.3, we design a
novel soft contrastive loss by incorporating a pair-wise positiveness score w in Eq. 1:

Lsoft
CL (D) =

1

|D|
∑
i∈D

 1∑
j∈A(i) wij

∑
j∈A(i)

−wij · log
exp(zi · zj/τ)∑

a∈A(i) exp(zi · za/τ)

 , (8)

where D is the training set, A(i) is the index of the set of instances involved in the same batch, zi is
the contrastive feature for instance xi, and τ is the temperature hyper-parameter.

For each instance xi, the soft contrastive loss Lsoft
CL (xi) can be written as:

Lsoft
CL (xi) = Ci

∑
j∈A(i)

[
−wij · log

exp(zi · zj/τ)∑
a∈A(i) exp(zi · za/τ)

]
, (9)

where Ci =
1∑

j∈A(i) wij
is a constant value for fixed w, then the contrastive logit pij is defined as:

pij =
exp(zi · zj/τ)∑

a∈A(i) exp(zi · za/τ)
(10)

Then, we omit the constant C in Eq. 9 and solve the optimization problem with the Lagrange
multiplier. The problem is defined as follows:

Minimize: f(pi1, · · · , pin) = −
∑n

k=1(wik · log pik),

Subject to: g(pi1, · · · , pin) =
∑n

k=1 pik − 1 = 0,

(11)

where n refers to the number of instances in the training batch, i.e., n = |B| = |A(i)|. The
Lagrangian function of Eq. 11 and its corresponding partial derivatives are:

L(pi1, · · · , pin, λ) = −
n∑

k=1

(wik · log pik) + λ(

n∑
k=1

pik − 1), (12)


∂L
∂pij

= −wij

pij
+ λ = 0

∂L
∂λ =

∑n
k=1 pij − 1 = 0

(13)

From Eq. 13, the optimal value of pij is p∗ij =
wij∑n

k=1 wik
, which concludes the proof for Claim 1.

Claim 1 indicates that minimizing Eq. 6 encourages the similarity of features between two samples to
be proportional to the corresponding positiveness score. In this way, we effectively transfer knowledge
from the pseudo-labeling branch to contrastive learning.
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B Pseudo-code

We summarize the pipeline of self-Balanced Co-advice contrastive framework (BaCon) in Algorithm
1, and the source code can be found here.

Algorithm 1 The overall pipeline of BaCon.
Input: Train set D = {Dl ∪ Du}, model parameter fcon, fcls, train epoch T , warm-up epochs w,
estimation interval r, sampling rate α, β, similarity metric Sim (·), hyper-parameter p and k.
Output: Trained model parameter θT .
Initialize: Load DINO [6] pre-trained parameters for the backbone in two branches and the classifier
and projector is randomly initialized.

for epoch = 0, · · · , T − 1 do
if epoch%r = 0 then

Re-estimate the training set distribution and re-place πe (Section 4.1);
end if
Regularize the predictions of the classifier with Eq. 2;
Train fcls with Eq. 3;
Compute the self-supervised CL loss Lu

CL(D) and supervised CL loss Ls
CL(Dl) with Eq. 1;

if epoch ≥ w then
Debiasing pseudo-labels with Eq. 4;
Obtain the sampled pseudo-labels M(Du) with sampling rate in Eq. 5;
Calculate the pair-wise positiveness score w with w = Sim(p̃i, p̃j);
Compute the soft CL loss Lsoft

CL (Dl ∪M(Du)) with Eq. 6;
Train fcon with Eq. 7.

else
Train fcon with Lu

CL(D) + γ1Ls
CL(Dl).

end if
end for

After training, we test the model via k-means clustering on the backbone feature of the contrastive-
learning branch. The test strategy is summarized in Algorithm 2.

