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Abstract

In the metric distortion problem, a set of voters1

and candidates lie in a common metric space, and2

a committee of k candidates is to be elected. The3

goal is to select a committee with a small social4

cost, defined as an increasing function of the dis-5

tances between voters and selected candidates, but6

a voting rule only has access to voters’ ordinal pref-7

erences. The distortion of a rule is then defined as8

the worst-case ratio between the social cost of the9

selected set and the optimal set, over all possible10

preferences and consistent distances.11

We initiate the study of metric distortion when12

voters and candidates coincide, which arises nat-13

urally in peer selection, and provide tight results14

for various social cost functions on the line metric.15

We consider both utilitarian and egalitarian social16

cost, given by the sum and maximum of the individ-17

ual social costs, respectively. For utilitarian social18

cost, we show that the simple voting rule that se-19

lects the k middle agents achieves a distortion that20

varies between 1 and 2 as k varies between 1 and21

n when the cost of an individual is the sum of their22

distances to all selected candidates (additive aggre-23

gation). When the cost of an individual is their dis-24

tance to their qth closest candidate (q-cost), we pro-25

vide positive results for q = k = 2 but mostly show26

that negative results for general elections carry over27

to our restricted setting: No constant distortion is28

possible when q ≤ k/2 and no distortion better29

than 3/2 is possible for q ≥ k/2 + 1. For egali-30

tarian social cost, a rule that selects extreme agents31

achieves the best-possible distortion of 2 for addi-32

tive cost and q-cost with q > k/3, whereas no con-33

stant distortion is possible for q ≤ k/3. Our results34

suggest that having a common set of voters and can-35

didates allows for better constants compared to the36

general setting, but cases in which no constant is37

possible in general remain hard under this restric-38

tion.39

1 Introduction 40

A fundamental problem in social choice is the aggregation 41

of individual preferences, expressed as rankings over a set 42

of candidates, into a social preference consisting of a subset 43

of elected candidates. For centuries, social choice theorists 44

have proposed several axioms to capture desirable properties 45

that these aggregation or voting rules should guarantee, usu- 46

ally leading to strong impossibility results [Arrow, 1963; de 47

Condorcet, 1785; Gibbard, 1973; Satterthwaite, 1975]. 48

As an alternative approach, attempting to quantify the ex- 49

tent to which a certain voting rule is able to faithfully trans- 50

late the voter preferences into the selected committee, Pro- 51

caccia and Rosenschein [2006] introduced the notion of dis- 52

tortion of a rule. The underlying assumption is that a voter’s 53

(dis)affinity with a candidate can be represented by a certain 54

cost, and voters’ rankings are the expression of these cardi- 55

nal preferences. The cost of a committee for a voter is then 56

defined by aggregating the costs of the committee members, 57

and the overall social cost of the committee by aggregating 58

the costs for all voters. The distortion then corresponds to the 59

worst-case ratio between the social cost of the selected com- 60

mittee and that of the optimal committee, over all possible 61

preferences and consistent costs. 62

The study of the distortion of voting rules has usually fo- 63

cused on two ways of modeling the social cost: utilitarian 64

and egalitarian [Caragiannis and Procaccia, 2011; Goel et al., 65

2018; Caragiannis et al., 2017]. In the utilitarian case, the so- 66

cial cost is defined as the sum of the individual costs of the 67

voters, ensuring that all voters’ costs contribute equally to the 68

objective. In contrast, the egalitarian social cost considers the 69

maximum individual cost among all voters, aiming to capture 70

a notion of fairness where no voter is excessively disadvan- 71

taged. 72

In voting theory, it is common to assume that voters’ pref- 73

erences are not fully arbitrary but enjoy some structural prop- 74

erties. A relevant line of work has indeed sought struc- 75

tural restrictions that are natural and have powerful implica- 76

tions, such as single-peaked [Black, 1948] or single-crossing 77

[Mirrlees, 1971]; see Elkind et al. [2022] for a survey. A 78

rather general framework among these is that of spatial or 79

metric voting, where voters and candidates are assumed to 80

lie in a common low-dimensional metric space and voters’ 81

costs correspond to their distance to each candidate [Aziz, 82

2020; Jessee, 2012; Enelow and Hinich, 1984; Merrill and 83



Grofman, 1999]. For instance, a line metric is commonly84

employed to capture political affinity on the left-right spec-85

trum, whereas geographical distances are represented in a86

two-dimensional space.87

This structural assumption naturally fits in the metric dis-88

tortion framework: The distances to candidates fully define89

the social cost of a committee, but the voting rules only re-90

ceive their expression as preference rankings. Since prefer-91

ences are restricted in this model, improved bounds on the92

distortion of voting rules have been established. Notably, a93

tight distortion bound of 3 has been established for any single-94

winner deterministic voting rule [Anshelevich et al., 2018;95

Kizilkaya and Kempe, 2022; Gkatzelis et al., 2020]. Extend-96

ing distortion to multi-winner elections requires defining how97

a voter’s cost is aggregated over the selected committee. Two98

ways have been considered in the literature: the additive cost,99

where a voter’s cost is the sum of their distances to all mem-100

bers of the committee [Babashah et al., 2024], and the q-cost,101

where the cost is determined by their distance to their q-th102

closest committee member [Caragiannis et al., 2022b; Chen103

et al., 2020].104

Work on metric distortion has so far focused on the case105

where voters and candidates constitute disjoint sets, which106

