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Figure 9: A full explanatory diagram of the Rate-Distortion Optimization Procedure inspired from
both Ballé et al. (2016) and Deza et al. (2019). The goal is to find the equivalent ‘perceptual
transmission rate’ for a given distortion σ to find a matched-resource perceptual input for Foveation-
Texture that is non-foveated. This optimization pipeline produces Uniform-Blur, a perceptual system
that receives as input uniformly blurred images as a way to loosely mimic uniform retinal ganglion
cell re-distribution in as if it were to occur in humans. We now have a proper control to evaluate how a
foveated texture based model (Foveation-Texture) compares to a non-foveated model (Uniform-Blur)
when restricted with the same amount of perceptual resources under the aggregate SSIM matching
constraint.

A Description of All Perceptual Systems557

Foveation-Texture: We adjusted the parameters of the foveation texture transform to have stronger558

distortions in the periphery that can consequently amplify the differences between a foveated and559

non-foveated system. This was done setting the rate of growth of the receptive field size (scaling560

factor) s = 0.4.561

This value (s = 0.4) was used instead of s = 0.5, given that experiments of Freeman & Simoncelli562

(2011); Deza et al. (2019) have shown that this scaling factor yields a match with physiology but563

only when human observers are psychophysically tested between pairs of synthesized/rendered564

image metamers. Works of Wallis et al. (2017, 2019); Deza et al. (2019); Shumikhin (2020) have565

suggested that the when comparing a non-foveated reference image to it’s foveated texturized version,566

the scaling factor is actually much smaller than 0.5 (0.24, or in some cases as small as 0.20; See567

Table 3). We thus selected a smaller factor of s = 0.4 (that is still metameric to a human observer568

between synthesized pairs), as smaller scaling factors significantly reduced the crowding effects.569

Ultimately, the selection of this value is not critical in our studies as: 1) we are interested in grossly570

exagerrating the distortions beyond the human metameric boundary to test if the perceptual system571

will learn something new or different from the highly manipulated images that use a new family of572

transformations; 2) we are not making any comparative measurements to human psychophysical573

experiments where matching such scaling factors would be critical e.g. Deza & Eckstein (2016);574

Eckstein et al. (2017); Geirhos et al. (2018).575

Reference: We use the same image transform at the foveation stage for Reference but set the scaling576

factor set to s = 0. In this way, any potential effects of the compression/expansion operations of the577

image transform stage in the perceptual system is tightly upper-bounded by Reference over Foveation-578

Texture. Thus, the only difference after stage 1 is whether the image statistics were texturized in579

increasingly large pooling windows (Foveation-Texture), or not (Reference) – however note that the580

texturization procedure comes at a computational cost and modifies the amount of resources allocated581

in the image.582

Indeed, the Reference system does not provide a matched-resource non-foveated control – the583

Reference model only provides a non-foveated upper bound that removes the effects of crowding that584

Foveation-Texture does have (See Theorem 1). In fact, the matched-resource control – under certain585

constraints (See Table 2) – that is also non-foveated is the Uniform-Blur system as described earlier586

in the paper, and in more detail as follows.587
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Figure 10: A. The full explanatory diagram of the Rate-Distortion Optimization Procedure adapted
for Foveation-Blur. B. The goal is to find the equivalent ‘perceptual transmission rate’ for a given
distortion σ to find a matched-resource perceptual input for Foveation-Texture that is foveated but
with adaptive Gaussian blurring, i.e. we must find the standard deviation of the Gaussian blurring
kernel which is computed over a set of eccentricity rings that have been windowed with cosine
functions. C. The full Rate-Distortion curves as a function of retinal eccentricity rings.