Algorithm 2 The test stage strategy of BaCon.
Input: The balanced test set Dt = {(xi, yi)} ∈ X × Y , fine-tuned backbone of the contrastive-
learning branch fb.
Output: Classification accuracy Acc.

for xi ∈ Dt do
Obtain the feature of xi via fb(xi)

end for
Perform k-means clustering on all the features of test samples with the cluster number C = |Dt|;
Calculate the optimal assignment between clusters and classes by Hungarian algorithm [32];
Compute the test accuracy Acc based on the optimal assignment.
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C Detailed Experimental Settings

In this section, we provide a comprehensive overview of the experimental setup, expanding upon the
details presented in Section 5.1.

C.1 Benchmark Datasets

In Section 5.3, we present our experimental findings based on four generic long-tailed image recogni-
tion datasets. CIFAR-10-LT and CIFAR-100-LT, which are first introduced by [10]. Both datasets are
long-tail subsets sampled from the original CIFAR-10 and CIFAR-100. The imbalance ratio is defined
as the ratio between the number of instances in the largest class and the smallest class. In our experi-
ments, we default the imbalance ratio to 100 to reflect the performance disparities between classes.
ImageNet-100-LT, proposed by [27], which comprises 12K images sampled from the ImageNet-100
dataset [57] using a Pareto distribution. The instance number of each class in the training set ranges
from 1,280 to 5. We also incorporate the Places dataset [80], a large-scale scene-centric dataset, in
our experiments. We utilize Places-LT [40], which consists of approximately 62.5K images sampled
from the Places dataset using a Pareto distribution. The training set of Places-LT is ranging from
4,980 to 5. A summary of the dataset statistics is provided in Table 7.

Table 7: Statistics of datasets.
Dataset Long-tail type Imbalance ratio ρ #class #train images #test images

CIFAR-10-LT Exp 100 10 11.2K 10.0K
CIFAR-100-LT Exp 100 100 9.8K 10.0K
ImageNet-100-LT Pareto 256 100 12.0K 5.0K
Places-LT Pareto 996 365 62.5K 36.5K

C.2 Construction of Training and Testing Sets

To construct the training set for distribution-agnostic generalized category discovery (DA-GCD), we
first sub-sample |Yk| classes from the entire long-tail datasets (introduced in Section C.1) to stimulate
known classes and treat the rest as novel classes, then sub-sample 50% instances in each known
class as Dl and concentrate others with all samples in novel classes to form Du. The default |Yk| for
CIFAR-10-LT, CIFAR-100-LT, ImageNet-100-LT, and Places-LT are 5, 80, 50, and 182 respectively.
Our default training set of each dataset is summarized in Table 8. We also evaluate BaCon with
different Yk, different labeled ratios rl (default rl = 50%), and different imbalance ratios of both
labeled set and unlabeled set.

Table 8: The default setting of DA-GCD’s training set.

Dataset Known classes
|Yk|

Novel classes
|Yn|

Labeled images
|Dl|

Unlabeled images
|Du|

CIFAR-10-LT 5 5 4.5K 6.7K
CIFAR-100-LT 80 20 3.8K 6.0K
ImageNet-100-LT 50 50 3.2K 9.0K
Places-LT 182 183 20.8K 41.7K

For the test set, we use a disjoint balanced set as a common practice in the field of long-tail learning
[29, 31, 27]. It’s worth noting that the test set contains both known and novel classes, and the model
is required to classify test set instances to every single class.

C.3 Implementation Details of BaCon

We implement all our techniques using PyTorch [47] and conduct the experiments using a RTX3090
GPU. Following GCD [60], we load a DINO [6] pre-trained ViT-B/16 [13] as the backbone for both
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branches. The classification head and projector are randomly initialized. We only fine-tune the last
block of the backbone, the classification head in the pseudo-labeling branch, and the projector in
the contrastive-learning branch. We use the output of [CLS] token with a dimension of 768 as the
backbone feature for an input image. The classifier is implemented with a single fully-connected
layer, and we use the cosine classifier due to its competent empirical results in long-tail learning [29].
The projector is an MLP with an output feature dimension of 65536. We train with a batch size of
256, and an initial learning rate of 0.1 decayed with a cosine schedule. We train for 200 epochs on
each dataset. The temperature τ is set to 1.0, the hyper-parameter p and k is set to 0.5, the sampling
rates α = 0.8, β = 0.5, and the re-estimate interval r is 10 (epochs). We use dot product as the
similarity metric to define the positiveness score w.
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D Introduction of Baseline Methods