constitutes a natural model for large-scale elections. How-107

ever, in many decision-making scenarios, a group of agents108

aims to elect a subset of their own members. One can think,109

for example, of a political organization selecting a commit-110

tee. Each member ranks others according to their political111

affinity and the organization aims to select a committee that112

represents the variety of preferences of its members. Since113

the voting rule only receives ordinal preferences, a small dis-114

tortion constitutes a suitable objective to ensure a close-to-115

optimal outcome under this limited information. In general,116

this situation arises in the context of peer selection, where117

individuals evaluate each other to choose a group for gover-118

nance, leadership, or resource allocation. Further examples119

include academic hiring and promotions, student representa-120

tive elections, self-organized committees in cooperatives, and121

local governance selection.122

While peer selection rules have been extensively studied123

in other contexts, particularly in terms of the effect of strate-124

gic behavior [e.g. Holzman and Moulin, 2013; Alon et al.,125

2011; Caragiannis et al., 2022a], little is known regarding126

their ability to accurately reflect agents’ ordinal preferences.127

On the other hand, previous work on metric distortion for128

single-selection has often parameterized an election via its129

decisiveness, corresponding to the maximum ratio between130

a voter’s distance to their top choice and to any other can-131

didate [Anshelevich and Postl, 2017; Gkatzelis et al., 2020].132

These works have motivated this parameter with the fact that133

it becomes zero in the peer selection setting as each agent134

becomes their own top choice.135

However, directly considering a common set of voters and136

candidates constitutes a structural modification to the prob-137

lem that has not been considered so far.138

1.1 Our Contributions and Techniques139

We initiate the study of metric distortion when the set of vot-140

ers and candidates coincide and bound the distortion achiev-141

able by voting rules selecting k out of n agents on the line 142

metric for several social costs; see Table 1 for a summary of 143

our results. 144

We start by observing a simple yet strong property of met- 145

ric voting on the line with a single set of voters and candidates 146

that follows from previous work [Elkind and Faliszewski, 147

2014; Babashah et al., 2024]: We can fully compute the order 148

of the agents from their rankings. This constitutes a powerful 149

tool for the design of our mechanisms, as in the following we 150

can always take this order as given. 151

Utilitarian Additive Cost. We first consider the utilitarian 152

social cost, in which the social cost of a committee is de- 153

fined as the sum of all individual costs. Intuitively, selecting 154

k consecutive agents results in lower utilitarian social cost. 155

In Section 3.1, we focus on the case of additive aggregation: 156

The cost of a committee for a voter is given by the sum of 157

all distances from the candidates to this voter. As a natural 158

extension of the optimal rules for one or two agents, which 159

select the median and closest-to-median agents, we consider 160

a rule called MEDIAN ALTERNATION that selects k middle 161

agents. We show that MEDIAN ALTERNATION provides a 162

distortion of at most 2
k

(
n −

√
2n

⌊
n−k
2

⌋)
, which is close to 163

1 when k is small compared to n and approaches 2 as k goes 164

to n. Despite its simplicity, the analysis of this rule holds 165

significant challenge. In short, we reduce any metric to an- 166

other with only two locations and show the distortion for this 167

class of metrics. We show that this reduction is possible with- 168

out improving the distortion by establishing the existence of 169

a non-improving direction of movement for each agent. 170

Utilitarian q-Cost. In Section 3.2, we consider utilitarian 171

q-cost, where the cost of a committee for an agent is given 172

by the agent’s distance to their qth closest candidate in the 173

committee. In Theorem B.4, we show that no voting rule 174

can provide a constant distortion when q ≤ k
2 , implying that 175

this known impossibility from the setting with disjoint vot- 176

ers and candidates and a general metric space [Caragiannis 177

et al., 2022b] remains in place in our restricted setting. To 178

prove this bound, we partition all but q agents into
⌊
k
q

⌋
≥ 2 179

sets and consider two metrics that differ in the position of 180

the remaining q agents: relatively close to the other agents in 181

one metric; very far in the other. Intuitively, selecting these q 182

agents leads to an unbounded distortion in the former case but 183

is necessary for a bounded distortion in the latter. For q > k
2 , 184

the existence of rules with distortion 3 follows from a gen- 185

eral result by Caragiannis et al. [2022b]. We provide a lower 186

bound, that varies between 3
2 and 2 as q varies between k

2 +1 187

and 2, by considering three different metrics consistent with 188

the same rankings and showing that, in one of them, there are 189

q agents in one extreme that cannot be consistently selected. 190

We finally take a closer look at the case with k = q = 2, 191

where a best-possible distortion of 2 can be achieved by se- 192

lecting the median agents when k is even. For odd k, we 193

show that a rule selecting a couple of agents—a pair of agents 194

who prefer each other over all other agents—among the five 195

middle agents achieves an improved distortion of 4
3 , which is 196

again best-possible. The FAVORITE COUPLE rule leverages 197

two key principles: (1) selecting agents close to the median 198



additive q-cost
q ≤ k

3
k
3 < q ≤ k

2
k
2 < q ≤ k q = k = 2

ut
ili

ta
ri

an 1 +
√
1 + 2

k ; 7
3 + 4

k

(√
2− 4

3

)
[BKSS] ∞ [CSV] 3; 3 [CSV]

1; 2
k

(
n−

√
2n

⌊
n−k
2

⌋)
[T. 3.1] ∞ [T. B.4] 2− k−q

4q−k−3

(∗)
; 3 [T. B.5, CSV]

2; 2 (n even) [P. B.7]
4
3 ; 4

3 (n odd) [T. 3.2]

eg
al

ita
ri

an ∞ [CSV] 3; 3 [CSV]

3
2 −

1
k ; 3

2 −
1

2(k−1) (k even) [T. 4.2] ∞ [T. C.2] 2; 2 [T. C.3]
3
2 −

1
k ; 3

2 −
1

k(k−1) (k odd) [T. 4.2]

