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A BACKGROUND

A.1 DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

DDPM is a latent-variable generative model that gradually transforms a noise distribution into a data
distribution 2y ~ g(x¢) (Ho et al., 2020). DDPM consists of a forward process ¢ that iteratively adds
a noise on the data distribution, and a reverse process p that iteratively denoises a noise distribution
toward a final data distribution. The forward process adds a Gaussian noise to x; using a Markov
process according to a variance schedule {3;}1;:
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Ho et al. state that it is possible to sample z; from x( directly, using the notation oy := 1 — 3; and
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Using Bayes theorem, posterior ¢(x:—1|z¢, Zo) is also a Gaussian distribution with mean fi¢ (¢, xo)
and variance [(3;:
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With sufficiently large T and a well defined f3;, the latent 27 becomes nearly an isotropic Gaussian
distribution. Assuming this, to sample from the data distribution ¢(zp), we can first sample from
an isotropic Gaussian distribution and then iteratively apply ¢(z:—1|x:) to obtain xzo. However,
q(x¢—1]x+) depends on the entire data distribution so it is hard to exactly compute when the data
distribution is unknown. As a result, we train a neural network to predict a mean py and a diagonal
covariance matrix g:
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The network is trained by optimizing the usual variational bound on negative log likelihood, L;:

Ly =Lo+Li+ ..+ Lyr_1+ Lt (10)
Lo = —log pg(wo|z1) (11)
L1 = Drp(q(xi—1|we, x0) || po(zi—1]2t)) (12)
Ly == Dgr(q(zr|zo) || p(zr)) (13)

Ho et al. identify that training the model to predict € in Eq. 6 improves sample quality than directly
predicting pg(x+, t). Therefore, Ly, is simplified to:

Lsimple = Et,xg,e [HE - 69($ta t)”z] (14)

When the training is done, we can sample from the data distribution by inserting the predicted
g (¢, t) to the equation:
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where z; ~ N(0,1) and o7 is a variance which is set to 07 = ;.

DDPM shows a powerful performance on image generation but is has a severe drawback of signifi-
cantly slow sampling speed. To sample one image, it should feedforward a neural network for each
denoising step, total 7" times. DDIM (Song et al., 2020) accelerates the sampling speed of DDPM
(Appendix A.2).
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A.2 DENOISING DIFFUSION IMPLICIT MODEL (DDIM)

DDIM generalizes DDPM as a class of non-Markovian diffusion processes (Song et al., 2020):
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Consequently, the reverse process becomes
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“predicted o p & t

When o; = \/(1 —a—1) /(1= ozt)\/l — /a1 for all ¢, the forward process becomes Marko-
vian which means that the reverse process becomes a DDPM. When o; = 0, the forward process
becomes deterministic and produces high quality samples much faster.
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B QUALITATIVE RESULTS
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Figure Al: Image samples of MDM+ADM trained on CIFAR-10 dataset.
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Figure A2: Image samples of MDM+P2W trained on CIFAR-10 dataset.
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Figure A3: Image samples of MDM+Soft-truncation trained on ImageNet-32 dataset.
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