Uniform-Blur: Uniform-Blur provides a non-foveated resource matched control with respect to588

Foveation-Texture. This perceptual system is essentially computed via finding the optimal standard589

deviation σ of the Gaussian filtering kernel Gσ as shown in Figure 4. This distortion image is590

computed via the convolution (~) of the Gaussian filter Gσ with the image f0(I). Here, Wang et al.591

(2004)’s SSIM is our candidate perceptual metric as it will take into consideration the luminance,592

contrast and structural changes locally for the entire image and pool them together for an aggregate593

perceptual score (and also the rateR) that is upper bounded by 1 and correlated with human perceptual594

judgments. As SSIM operates on the luminance of the image, all validation images over which the595

RD curve (right) was computed were transformed to grayscale to find the optimal standard deviation596

(σ = 3.4737).597

It is also worth emphasizing that the previous matching procedure is done over an aggregate family of598

images in the validation set (hence the use of the expected value (E[◦]) in Figure 4). This gives us a599

single standard deviation that will be used to filter all the images corresponding to the Uniform-Blur600

transform the same way.601

Foveation-Blur: Is a foveated perceptual system that receives Rate-Distortion optimized images602

that have been blurred with different standard deviations of the gaussian kernel Gσ as a function of603

retinal eccentricity. We picked the same eccentricity rings (collection of pooling regions that lie604

along the same retinal eccentricity) as Foveation-Texture given that we did not want to include a605

potential effect that is driven by differences in receptive field sizes rather than differences in type of606

computation. Figure 10 shows the full set of distortion strengths (σ) of each receptive field ring to607

match the perceptual transmission rate of the Foveation Texture Transform (f∗(◦)).608

There are other alternatives to potentially find the set of standard deviation coefficients that are not609

driven by a rate-distortion optimization procedure. One possibility could have been to find a mapping610

between pixels and degrees of visual angle as done in Pramod et al. (2018) and derive the coefficients611

by fitting a contrast sensitivity function given the visual field. While this approach is appealing, the612

coefficients for object recognition such as in ImageNet Russakovsky et al. (2015) can not be extended613

to scenes such as Places Zhou et al. (2017). In addition, the coupling of the RD-optimization with614

SSIM provides a perceptual guarantee to compare Foveation-Blur-Net to either Foveation-Texture or615

Uniform-Blur.616
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B Reference as a perceptual Upper Bound617

Theorem 1. Reference is a perceptual upper bound, and it’s generalization performance can be618

matched, but can not be exceeded (due to possession of maximum image information).619

Proof. Let I ′ = D(M) be the decoded image to be received by the second stage g(◦) of any620

perceptual system, where Mθi,ψi = αiQθi,ψi + (1− αi,j)Tθi,ψi is the convex combination between621

structure and texture for the collection of pooling regions i (Figure 2 B.). It can be observed that622

for Reference the values of α yield αi = 0,∀i, thus any other system that has at least 1 value of623

αi 6= 0 will render a decoded image with a non-zero distortion in pixel space, thus making the624

resources (amount of information) of Reference greater or equal than any other system with non-zero625

coefficients (e.g. Foveation-Texture).626

Remark 1. An example of a theoretically matched generalization performance system to Reference627

from another non-zero distortion network is possible if the family of pre-distorted images were based628

on textures (also see Gatys et al. (2015) Figure 5).629

Remark 2. The resulting transformed images from f0(◦) and f∗(◦) are not diffeomorphic to each630

other.631

C Full set of IQA Metrics632

(mean±std) SSIM (Matched) MSE (↑) Mutual Information (↓)
Reference 1.0 0.0 7.39± 0.52

Foveation-Texture 0.58± 0.11 976.78± 522.22 1.40± 0.42
Uniform-Blur 0.57± 0.15 458.67± 277.13 1.86± 0.58

Foveation-Blur 0.58± 0.15 507.35± 302.71 1.84± 0.56

(mean±std) MS-SSIM (Wang et al., 2003)(↓) CW-SSIM (Wang & Simoncelli, 2005) (↓) FSIM (Zhang et al., 2011)(↓)
Reference 1.0 1.0 1.0