Table 1: Our and previous bounds on the distortion that voting rules can achieve in different settings. Values before and after the semicolon
represent lower and upper bounds for the corresponding setting, respectively. Lower bounds take worst-case number of agents n. When
the lower bound can be made arbitrarily large, we just write ∞ for simplicity. The number in square brackets refers to the theorem (T.) or
proposition (P.) where this bound is shown; the letters in square brackets refer to the paper where a bound is taken from: BKSS is Babashah
et al. [2024] and CSV is Caragiannis et al. [2022b]. In particular, bounds in gray correspond to the previously studied setting with disjoint
voters and candidates for comparison, either under a general metric [CSV] or under the line metric [BKSS]. The upper bound for utilitarian
q-cost marked with (∗) is only valid when q ≥ k

2
+ 1, which is slightly stronger than the general condition q > k

2
on that column.

so as to balance overall distances from agents on each side of199

the median, and (2) selecting consecutive agents with a small200

distance between them since this distance is part of the cost201

of all agents. This intuition of selecting consecutive agents202

that are as close to each other while also being close to the203

median in principle holds for larger k, but determining how204

tightly a group of k agents is clustered based solely on ordinal205

rankings remains a challenge.206

Egalitarian Additive Cost. In Section 4, we turn our at-207

tention to the egalitarian social cost, where we focus on the208

maximum cost of a committee for a voter. We consider the209

simple k-EXTREMES rule, which selects half of the commit-210

tee from each extreme. On an intuitive level, this constitutes a211

natural rule in this setting as it avoids that extreme voters are212

excessively disadvantaged. For the additive setting, we show213

in Section 4.1 that k-EXTREMES achieves an optimal distor-214

tion up to O
(
1
k

)
terms. In particular, the optimal distortion215

of 1 is attained for k = 2, and distortions of 3
2 −

1
2(k−1) and216

3
2−

1
k(k−1) are achieved for even and odd k ≥ 3, respectively,217

almost matching a lower bound of 3
2 −

1
k . The worst-case in-218

stances involve k + 1 agents in one extreme, a single agent219

in the other extreme, and k agents in the middle, which are220

selected in the optimal committee but cannot be detected by221

any rule when considering two symmetric distance metrics.222

Egalitarian q-Cost. In Appendix C.4, we show that k-223

EXTREMES attains a distortion of 2 for q-cost as long as224

q > k
3 . To do so, we prove that the social cost of the set225

selected by this rule is at most the distance from the agent226

closest to the center to their nearest extreme, and bound the227

social cost of the optimal set from below by half of this dis-228

tance. We provide a matching lower bound by revisiting the229

instance used for the additive case. Finally, we show that230

no constant distortion is possible when q ≤ k
3 , again imply-231

ing that the general impossibility result of Caragiannis et al. 232

[2022b] still holds in our setting. In the worst-case instances, 233

we partition the agents into
⌊
k
q

⌋
sets and consider two sym- 234

metric distance metrics where all but one set are placed at a 235

unit distance from one another and two sets in one extreme 236

are at the same location. We show that no rule can pick q 237

agents from each location. 238

1.2 Further Related Work 239

Distortion of voting rules was first introduced by Procac- 240

cia and Rosenschein [2006]. Since then, extensive research 241

has been conducted to establish lower and upper bounds on 242

the distortion of different rules under various scenarios, both 243

within the metric and non-metric frameworks. For a compre- 244

hensive survey, we refer to Anshelevich et al. [2021]. 245

Single-Winner Voting. In the non-metric framework, 246

Caragiannis and Procaccia [2011] showed that the distortion 247

of any voting rule is at least Ω(m2) and that simple rules such 248

as Plurality achieve a distortion of at most O(m2), where m 249

is the number of candidates. 250

In the metric framework, Anshelevich et al. [2018] estab- 251

lished a general lower bound of 3 on the distortion of any de- 252

terministic voting rule. They also analyzed the distortion of 253

common voting rules such as Majority, Borda, and Copeland, 254

showing that the latter achieves the lowest distortion of 5 255

among them. Goel et al. [2017] disproved a conjecture by 256

Anshelevich et al. regarding a better-than-5 distortion of the 257

Ranked Pairs rule and introduced the notion of fairness ra- 258

tio of a rule, which captures the egalitarian social cost as a 259

special case. These results were later improved by Munagala 260

and Wang [2019], who extended the analysis to uncovered 261

set rules and reduced the upper bound to 4.236. Gkatzelis et 262

al. [2020] closed the gap by improving this bound to 3, and 263

showed the validity of this bound in terms of fairness ratio 264



and thus egalitarian social cost.265

Randomized voting rules have also been extensively ex-266

plored in the metric framework [Pulyassary and Swamy,267

2021; Fain et al., 2019]. The best-known upper bound for268

a randomized voting rule was recently obtained by Charikar269

et al. [2024], who showed that a carefully designed random-270

ization over existing and novel voting rules achieves a dis-271

tortion of at most 2.753. As of lower bounds, Charikar and272

Ramakrishnan [2022] disproved a conjecture by Goel et al.273

[2017] regarding the existence of a randomized voting rule274

with distortion 2, by constructing instances whose distortion275

approaches 2.113 as the number of candidates grows.276

Multi-Winner Voting. In the study of metric distortion for277

multi-winner voting, various objective functions have been278