In our paper, we formally define a more realistic task called distribution-agnostic generalized category
discovery (DA-GCD) and design a novel framework BaCon for the challenge setting. To evaluate
the effectiveness of BaCon, we compare the proposed method with SOTA techniques in two closely
related fields: imbalanced semi-supervised learning (imbalanced SSL) and generalized category
discovery (GCD). In this section, we provide a detailed introduction of baseline methods (including
ABC [33] and DARP [31] in imbalanced SSL; GCD [60], ORCA [4], OpenCon [56], and SimGCD
[70] in GCD).

Imbalanced SSL [31, 33, 69, 19] considers the scenario where the training set has a long-tailed
distribution and only a small subset of data is labeled. DARP [31] suggests refining pseudo-labels
to the long-tailed distribution of the training set, and further designing a method to estimate the
unknown distribution based on the assumption that the confusion matrix for labeled data and the
unlabeled part are almost the same. Unfortunately, their assumption does not always hold in practice
since the model tends to overfit the labeled samples. ABC [33] introduces an auxiliary balanced
classifier to mitigate the data imbalance issue. Nevertheless, they also require the class-wise data
distribution which is agnostic (due to the presence of open-set class samples) in DA-GCD.

Generalized category discovery (GCD), formulated by [60], is a new-raised domain in open-set
learning. GCD manages to jointly recognize known categories contained in the manually annotated
subset as well as novel (open-set) classes which appeared in the unlabeled set. Note that GCD
classified the open-set samples into fine-grained categories according to their visual concept, which
is different from OOD detection [37, 24, 39]. The pioneering work GCD [60] proposes to leverage
the pre-trained ViT and contrastive learning to learn a discriminative feature space and further obtain
predictions by the proposed semi-k-means clustering strategy. ORCA [4] suggests balancing the
learning rate of known and novel classes by an uncertainty adaptive margin mechanism. OpenCon
[56] attempts to supervise the unlabeled instances by generating pseudo-positive pairs for closely
aligned representations. But this paradigm could lead to another dilemma: the representation and
pseudo-label are interdependent, which means, an inferior feature space (e.g., lack of intra-class
consistency) could lead to false positive pairs, which deteriorate the learning of feature space in turn.
A recent work SimGCD [70], argues that parametric classification could achieve better performance
with elaborately designed pseudo-labeling techniques. However, the aforementioned methods in
GCD are built on the class balance assumption, and we observe a consistent performance degradation
when generalizing to DA-GCD scenarios.
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E More Empirical Results

In this Section, we provide more empirical results on different datasets, and experimental settings to
further verify the effectiveness of the proposed BaCon.

E.1 Results with Different Ratio of Known and Novel Classes

Here we show the accuracy when changing the number of known (close-set) and novel (open-set)
classes. A small |Yk| means fewer categories have manually labeled samples (illustrated in Figure 1),
making the learning process more difficult. The performance is reported in Table 9. It’s revealed that
BaCon achieves the best accuracies on all settings, and brings larger performance gain under more
challenging settings, i.e., few known classes and a large number of novel categories (outperforms
best baseline ∼7% overall accuracy on CIFAR-100-LT when |Yk| = 20). Note the default |Yk| for
CIFAR-10-LT, CIFAR-100-LT, ImageNet-100-LT, and Places-LT are 5, 80, 50, and 182 respectively.