Foveation-Texture 0.20± 0.03 0.74± 0.05 0.76± 0.05
Uniform-Blur 0.36± 0.03 0.98± 0.01 0.69± 0.09

Foveation-Blur 0.36± 0.03 0.98± 0.01 0.67± 0.10

(mean±std) VSI (Zhang et al., 2014) (↓) GMSD (Xue et al., 2013) (↑) NLPD (Laparra et al., 2016) (↑)
Reference 1.0 0.0 0.0

Foveation-Texture 0.93± 0.02 0.19± 0.03 0.75± 0.16
Uniform-Blur 0.91± 0.04 0.19± 0.03 0.40± 0.09

Foveation-Blur 0.91± 0.04 0.22± 0.04 0.45± 0.11

(mean±std) MAD (Larson & Chandler, 2010) * (↑) VIF (Sheikh & Bovik, 2006) (↓) LPIPSvgg (Zhang et al., 2018) * (↑)
Reference 0.0 1.0 0.0

Foveation-Texture 166.77± 19.46 0.12± 0.03 0.35± 0.05
Uniform-Blur 182.19± 16.50 0.12± 0.03 0.52± 0.07

Foveation-Blur 185.90± 18.60 0.16± 0.03 0.54± 0.08

(mean±std) DISTS (Ding et al., 2020) * (↑)
Reference 0.0

Foveation-Texture 0.20± 0.03
Uniform-Blur 0.36± 0.03

Foveation-Blur 0.35± 0.03

Table 2: List of Full IQA Metrics from Ding et al. (2020) where we compare Image Transforms f(◦)
w.r.t. Reference for the testing set. Arrows (↑ / ↓) indicate the direction of the greatest distortion
according to the metric thus values further away from the Reference place a specific transform at
a resource disadvantage. We observe matched distortion via virtual ties for SSIM (matched and
optimized in the validation set), VSI, GMSD FSIM, and VIF; greater distortion (Foveation-Texture
at a disadvantage) for MSE, Mutual Information, MS-SSIM, CW-SSIM, NLPD; and lower distortion
(Foveation-Texture at an advantage) for MAD, and texture-based tolerance methods such as DISTS
and LPIPSvgg – hence implicitly proving that our transform does indeed preserve local texture.
Scores were computed over 5000 images. Numbers in bold represent highest/lowest IQA scores;
virtual ties were declared if highly overlapping standard deviations are noticeable e.g.: FSIM, VIF.
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Figure 11: Sample Testing Image Mosaics.

D Image Transform Samples633

Figure 11 is an extension of Figure 4 which shows a collection of randomly sampled images from634

each one of the 20 scene classes and how they look under each image transform before being fed635

to each network. Details worth noticing include: 1) Reference images are not full high resolution,636

and are slightly compressed given the encoder/decoder pipeline of the transform to operate as a637

tighter upper bound (observable when zooming in); 2) The foveal area is preserved and identical638

for Reference, Foveation-Texture and Foveation-Blur; 3) The peripheral distortions are more or less639

apparent contingent on the image structure; 4) All images used in our experiments were rendered at640

256× 256 px.641
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Model Freeman & Simoncelli (2011) Wallis et al. (2019) Fridman et al. (2017) Deza et al. (2019)
Feed-Forward - - X X

Input Noise Noise Image Image
Multi-Resolution X X - -
Texture Statistics Steerable Pyramid VGG19 conv-11, 21, 31, 41, 51 Steerable Pyramid VGG19 relu41

Style Transfer Portilla & Simoncelli (2000) Gatys et al. (2016) Rosenholtz et al. (2012) Huang & Belongie (2017)
Foveated Pooling X X (Implicit via FCN) X

Decoder (trained on) - - metamers/mongrels images
Moveable Fovea X X X X

Use of Noise Initialization Initialization - Perturbation
Non-Deterministic X X - X

Direct Computable Inverse - - (Implicit via FCN) X
Rendering Time hours minutes miliseconds seconds

Image type scenes scenes/texture scenes scenes
Critical Scaling (vs Synth) 0.46 ∼ {0.39/0.41} Not Required 0.5

Critical Scaling (vs Reference) Not Available ∼ {0.2/0.35} Not Required 0.24
Experimental design ABX Oddball - ABX

Reference Image in Exp. Metamer Original - Compressed via Decoder
Number of Images tested 4 400 - 10

Trials per observers ∼ 1000 ∼ 1000 - ∼ 3000

Table 3: Foveated Texture-based transform comparison. Redrawn from Deza et al. (2019).