proposed to capture the cost incurred by each voter for the279

elected committee [Elkind et al., 2017; Faliszewski et al.,280

2017]. A foundational result by Goel et al. [2018] showed281

that, for the additive cost function, iterating a single-winner282

voting rule with distortion δ for k rounds produces a k-winner283

committee with the same distortion. Chen et al. [2020] stud-284

ied the 1-cost objective in the metric framework when each285

voter casts a vote for a single candidate. They proposed a de-286

terministic rule with a tight distortion of 3 and a randomized287

rule with a distortion of 3− 2
m . More generally, Caragiannis288

et al. [2022b] introduced the q-cost objective, where a voter’s289

cost for a committee is determined by the distance to their290

q-th closest member. They showed that the distortion is un-291

bounded for q ≤ k
3 and linear in n for k

3 < q ≤ k
2 . For q > k

2 ,292

they presented a non-polynomial voting rule that achieves a293

distortion of 3 and a polynomial rule with a distortion of 9.294

They discussed how these upper bounds for q > k
2 and the295

unbounded distortion for q ≤ k
3 carry over to egalitarian so-296

cial cost, but interestingly showed that a constant distortion is297

possible for this objective when k
3 < q ≤ k

2 . Kizilkaya and298

Kempe [2022] later proposed a polynomial-time rule with a299

distortion of 3. Recently, Babashah et al. [2024] studied the300

distortion of multi-winner elections with additive cost on the301

line, devising a rule with a distortion of roughly 7
3 . Cara-302

giannis et al. [2017] studied distortion in multi-winner vot-303

ing for the non-metric framework, defining a voter’s utility304

for a committee as the highest utility derived from any of305

its members. They proposed a rule achieving a distortion of306

1 + m(m−k)
k for deterministic committee selection when se-307

lecting k out of m candidates.308

Restricted Voting Settings. A specialized setting in metric309

voting considers single-peaked and 1-Euclidean preferences,310

where both voters and alternatives are embedded on the real311

line [Black, 1948; Moulin, 1980; Miyagawa, 2001; Fotakis et312

al., 2016; Fotakis and Gourvès, 2022; Voudouris, 2023; Gh-313

odsi et al., 2019]. In particular, the work of Fotakis et al.314

[2024] investigated the distortion of deterministic algorithms315

for k-committee selection on the line under the 1-cost objec-316

tive, leveraging additional distance queries.317

2 Preliminaries318

We let N denote the strictly positive integers and, for n ∈ N,319

we write [n] = {1, . . . , n} for the first n. A linear order ≻320

on a set S is a complete, transitive, and antisymmetric binary 321

relation on S; we denote the set of all linear orders on [n] by 322

L(n). 323

An instance of a committee election, or simply an election 324

is described by the triple E = (A, k,≻), where: 325

• A = [n] is the set of agents, 326

• k ∈ N is the number of agents to be selected for the 327

committee, and 328

• ≻ = (≻1,≻2, . . . ,≻n) ∈ Ln(n) comprises the agents’ 329

preference profiles, where≻a∈ L(n) is a linear order on 330

[n] for every a ∈ [n]. 331

We let
(
A
k

)
= {S ⊆ A | |S| = k} denote the feasible com- 332

mittees for a given election; i.e., the set of all subsets of A of 333

size k. 334

Line metric. A distance metric on A is a function d : A × 335

A → R+ satisfying (i) d(a, b) = 0 if and only if a = b, 336

(ii) d(a, b) = d(b, a) for every a, b ∈ A, and (iii) d(a, c) ≤ 337

d(a, b) + d(b, c) for every a, b, c ∈ A. In this paper, we fo- 338

cus on the line metric: We associate each agent a ∈ A with 339

a position xa ∈ (−∞,∞), and the metric d is defined by 340

d(a, b) = |xa − xb| for every a, b ∈ A. A metric d is said to 341

be consistent with a ranking profile ≻ ∈ Ln(n), denoted as 342

d ▷ ≻, if for every triple of agents a, b, c ∈ A, the condition 343

d(a, b) < d(a, c) holds whenever b ≻a c.1 Since d is fully 344

defined by the position vector x ∈ (−∞,∞)A, we often refer 345

directly to this vector being consistent with a ranking profile 346

≻ ∈ Ln(n) and denote it by x ▷ ≻. Likewise, we often ex- 347

change d by x in the definitions that follow. Finally, for a 348

fixed election E = (A, k,≻), consistent vector of locations 349

x ∈ (−∞,∞)n, and interval I = (y, z) with y < z, we let 350

A(I) = {a ∈ A | xa ∈ I} denote the agents with locations 351

in I . When I is a single point x̄, we write A(x̄) for the agents 352

located at this point. 353

Social cost. For a certain set of agents A, a committee size 354

k ∈ N, and a candidate-aggregation function h : Rk
+ → R+, 355

the cost of S ∈
(
A
k

)
for agent a ∈ A is simply SC(S, a; d) = 356

h((d(a, b))b∈S). For a set of agents A, a committee size 357

k ∈ N, and a voter-aggregation function g : Rn
+ → R, the so- 358

cial cost of S ∈
(
A
k

)
is SC(S,A; d) = g((SC(S, a; d))a∈A). 359

In this paper, we study a handful of candidate- and voter- 360

aggregation functions. In terms of the voter-aggregation func- 361

tion g : Rn → R+, we focus on the utilitarian social cost, 362

given by g(y) =
∑

i∈[n] yi, and the egalitarian social cost, 363

given by g(y) = max{yi | i ∈ [n]}. In terms of the 364

candidate-aggregation function h : Rk
+ → R+, we focus on 365

the additive social cost, given by h(y) =
∑

i∈[k] yi, and the 366

1Note that this definition allows for agent-dependent tie-
breaking; i.e., when d(a, b) = d(a, c) agent a can rank either b ≻a c
or c ≻a b, independently of other agents. This assumption makes
the problem in principle harder, so that our upper bounds on the dis-
tortion remain valid if a common tie-breking rule is employed, and
it allows us to construct simpler examples for lower bounds. It is not
hard to see that the same lower bounds can be obtained without the
assumption: Whenever a metric has ties, distances can be perturbed
by a small enough constant ε so that there are no longer ties and the
distortion does not improve.



