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A BACKGROUND

A.1 DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

DDPM is a latent-variable generative model that gradually transforms a noise distribution into a data
distribution x0 ∼ q(x0) (Ho et al., 2020). DDPM consists of a forward process q that iteratively adds
a noise on the data distribution, and a reverse process p that iteratively denoises a noise distribution
toward a final data distribution. The forward process adds a Gaussian noise to xt using a Markov
process according to a variance schedule {βt}Tt=1:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (4)

Ho et al. state that it is possible to sample xt from x0 directly, using the notation αt := 1 − βt and

ᾱt :=
∏t

s=0 αs:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (5)

=
√
ᾱtx0 + ε

√
1− ᾱt, ε ∼ N (0, I) (6)

Using Bayes theorem, posterior q(xt−1|xt, x0) is also a Gaussian distribution with mean μ̃t(xt, x0)

and variance β̃t:

q(xt−1|xt, x0) = N (xt−1; μ̃t(xt, x0), β̃tI), (7)

where μ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt (8)

With sufficiently large T and a well defined βt, the latent xT becomes nearly an isotropic Gaussian
distribution. Assuming this, to sample from the data distribution q(x0), we can first sample from
an isotropic Gaussian distribution and then iteratively apply q(xt−1|xt) to obtain x0. However,
q(xt−1|xt) depends on the entire data distribution so it is hard to exactly compute when the data
distribution is unknown. As a result, we train a neural network to predict a mean μθ and a diagonal
covariance matrix Σθ:

pθ(x0:T ) := p(xT )
T∏

t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;μθ(xt, t),Σθ(xt, t)) (9)

The network is trained by optimizing the usual variational bound on negative log likelihood, Lvlb:

Lvlb := L0 + L1 + ...+ LT−1 + LT (10)

L0 := − log pθ(x0|x1) (11)

Lt−1 := DKL(q(xt−1|xt, x0) || pθ(xt−1|xt)) (12)

LT := DKL(q(xT |x0) || p(xT )) (13)

Ho et al. identify that training the model to predict ε in Eq. 6 improves sample quality than directly
predicting μθ(xt, t). Therefore, Lvlb is simplified to:

Lsimple = Et,x0,ε

[||ε− εθ(xt, t)||2
]

(14)

When the training is done, we can sample from the data distribution by inserting the predicted
εθ(xt, t) to the equation:

xt−1 =
1√

1− βt

(
xt − βt√

1− αt
εθ (xt)

)
+ σtzt, (15)

where zt ∼ N (0, I) and σ2
t is a variance which is set to σ2

t = βt.

DDPM shows a powerful performance on image generation but is has a severe drawback of signifi-
cantly slow sampling speed. To sample one image, it should feedforward a neural network for each
denoising step, total T times. DDIM (Song et al., 2020) accelerates the sampling speed of DDPM
(Appendix A.2).
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A.2 DENOISING DIFFUSION IMPLICIT MODEL (DDIM)

DDIM generalizes DDPM as a class of non-Markovian diffusion processes (Song et al., 2020):

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −√αtx0√

1− αt
, σ2

t I) (16)

Consequently, the reverse process becomes

xt−1 =
√
αt−1

(
xt −

√
1− αtεt (xt)√

αt

)
︸ ︷︷ ︸

”predicted x0 ”

+
√

1− αt−1 − σ2
t · εt (xt)︸ ︷︷ ︸

”direction pointing to xt ”

+ σtzt︸︷︷︸
random noise

(17)

When σt =
√

(1− αt−1) / (1− αt)
√

1− αt/αt−1 for all t, the forward process becomes Marko-
vian which means that the reverse process becomes a DDPM. When σt = 0, the forward process
becomes deterministic and produces high quality samples much faster.
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B QUALITATIVE RESULTS

Figure A1: Image samples of MDM+ADM trained on CIFAR-10 dataset.
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Figure A2: Image samples of MDM+P2W trained on CIFAR-10 dataset.
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Figure A3: Image samples of MDM+Soft-truncation trained on ImageNet-32 dataset.
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