E Differences across other Foveation models642

There are currently 4 foveation models that implement texture-like computation in the peripheral643

field of view as shown in Table 3. We selected the Foveation Texture Transform model of Deza644

et al. (2019) given that it is computationally tractable to render a foveated image dataset (100’000) at645

a rate of 1 image/second (rather than hours Freeman & Simoncelli (2011) or minutes Wallis et al.646

(2017)). We did not use the highly accelerated model of Fridman et al. (2017) (order of miliseconds,647

that was based on the Texture-Tiling Model of Rosenholtz et al. (2012)) because it was: 1) Not648

psychophysically tested with human observers thus there is no guarantee of visual metamerism via649

the choice of texture statistics (although see the recent work of Shumikhin (2020)); 2) But most650

importantly, it does not provide an upper-bound computational baseline (similar to Reference).651

Altogether, we think that re-running our experiments and testing them with all other foveated models652

such as the before-mentioned is a direction of future work as we would be curious to see the653

replicability of our pattern of results across other texture-based peripheral models. Naturally, the type654

of texture-based foveation used will also yield different matched resource systems (Uniform-Blur655

and Foveation-Blur), as different models rely on texture computation in different ways – and thus656

will affect the IQA metric scores when performing the perceptual optimization.657
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Model Wang & Cottrell (2017)) Wu et al. (2018) Pramod et al. (2018) (Ours)
Image input type scenes objects objects scenes

Single/Dual Stream Dual + Gating Dual + Concatenation Single Single
Role of Single/Dual Stream Coupling the fovea + periphery Contextual modulation (scene gist) Serializing the (single) two-stage model
Foveated Transform (F.T.) log-polar + adaptive gaussian blurring Region Selection adaptive gaussian blurring Visual Metamer w/ texture-distortion

Stochastic F.T. - - - X Deza et al. (2019)
Representational Stage of F.T. retinal (Geisler & Perry, 1998) "Overt Attention" retinal (Geisler & Perry, 1998) V2 (Freeman & Simoncelli, 2011)

Moveable Fovea X X X X
Accounts for pooling regions Implicit via adaptive gaussian blurring - Implicit via adaptive gaussian blurring X
Accounts for visual crowding - - - X

Accounts for retinal eccentricity X Implicit via cropping X X
Accounts for loss of visual acuity X - X Implicit via visual crowding

Critical Radius (Larson & Loschky, 2009) 8 deg Not Applicable (Objects) ∼ 8.67 deg (Estimated from Fig. 8)
Out of Distribution Generalization - - - X

Robustness to Distortion Type - Blurring Blurring Occlusion
Spatial Frequency Preference High (Fovea), Low (Periphery) Low (Global) High (Fovea), Low (Periphery) High (Global)

Weighted Bias Emerges Center/Fovea Center/Fovea Center/Fovea Center/Fovea
Goal of Foveal-Peripheral Architecture Fit Behavioural Results Increase Recognition Accuracy Explore Perceptual Properties

Model System Focus Human Machine Human Hybrid

Table 4: A summary set of Foveal-Peripheral CNN model characteristics.