q-cost, given by h(y) = ỹq , where ỹ is the vector with the367

entries of y sorted in increasing order. Thus, for example, the368

1-cost is given by h(y) = min{yi | i ∈ [k]}; and the k-cost369

is given by h(y) = max{yi | i ∈ [k]}.370

Voting rules and distortion. For n, k ∈ N with n ≥ k,371

an (n, k)-voting rule is a function f that takes a preference372

profile ≻ ∈ Ln(n) and returns a subset S ∈
(
[n]
k

)
, to which373

we often refer as a committee. For an election E = ([n], k,≻)374

and a metric d, the distortion dist(S, E ; d) of S ⊆ A under d375

is the ratio between the social cost of the committee and the376

minimum social cost of any committee; i.e.,377

dist(S, E ; d) = SC(S,A; d)
minS′∈(Ak)

SC(S′, A; d)
.

For an election E = (A, k,≻), the distortion dist(S, E) of a378

committee S ⊆ A is then defined as the worst-case distortion379

over all metrics consistent with the ranking profile ≻; i.e.,380

dist(S, E) = sup
d▷≻

dist(S, E ; d).

Finally, for an (n, k)-voting rule f , the distortion of f is de-381

fined as the worst-case distortion of its output across all pos-382

sible elections; i.e.,383

dist(f) = sup
≻∈Ln(n)

dist(f(≻), ([n], k,≻)).

Throughout the paper, we study the distortion that voting384

rules can achieve under different social costs.385

2.1 Computing the Order From an Election386

An essential property in line metric settings is the ability to387

determine the order of agents based on their preferences. This388

result has been established in prior work. Specifically, Elkind389

and Faliszewski [2014] and Babashah et al. [2024] demon-390

strate that if the preference lists of voters are pairwise dis-391

tinct, it is possible to uniquely determine their ordering on392

the line, along with the ordering of non-Pareto-dominated al-393

ternatives. While their setting differentiates between voters394

and alternatives, this result naturally extends to our context,395

where agents serve as both voters and candidates.396

For simplicity, whenever we fix an election throughout the397

paper we will assume w.l.o.g. that the agents are already or-398

dered, i.e., that the permutation π stated in the lemma is the399

identity. Hence, we denote the ordered agents by 1, . . . , n and400

informally refer to this order as from left to right.401

3 Utilitarian Social Cost402

Using Lemma A.1, we know that the order of agents can be403

fully determined from the preference profile ≻. This allows404

us to compute the median agent, which is optimal when se-405

lecting one agent (k = 1) under the utilitarian objective.406

For larger committee sizes (k > 1), it becomes necessary407

to define a way to aggregate voters’ distances to the selected408

agents. In this section, we study two aggregation rules: one409

that considers the sum of all distances to selected agents in410

Section 3.1, and one that considers the distance to the qth411

closest agent in Section 3.2.412

3.1 Utilitarian Additive Cost 413

In this section, we focus on the utilitarian additive objective 414

for committee selection. This objective aims to minimize the 415

utilitarian additive social cost, which is defined as the total 416

distance from all agents to the selected committee. Formally, 417

the utilitarian additive social cost of a committee S′ ∈
(
A
k

)
418

is given by 419

SC(S′, A; d) =
∑
a∈A

∑
b∈S′

d(a, b).

The cost of each agent a ∈ A is the sum of their distances to 420

all members of the selected committee S′, and the overall so- 421

cial cost is the sum of these individual costs across all agents 422

in A. 423

It is not hard to see that the optimal committee can be 424

directly computed from the preferences for committee sizes 425

k = 1 and k = 2. This was already discussed for k = 1, 426

while for k = 2 the optimal committee depends on the parity 427

of n. If n is even, it consists of the two median agents. If n 428

is odd, it consists of the median agent and the agent closest to 429

them. In any case, these agents can be identified directly from 430

the input preference profile ≻, without knowledge of the un- 431

derlying metric. This results in a voting rule with a distortion 432

of 1. 433

For selecting a committee of size k ≥ 2, we consider the 434

following voting rule. 435

Voting Rule 1 (Median Alternation). Compute the order of 436

the agents 1, . . . , n and return S =
{⌊

n−k
2

⌋
+ 1, . . . ,

⌊
n
2

⌋
+ 437

1, . . . ,
⌊
n+k
2

⌋}
. 438

Not that the rule selects k agents, leaving
⌊
n−k
2

⌋
unse- 439

lected agents on the left extreme and n −
⌊
n+k
2

⌋
unselected 440

agents on the right extremes. These values are equal if n− k 441

is even; the latter is one unit larger if n− k is odd. On an in- 442

tuitive level, the rule can be understood as constructed by go- 443

ing through the rank list of the median(s) agent(s), selecting 444

agents in the order reported by them but alternating between 445

those to their left and to their right. This ensures a balanced 446

representation of agents on both sides. 447

Regarding the selection of larger committees, an impor- 448

tant ingredient for our results is that an optimal committee 449

selecting consecutive agents always exists. We state this in 450

Appendix B.1. We now present our main result in terms of 451

utilitarian additive social cost, regarding the distortion guar- 452

anteed by MEDIAN ALTERNATION. The complete proof is 453

deffered to Appendix Appendix B.2. 454

Theorem 3.1. The distortion of MEDIAN ALTERNATION is 455

at most 2
k

(
n −

√
2
⌊
n−k
2

⌋
n
)

