
Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 ARCHITECTURAL DETAILS

We implemented the NPs experts following the network architecture of CNPs and ANPs Garnelo
et al. (2018a;b); Kim et al. (2019). The architecture details are shown in Figure 7 in the appendix.
All MLPs in the CNPs architecture had relu activation function except the final layer. The latent
encoder rζ estimated µz,mz ∈ Rdz , which parameterized q(z|hC) = N (µz, 0.1 + 0.9 ∗ σz(mz))
where σz was the sigmoid function. In a similar way, the decoder estimated µy,my ∈ Rdy , which
parameterized p(yT |xT , z) = N (yT |µy, 0.1+0.9∗σy(my)) where σy was the softplus function. For
the GPs expert, we implemented standard GPs and sparse GPs using tensorflow probabilistic library
Dillon et al. (2017). The biased gate function was implemented using only MLPs and softmax
functions. The bias values for the GPs expert and the CNPs expert were e1.4 and 0 respectively.

A.1.1 HYPER PARAMETERS FOR 1D EXPERIMENT

We set dz = 128 for CNPs and ANPs experts and used the basic formulation of multihead cross-
attention in Kim et al. (2019). For GPs expert, we exploited the commonly used kernel functions
Rasmussen & Williams (2006). In training phase, we used a batch size of 1 and Adam optimizer
Kingma & Ba (2015) with a fixed learning rate of 1e−4 and tensorflow default value for other
hyperparameters.

A.1.2 HYPER PARAMETERS FOR 2D EXPERIMENT

The architecture was the same as the one used in 1D experiment. Different from 1D experiment,
we set dz = 512 for CNPs and ANPs experts and changed the final layer dimension from 2 to 6 for
RGB images in decoder. The training process was the same with 1D experiment.

Table 4: Summary of kernel functions used in the experiments. The kernel functions are written
either as a function of x and x′, or as a function of r = |x − x′|. The amplitude and length
hyperparameters are abbreviated as am and ls, respectively.

Kernel function Initial hyperparameters

squared exponential am(e0), ls(e0)

martérn am(e0), ls(e0)

linear bias(e0), slop(e0), shift(e0)

polynomial bias(e0), slop(e0), shift(e0), exponent(10)

rational quadratic am(e0), ls(e0), scalemixturerate(e0)

Periodic am(e0), ls(e0), period(e0)

14

Under review as a conference paper at ICLR 2022

[Latent Encoder]

μ
z

σ
z

[Decoder][Deterministic Encoder]

relu+mlp mlpFeature dim Feature dim

m elementwise mean

d distribution

d

(x
C
,y

C
)

r
C

[Gate network]

(x
T
) (x

C
)

~ z

~ sampling

(x
C
,y

C
)

s sigmid function

s +

0.9

×

× multiply+ add

0.1

sp softplus functionsltsplit function

slt

(x
C
,y

C
)

#
GPs

#
NPs

(μ
GPs

, σ
GPs

) (μ
NPs

, σ
NPs

)

μ
Anytime NPs

σ
Anytime NPs

η
GPs

»η
NPs

d

sm softmax function

sm

128

128

128

128

128

128

128

128

128

128

128

Attention
Module

128

128

2

μ
NPs

σ
NPs

y
Td ~

sp

+

0.9

×

0.1

128

2

gPoE
Module

128

128

128

128

m

128

128

128

+

(x
T
, r

C
, z)

Figure 7: The network architecture for 1D experiments.

15

Under review as a conference paper at ICLR 2022

Algorithm 1: Continuous occupancy mapping.
Input : Paired robot pose set p and point cloud set s.

Output: Probabilistic occupancy global map M.

1 for i = 0 to |p| − 1 do
2 (Xi, yi)← Coordinates of observed grids and corresponding occupancy using pi ∈ p and

si ∈ s.

3 Update parameters of ATNPs using training data (Xi, yi).

4 (µi, σi)←Predict probabilistic occupancy at target locations X∗i .

5 Generate local map Mi using observation (Xi, yi) and predictions (µi, σi) at locations X∗i .

6 Integrate local map Mi into global map M

7 end

A.2 ONLINE-LEARNING TASKS: PROBABILISTIC OCCUPANCY GRID MAP

The proposed method can be used to represent the robot’s surrounding environment. To navigate an
unknown environment, robots usually generate coarse, low-resolution occupancy maps on the fly to
find a possible path quickly. Detailed and high-resolution occupancy maps are then reconstructed
along paths of interest. GPs have been previously used for generating the occupancy grid mapping
because they can represent the continuous spatial dependency of a real environment and robustly
handle sparse and noisy data O’Callaghan et al. (2009); O’Callaghan & Ramos (2012). However,
the computational complexity of GP-based methods is always O(N3) with a training data set of
size N , which makes it impractical to use for mapping a large-scale environment. In contrast, the
proposed method can achieve O(N) complexity after the transition from GPs to CNPs. Therefore,
the proposed method can solve the scalability problem of mapping large environments.

To evaluate the proposed method, we adapted it to generate a probabilistic occupancy grid map.
Following the experiment setup Yuan et al. (2018), we used a simple two-dimensional robot simula-
tor (STDR) of a robot operating system (ROS) Quigley et al. (2009). STDR provides various types
of synthetic maps, accurate odometry information, and 2D point clouds from LiDAR sensors. We
used a sparse obstacle map of size 775×746 with a grid resolution of 0.02 m, as shown in Figure
8(b) in the appendix. To generate the probabilistic occupancy grid map, we extracted the location
of observed grids X and their occupancy y using the robot’s position and point clouds. We updated
the parameters of the ATNPs with observations (X, y) and predicted the probabilistic occupancy
of target locations X∗ within sensor range. The predicted probabilistic occupancy local maps were
integrated into the global map, as shown in Figure 8(a). The estimated occupancy grid local map
could be used on the fly for path planning in real time. However, in this experiment, we assumed
the simulator provided feasible paths. We left the task of finding feasible paths as future works. The
overall continuous mapping process is shown in Algorithm 1.

16

Under review as a conference paper at ICLR 2022

(a) (b)

Figure 8: Qualitative results of probabilistic occupancy mapping. (a) Predictive mean of occupancy map after
the convergence of the ATNPs. (b) Ground truth map.

17

	Appendix
	Architectural details
	Hyper parameters for 1D experiment
	Hyper parameters for 2D experiment

	Online-learning tasks: probabilistic occupancy grid map