F Differences to other Relevant Work658

There are several works that have used foveation to show a type of representational advantage over659

non-foveated systems. Mainly Pramod et al. (2018) with adaptive gaussian blur, and Wu et al. (2018)660

with scene gist, that have been targeted towards a computational goal in increasing object recognition661

performance. For scene recognition, only Wang & Cottrell (2017) has successfully modelled known662

behavioural results of Larson & Loschky (2009) via a dual-stream neural network that uses adaptive663

gaussian blurring and a log-polar transform. One key difference however is that we are interested664

in exploring the effects of peripheral texture-base computation that give rise to visual crowding and665

that is also linked to area V2 in the primate ventral stream – rather than retinal as in Wang & Cottrell666

(2017) which resembles our control condition: Foveation-Blur.667

In general, we are taking a complimentary approach to Wang & Cottrell (2017) & Wu et al. (2018),668

and a similar one to Pramod et al. (2018) where we a priori do not know of a functional role of669

texture-based computation or prime ourselves to fit our model to a reference behavioural result.670

Thus we explore what perceptual properties it may have in comparison to a non-foveated system671

(Uniform-Blur, Reference) or a foveated system that only implements adaptive gaussian blurring672

(Foveation-Blur). Table 4 highlights key similarities & differences between these papers and ours.673
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G Training, Testing and Learning Dynamics674

A1. A2.

B1. B2.

Figure 12: Learning Dynamics visualized via the Validation Accuracy over all epochs for AlexNet
and ResNet18 as g(◦). Left: A1/B1 we see the aggregate Validation Accuracy. Right: A2/B2 the
individual Validation Accuracies are shown for each network.
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A1. A2.

B1. B2.

Figure 13: Validation Loss (Cross Entropy) over all epochs for AlexNet and ResNet18 as g(◦). Left:
A1/B1 we see the aggregate Validation Loss. Right: A2/B2 the individual Validation Losses for each
network. It is interesting to see that despite re-bound effects in the validation loss, that the validation
accuracy continues to increase (See Figure 12).
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A1. A2.

B1. B2.

Figure 14: Training Loss (Cross Entropy) over all epochs for AlexNet and ResNet18 as g(◦). Left:
A1/B1 we see the aggregate training loss. Right: A2/B2 the individual training losses for each
network.

Perceptual Systems were trained with SGD, nestorov momentum, no dampening, weight decay =675

0.0005, momentum = 0.9, a batch size of 128, Color Normalization of mean = (0.485, 0.456, 0.406),676

and std = (0.229, 0.224, 0.225). Systems that used AlexNet as g(◦) were trained for 120 epochs with677

a scheduled learning rate, where the initial learning rate of 0.01 was halved after the 30th epoch, and678

halved again after 60th epoch. Systems that used ResNet18 as g(◦) were trained for 80 epochs and679

with an initial learning rate of 0.05, which was multiplied by 0.25 after the first 16 epochs, and then680

multiplied again by 0.25 after the 32nd epoch. All systems were trained with a cross-entropy loss681

and received images size of 256× 256× 3. No data-augmentation or cropping was used at training682

or testing.683
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Figure 15: Generalization Dynamics over a set of multiple epochs for AlexNet and ResNet18 as g(◦).
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Figure 16: A sample collection of Confusion Matrices for the first of the 10 randomly initialized
networks for each of the 4 perceptual systems with their transforms for both AlexNet and ResNet18
as g(◦). We see similar classification patterns between Foveation-Texture and the Reference, and also
similar classification strategies between the Foveation-Blur and Uniform-Blur system. The asymmetry
in the upper and lower off-diagonal quadrants highlight the differences between Foveation-Texture &
Reference vs Foveation-Blur & Uniform-Blur. Each row/column per confusion matrix represents
each of the scene classes in alphabetical order. These classes are: aquarium, badlands, bedroom,
bridge, campus, corridor, forest path, highway, hospital, industrial area, japanese garden, kitchen,
mansion, mountain, ocean, office, restaurant, skyscraper, train interior, waterfall.
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Figure 17: Sample image used in a full i.i.d and o.o.d evaluation.
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I Filter Visualization & Spatial Frequency Sensitivity685
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Figure 18: Evolution of AlexNet as g(◦) Conv-1 Filters from 1st Random Weight Initialization.
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Figure 19: Evolution of ResNet18 as g(◦) Conv-1 Filters from 1st Random Weight Initialization.
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The size of all shown images was 256× 256× 3, thus the units of the gaussian filters specified from686