for utilitarian additive social 456

cost. 457

The distortion stated in the theorem ranges between 1 and 458

2, except for the case where k = n − 1 and k is odd, in 459

which it is equal to 2n
n−1 , making it marginally greater than 460

2. The bound is equal to 2
k

(
n −

√
(n− k)n

)
if n − k is 461

even and to 2
k

(
n −

√
(n− k − 1)n

)
if n − k is odd, so that 462

it is better for even values than for neighboring odd values, 463

with more prominent differences for small k. Besides these 464



parity differences, the bound takes values closer to 1 when k465

is small and closer to 2 as k approaches n. Figure 3 illustrates466

the bound for n = 100 and k between 2 and n− 1.467

In order to prove Theorem 3.1, we will show that we can468

reduce any metric to another one where all agents are in one469

out of two locations. As a first step, we prove that an agent470

(or set of agents at the same location) can always be moved471

in one direction such that the distortion does not improve, as472

long as they do not pass through other agents’ locations. The473

proof of this lemma relies on the linearity of the objective474

function: If moving an agent or set of agents to the right has475

a certain effect on the social cost, moving them to the left476

has the opposite effect. Then, the ratio between the social477

cost of any two fixed committees must not improve in one of478

these directions. Since the committee selected by MEDIAN479

ALTERNATION remains fixed as long as the order of agents480

does not change, and changing the optimal set can only lead481

to a worse distortion, the result follows.482

3.2 Utilitarian q-Cost483

In this section, we study the distortion of voting rules in the484

context of utilitarian q-cost, in which the cost of a committee485

S′ for an agent is given by its distance to the qth closest agent486

in S′, and the social cost of a committee is the sum of its cost487

for all agents. Formally, for a set of agents A, a committee488

size k, a committee S′ ∈
(
A
k

)
, and a distance metric d, the489

social cost of the committee is given by490

SC(S′, A; d) =
∑
a∈A

d̃(a)q,

where d̃(a) ∈ RS
+ contains the values {d(a, s) | s ∈ S′} in491

increasing order.492

Similarly to the classic setting with disjoint voters and can-493

didates, the distortion of voting rules heavily depends on the494

value of q. Indeed, a result by Caragiannis et al. [2022b]495

directly implies the existence of (n, k)-voting rules with dis-496

tortion 3 for q-cost whenever q > k
2 , since their result holds497

in a more general setting with disjoint voters and candidates498

and general distance metrics. We complement this result in499

Appendix B.2 by providing a lower bound that ranges from 3
2500

and 2 as q varies between
⌈
k
2

⌉
+ 1 and k. For q ≤ k

2 , Cara-501

giannis et al. show that no rule provides a bounded distor-502

tion. We show that this impossibility still holds in our setting.503

We study the case where q = k = 2 in further detail and504

achieve the best-possible distortions of 4
3 and 2 for odd and505

even n, respectively, through natural voting rules that are able506

to leverage the different objectives involved in the problem.507

A Voting Rule for k = 2508

In this section, we focus on the special case of utilitarian q-509

cost when q = k = 2. In this setting, the social cost of a510

committee S for an agent a is determined by the distance to511

the farthest agent in the committee S′.512

On an intuitive level, the goal is to select agents that are513

both close to each other and close to the median agent(s). In514

particular, it is not hard to see that the optimal committee al-515

ways consists of two consecutive agents: For any committee516

of non-consecutive agents, replacing the most extreme agent517

1 2 3 4 5 6 7 8 9

Figure 1: Stair diagram for n = 9. The red area corresponds to the
committee {3, 4}; the green area to {6, 7}.