Table 9: Test accuracy (%) on CIFAR-100-LT with different |Yk|.
|Yk| = 20 |Yk| = 50 |Yk| = 80

Methods Old New All Old New All Old New All

TRSSL† 65.5 30.7 37.6 62.2 30.5 46.4 58.7 35.8 54.1
ORCA† 43.5 29.3 32.1 56.6 30.2 43.4 55.0 30.8 50.1
SimGCD 51.2 27.3 32.1 66.3 19.6 42.9 59.8 24.2 52.8
GCD 63.4 50.8 53.3 67.0 53.0 60.0 65.5 49.0 62.2
OpenCon† 60.3 37.2 41.8 69.0 33.3 51.2 64.2 40.9 59.6

BaCon-O 62.7 56.9 58.1 66.8 59.4 63.1 66.5 69.6 67.1
BaCon-S 64.2 59.2 60.2 67.9 60.2 64.0 67.4 66.5 67.2
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E.2 Results on Few-annotated Scenarios

In Table 10, we also conduct experiments under few-annotated scenarios, i.e., rl = {10%, 30%, 50%}.
The annotation ratio rl is computed by rl =

#labeled samples in a known class
#all samples in a known class , since we only have access

to manually annotated images from known categories (illustrated in Figure 1c), and all novel class
instances are unlabeled. Note that we set rl = 50% in default in the main paper.

Table 10: Test accuracy (%) with different annotation ratio rl.
rl = 10% rl = 30% rl = 50%

Methods Old New All Old New All Old New All

TRSSL† 53.7 32.6 49.5 56.0 32.6 51.4 58.7 35.8 54.1
ORCA† 43.8 41.3 43.3 51.2 32.2 47.4 55.0 30.8 50.1
SimGCD 51.2 17.6 44.5 55.7 25.6 49.7 59.8 24.2 52.8
GCD 61.7 54.9 60.4 63.1 58.8 62.2 65.5 49.0 62.2
OpenCon† 52.1 40.9 49.9 61.8 43.9 58.2 64.2 40.9 59.6

BaCon-O 63.2 58.8 62.3 64.9 58.8 62.3 66.5 69.6 67.1
BaCon-S 64.0 60.5 63.3 65.6 65.6 65.6 67.4 66.5 67.2
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E.3 Results with Different Imbalance Ratio on Labeled and Unlabeled Set

In Table 5, we report the performance of BaCon and baseline methods in GCD when the training
set has a different imbalance ratio ρ. Now, we further set the imbalance ratio of labeled data and
unlabeled data to be unequal (ρl ̸= ρu), which is common in practice. For example, in medical image
processing, the labeled data and unlabeled parts may come from hospitals in different countries.
When it comes to autonomous driving, the occurrence frequency of stones or pedestrians may slightly
change when the training data is from city areas or mountain roads.

The results are summarized in Table 11. We set the imbalance ratio of labeled data to 100 and vary
the value of ρu across different settings, namely {20, 50, 100, 150}. It’s observed that the proposed
BaCon outperforms all baseline methods by a large margin, indicating that BaCon is robust to the
shift of imbalance ratio between labeled and unlabeled samples.

Table 11: Test accuracy (%) on CIFAR-100 (ρl = 100) with different ρu
ρu = 20 ρu = 50 ρu = 100 ρu = 150

Methods Old New All Old New All Old New All Old New All

TRSSL† 63.1 38.8 58.2 57.2 44.0 54.6 58.7 35.8 54.1 55.5 39.0 52.2
ORCA† 56.4 45.5 54.2 56.9 42.1 53.9 55.0 30.8 50.1 56.9 31.9 51.8
SimGCD 61.1 27.9 54.4 59.2 29.2 53.2 59.8 24.2 52.8 59.6 24.7 52.6
GCD 65.6 56.1 63.7 65.5 54.1 63.2 65.5 49.0 62.2 64.5 50.9 61.8
OpenCon† 66.8 48.8 63.2 64.7 51.7 62.1 64.2 40.9 59.6 64.1 40.2 59.3

BaCon-O 67.1 63.4 66.4 67.0 61.0 65.8 66.5 69.6 67.1 65.3 54.4 63.1
BaCon-S 69.2 66.2 68.6 68.7 65.3 68.0 67.4 66.5 67.2 67.8 64.2 67.1
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