Section 3.2 are in pixels. For a given Gaussian filtering operation Gσ for a given standard deviation σ,687

low pass spatial frequency (LF) images were computed via:688

LF (IC) = Gσ ? IC (2)

for each channel C. Similarly, High Pass Spatial Frequency (HF) image stimuli were computed via:689

HF (IC) = IC − Gσ ? IC + meanCval (3)

where meanCval (which we call the residual in the main body of the paper) is the average of image690

intensity over the held-out validation set for each channel C, a small extension from Geirhos et al.691

(2019) as our image stimuli is in both color and grayscale.692
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Figure 20: Aggregate Spatial Frequency Sensitivity for AlexNet as g(◦) after epochs 0, 1, 5, 30, 70,
120.
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Figure 21: Individual Spatial Frequency Sensitivity for AlexNet as g(◦) after epochs 0, 1, 5, 30, 70,
120.
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Figure 22: Aggregate Spatial Frequency Sensitivity for ResNet18 as g(◦) after epochs 0, 1, 4, 20, 60,
80.
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Figure 23: Individual Spatial Frequency Sensitivity for ResNet18 as g(◦) after epochs 0, 1, 4, 20, 60,
80.
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High Pass Spatial Frequency (Color)

Figure 24: Sample High Pass Spatial Frequency Color Stimuli.
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High Pass Spatial Frequency (Gray)

Figure 25: Sample High Pass Spatial Frequency Gray Stimuli.
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Figure 26: Sample Low Pass Spatial Frequency Color Stimuli.
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Figure 27: Sample Low Pass Spatial Frequency Gray Stimuli.
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Figure 28: Left2Right Occlusion Sample Stimuli.
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Figure 29: Left2Right Occlusion Sample Stimuli.

39



Reference Foveation-Texture Uniform-Blur Foveation-Blur

0/16

1/16

2/16

3/16

4/16

5/16

6/16

7/16

Figure 30: Top2Bottom Occlusion Sample Stimuli.
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Figure 31: Top2Bottom Occlusion Sample Stimuli.
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Figure 32: Scotoma Occlusion Sample Stimuli.
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Figure 33: Scotoma Occlusion Sample Stimuli.
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Figure 34: Glaucoma Occlusion Sample Stimuli.
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Figure 35: Glaucoma Occlusion Sample Stimuli.
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Figure 36: Aggregate Robustness to Occlusion plots for AlexNet as g(◦) after epochs 0, 1, 5, 30, 70,
120.
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Figure 37: Aggregate Robustness to Occlusion plot for AlexNet as g(◦) after epochs 0, 1, 5, 30, 70,
120.
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Figure 38: Individual Robustness to Occlusion plots for ResNet18 as g(◦) after epochs 0, 1, 4, 20, 60,
80.
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Figure 39: Average Robustness to Occlusion plot for ResNet18 as g(◦) after epochs 0, 1, 4, 20, 60,
80.
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Figure 40: Aggregate and Individual Window Cue-Conflict plots for AlexNet and ResNet18 as g(◦)
after epochs 0, 1, 5, 30, 70, 120 and 0, 1, 4, 20, 60, 80. respectively
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Figure 41: Sample Window Cue Conflict Stimuli.
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Figure 42: Aggregate and Individual Square Cue-Conflict plots for AlexNet and ResNet18 as g(◦)
after epochs 0, 1, 5, 30, 70, 120 and 0, 1, 4, 20, 60, 80 respectively
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Figure 43: Sample Square Cue Conflict Stimuli.
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Figure 44: Sample Square Cue Conflict Stimuli.
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M Code and Data696