among the selected one with another closer to the median can- 518

not decrease the social cost. 519

A visual aid for computing the social cost of a commit- 520

tee is what we call stair diagrams, illustrated in Figure 1. 521

The area below both staircases is a cost that every commit- 522

tee must incur. A specific committee {s1, s2} must incur, in 523

addition, a cost equal to the area of the rectangle whose ba- 524

sis is the line segment between both selected candidates and 525

whose height is n (and potentially an additional area to reach 526

this point from the median). Lemma Appendix B.3 bounds 527

the social cost of any committee from below and provides in- 528

tuition about this objective. 529

Odd number of agents We first focus on odd values of n. 530

For n = 3, it is easy to see that the optimal set corresponds to 531

the median agent and the agent that the median prefers among 532

the others, which yields a simple rule with distortion 1. For 533

n ≥ 5 we introduce a voting rule called FAVORITE COUPLE. 534

For an election E = (A, k,≻), we say that agents a, b ∈ A are 535

a couple if they rank each other above all other agents; i.e., if 536

b ≻a c and a ≻b c for every c ∈ A \ {a, b}. Note that each 537

agent can take part in at most one couple. FAVORITE COUPLE 538

selects the closest couple to the median when restricting to the 539

five middle agents. 540

Voting Rule 2 (FAVORITE COUPLE). For a preference pro- 541

file ≻, compute the order from left to right 1, . . . , n and let 542

m = n+1
2 be the median agent. If there is a couple among 543

the sets {m − 1,m} and {m,m + 1}, return it. Else, return 544

{m+1,m+2} if m+2 ≻m m−2 and return {m−2,m−1} 545

otherwise. 546

On an intuitive level, this voting rule selects two consecu- 547

tive agents who are both close to each other and to the median 548

agent. The restriction to middle agents is necessary; simply 549

choosing an arbitrary couple can lead to a distortion of up to 550

2. For example, this is the case if there are n agents with 551

distances d(a, a + 1) = 1 + aε for all a ∈ [n] and a small 552

ε > 0, as the only couple is {1, 2} with a social cost of ap- 553

proximately n2

2 , while the committee consisting of the me- 554

dian agent and any neighbor is close to n2

4 . We now show 555

that this rule provides the best-possible distortion of 4
3 for an 556

odd number of agents. 557

Theorem 3.2. For every odd n ≥ 5, FAVORITE COUPLE 558

achieves a distortion of 4
3 for utilitarian 2-cost. Moreover, 559

there exists n ∈ N such that, for every (n, 2)-voting rule f , 560



we have dist(f) ≥ 4
3 for utilitarian 2-cost.561

Even number of agents When n is even, we show that the562

voting rule that selects the two median agents attains the best-563

possible distortion of 2. Detailed discussion can be found in564

Appendix B.5.565

4 Egalitarian Social Cost566

In this section, we study the worst-case distortion achievable567

by voting rules in the context of peer selection with egalitar-568

ian social cost. Recall that, in this case, given a set of agents569

A, a committee size k, and a distance metric d, the social cost570

of a committee S′ ∈
(
A
k

)
corresponds to the maximum cost571

of this committee for some agent a ∈ A:572

SC(S′, A; d) = max{SC(S′, a; d) | a ∈ A}.

We will start the section with the simple case k = 1, where573

S′ = {s} for some s ∈ A and thus SC(S′, a; d) is simply574

d(a, s) for every a ∈ A. In Section 4.1 and appendix C.4 we575

explore the case of general committee size under additive and576

q-cost candidate-aggregation functions, respectively.577

Proposition 4.1. For every n ∈ N, any (n, 1)-voting rule578

has distortion 2 for egalitarian social cost. There exists n ∈579

N such that, for every (n, 1)-voting rule f , dist(f) ≥ 2 for580

egalitarian social cost.581

4.1 Egalitarian Additive Social Cost582

In this section, we study voting rules in the context of egalitar-583

ian additive social cost, defined as the maximum over agents584

of the sum of the distances from the agent to all selected can-585

didates. That is, for a set of agents A, a committee size k, and586

a distance metric d, the social cost of a committee S′ ∈
(
A
k

)
587

is588

SC(S′, A; d) = max

{ ∑
s∈S′

d(a, s)
∣∣∣ a ∈ A

}
.

We begin with a simple observation: When k = 2 candi-589

dates are to be selected, a simple rule selecting both extreme590

candidates achieves the best-possible distortion of 1. Intu-591

itively, this voting rule makes sense because, for any selected592

committee, (1) the cost of the committee is maximized for593

one of the extreme agents, and (2) the sum of the costs of the594

committee for both extreme agents is fixed (and equal to two595

times the distance between them). Thus, selecting both ex-596

treme agents ensures they incur the same cost and minimizes597

the maximum cost between them. This rule and its distortion598

will be covered as a special case of the rule and result we599

introduce in what follows. For larger k, the above intuition600

about the cost of any committee being maximized for the ex-601

treme agents remains true. We state this property, which will602

be exploited in the development and analysis of a voting rule603

guaranteeing a constant distortion, in Appendix C.2.604

The rule, which we denote k-EXTREMES, simply returns605

the
⌊
k
2

⌋
agents closest to one extreme and the

⌈
k
2

⌉
agents606

closest to the other extreme.607

Voting Rule 3 (k-EXTREMES). For a preference profile ≻,608

compute the order of agents from left to right 1, . . . , n and609

return S =
{
1, . . . ,

⌊
k
2

⌋}
∪
{
n−

⌈
k
2

⌉
+ 1, . . . , n

}
.610

1 k
0

distortion
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Figure 2: Distortion of k-EXTREMES and lower bound stated in
Theorem 4.2 for k ∈ {2, . . . , 99}.

The following theorem states the distortion of this voting 611

rule. It captures the previously claimed distortion of 1 for 612

k = 2, and it approaches 3
2 as k grows. This is best possible 613

up to O
(
1
k

)
terms, which vanish as k grows. The upper and 614

lower bounds stated in this theorem are depicted in Figure 2. 615

Theorem 4.2. For every n, k ∈ N with n ≥ k ≥ 2, k- 616

EXTREMES has a distortion for egalitarian additive social 617

cost of at most 3
2 −

1
2(k−1) if k is even and at most 3

2 −
1

k(k−1) 618

if k is odd. Conversely, for every k ∈ N with k ≥ 3 there 619

exists n ∈ N with n ≥ k such that, for every (n, k)-voting 620

rule f , dist(f) ≥ 3
2 −

1
k for egalitarian additive social cost. 621

5 Discussion 622

In this work, we have introduced the study of metric distor- 623

tion in committee elections where voters and candidates co- 624

incide and provided a first step towards an understanding of 625

this setting by focusing on the line metric. Our results span 626

a variety of social costs and include both analyses of voting 627

rules and constructions of negative instances to provide im- 628

possibility results. Although most of our results are tight, an 629

intriguing gap remains for utilitarian q-cost when q is greater 630

than k
2 . We believe that rules with a distortion better than the 631

current upper bound of 3 exist and their design may benefit 632

from the insights provided by our rule for q = k = 2. 633

The study of the distortion of voting rules in more general 634

metric spaces constitutes another interesting direction for fu- 635

ture work. As the lower bounds presented in this work re- 636

main valid and constant upper bounds for q-cost would still 637

be attainable due to the general result by Caragiannis et al. 638

[2022b], the design of voting rules providing a small distor- 639

tion beyond the line in the case of additive cost is the main 640

open question in this regard. 641

Another challenge in the design of elections is preventing 642

strategic behavior. A mild assumption in the context of peer 643

selection, adopted by the growing literature on impartial se- 644

lection, is that agents’ primary concern is whether they are se- 645

lected themselves, and a voting rule is deemed impartial if an 646

agent cannot affect this fact by changing their reported prefer- 647

ences. On the other hand, a rule is called strategyproof in the 648

voting literature if no agent can misreport their preferences 649

and lead to a better outcome with respect to their actual pref- 650

erences. Designing impartial and strategyproof voting rules 651

with bounded distortion for peer selection constitutes an in- 652

teresting challenge for future work in the area. 653
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A Lemma from Section 2801