All Code and Image Databases for replicability is available for download here: Code and Data697

Code and Data will also be released on GitHub.698

55

https://www.dropbox.com/sh/s23og490uzkjcgt/AAA_C_PGMwVGbmYFYWgj1_0Ia?dl=0


N Differences from Previous Manuscript Versions699

[Added; this submission] Improved training and convergence of stage 2 neural networks. AlexNet +700

ResNet18 now have scheduled learning rates, weight decay and Nesterov momentum when trained701

with SGD for each image distribution.702

[Added; this submission] High Pass and Low Pass Spatial Frequency experiments for grayscale703

stimuli as suggested in round of review from ICML 2021.704

[Added; this submission] Square Uniform cue-conflict experiment to re-verify center image bias as705

suggested in round of review from ICML 2021.706

[Added; this submission] Left2Right & Top2Bottom experiments moved to main body.707

[Added; this submission] both Aggregate and Individual plots for each system to qualitatively check708

for variance in individual network differences.709

[Added; this submission] Visualization of filters from the first convolutional layer for each system.710

[Added; this submission] Additional use of Mean Square Error, Mutual Information and 10 more711

IQA metrics from Ding et al. (2020) as supporting Image Quality Assessment metrics to compare to712

SSIM for Rate-Distortion Optimization as suggested through reviews in ICML 2021.713

[Added; for ICML 2021] Sketched proof of Reference being a Perceptual Upper Bound.714

[Added; for ICLR 2021] Rate-Distortion Optimization procedure to compute Uniform-Blur and715

Foveation-Blur.716

[Added; for ICLR 2021] Improved written clarity, and re-emphasized focus of paper on Foveation717

w.r.t Machines (not humans – which caused misinterpretation and rejection from NeurIPS 2020).718

[Removed; for ICML 2021] Claims about Foveation-Texture inducing a shape bias (currently parallel719

work) from Submission to ICLR 2021.720

[Removed; for ICLR 2021] Experiments about data-augmentation via eye-movements + classical721

augmentation schemes such as random cropping + rescaling (parallel work) from Submission to722

NeurIPS 2020.723

[Bug fix; this submission] Even runs were continuations of odd runs in 10 run randomization across724

networks due to bug w.r.t distributed parallelization, from submission to ICML 2021. Note: General725

pattern of results did not change, and all curves have been re-plotted.726

[Previous paper scores, decisions, meta-reviews and author opinions:]727

1. NeurIPS 2020: 5,4,3,4 (reject: Unanimous bad reviews, focus of all reviewers was a need for728

human psychophysical studies even though the paper was not about human vision – which729

prompted us to re-write the paper to make our goals more clear: “What is the impact of730

texture-based foveation on machines?; and what can these results tell us about the human731

visual system – mainly the visual periphery that has texture-like computation – from a732

computational perspective?”. [fixed])733

2. ICLR 2021: 7,7,7,3,5 (reject: Mixed reviews & needed to tone down claims and re-734

emphasize why texture was used in the periphery [fixed])735

3. ICML 2021: 3 Weak Rejects (1 Accept + 1 Weak Accept downgraded their scores post-736

rebuttal suggesting the work was not a good fit for ICML), 1 Strong Reject (withdrawn: we737

caught a bug post-rebuttal phase in the process of code/data release that did not affect the738

main pattern or results, but required re-running all the experiments and overall improved739

the current version of the paper. Reviewers suggested different IQA metrics beyond SSIM740

to make comparisons for matched perceptual compression (we added MSE, Mutual In-741

formation, and 10 more IQA metrics). This has been added and addressed in our current742

version.).743

A recurrent theme in negative reviews has been that the model does not (in its current state) advance744

the state of the art by beating a baseline. While these hallmarks are pivotal for computer vision, our745

goal is complimentary, as we would like to model, and understand the representational consequences746

– beyond accuracy – of spatially-adaptive computation in machines inspired by the foveated visual747

system of humans.748
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