Lemma A.1 (Elkind and Faliszewski [2014], Babashah et al.802

[2024]). For every election E = ([n], k,≻), we can compute803

a permutation π : [n] → [n] of the agents such that, for any804

consistent position vector x ∈ (−∞,∞)n with x ▷ ≻, we805

have either xπ(1) ≤ xπ(2) ≤ . . . xπ(n−1) ≤ xπ(n) or xπ(n) ≤806

xπ(n−1) ≤ · · · ≤ xπ(2) ≤ xπ(1).807

B Proofs Deferred from Section 3808

B.1 Lemma B.1809

Lemma B.1. For any election E = (A, k,≻) and consistent810

metric d ▷ ≻, there exists i ∈ [n− k + 1] such that, defining811

1 k
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distortion
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Figure 3: Distortion of MEDIAN ALTERNATION stated in Theo-
rem 3.1 for n = 100 and k ∈ {2, . . . , 99}.

S∗ = {i, i + 1, . . . , i + k − 1}, we have SC(S∗, A; d) = 812

min
{

SC(S′, A; d) | S′ ∈
(
A
k

)}
. 813

Proof. Let E = (A, k,≻) with A = [n] and d be as in the 814

statement, and let also x ▷ ≻ be a consistent position vector 815

defining d. The result is trivial if k = 1, so we assume that 816

k ≥ 2 in what follows. We first observe that, by Lemma 2 in 817

Babashah et al. [2024], SC(a,A; d) ≤ SC(b, A; d) holds for 818

a, b ∈ A are such that either (1) a, b ≥ n+1
2 and a − n+1

2 ≤ 819

b − n+1
2 , or (2) a, b ≤ n+1

2 and n+1
2 − a ≤ n+1

2 − b. In 820

simple words, if two agents lie on the same side of the median 821

agent(s), the agent closer to them has a lower cost. Thus, 822

there exist S∗ ∈
(
A
k

)
that minimizes the social cost such that 823

{m1,m2} ⊆ S∗, where m1 =
⌊
n+1
2

⌋
and m2 =

⌈
n+1
2

⌉
824

denote the median agent(s) (note that m1 = m2 if n is odd). 825

Now, suppose that S∗ is not consecutive. Since m1,m2 ∈ S∗, 826

there exists an agent a /∈ S∗ and b ∈ S∗ such that either (1) 827

a, b ≥ n+1
2 and a − n+1

2 ≤ b − n+1
2 , or (2) a, b ≤ n+1

2 and 828
n+1
2 − a ≤ n+1

2 − b. But then, using the result by Babashah 829

et al. again, we obtain that SC((S∗ \ {b}) ∪ {a}, A; d) ≤ 830

SC(S∗, A; d); i.e., we can exchange b by a and the social 831

cost of the committee does not increase. By repeating this 832

procedure, we reach a committee with consecutive agents and 833

minimum social cost, as claimed in the statement. 834

B.2 Proof of Theorem 3.1 835

Theorem 3.1. The distortion of MEDIAN ALTERNATION is 836

at most 2
k

(
n −

√
2
⌊
n−k
2

⌋
n
)

for utilitarian additive social 837

cost. 838

In order to prove Theorem 3.1, we will show that we can 839

reduce any metric to another one where all agents are in one 840

out of two locations. As a first step, we prove that an agent 841

(or set of agents at the same location) can always be moved 842

in one direction such that the distortion does not improve, as 843

long as they do not pass through other agents’ locations. To 844

this end, for a position vector x ∈ (−∞,∞)n, a position 845

x̄ ∈ (−∞,∞) such that A(x̄) ̸= ∅, and δ > 0, we define the 846

shifted position vectors x−(x̄, δ), x+(x̄, δ) ∈ (−∞,∞)n as 847

follows: 848



x−
a (x̄, δ) = xa − δ for every a ∈ A(x̄),

x−
a (x̄, δ) = xa for every a ∈ A \A(x̄),

x+
a (x̄, δ) = xa + δ for every a ∈ A(x̄),

x+
a (x̄, δ) = xa for every a ∈ A \A(x̄).

Lemma B.2. Let E = (A, k,≻) be an election with A = [n],849

let S ∈
(
A
k

)
be the committee selected by MEDIAN ALTER-850

NATION on this election, and let x ∈ (−∞,∞)n with x ▷ ≻851

be a consistent position vector. Let x̄ ∈ (−∞,∞) be such852

that A(x̄) ̸= ∅, let δ > 0 be such that A((x̄ − δ, x̄ + δ)) =853

A(x̄) and let x− = x−(x̄, δ) and x+ = x+(x̄, δ). Then,854

for all preference profiles ≻−,≻+ such that x− ▷ ≻− and855

x+ ▷ ≻+, at least one of the following inequalities holds:856

dist(S, (A, k,≻−);x−) ≥ dist(S, E ;x), or

dist(S, (A, k,≻+);x+) ≥ dist(S, E ;x).

The proof of this lemma relies on the linearity of the objec-857

tive function: If moving an agent or set of agents to the right858

has a certain effect on the social cost, moving them to the left859

has the opposite effect. Then, the ratio between the social860

cost of any two fixed committees must not improve in one of861

these directions. Since the committee selected by MEDIAN862

ALTERNATION remains fixed as long as the order of agents863

does not change, and changing the optimal set can only lead864

to a worse distortion, the result follows. We now proceed with865

the formal proof.866

Proof of Lemma B.2. Let E = (A, k,≻), S, x, x̄, δ, x−, x+,867

≻−, and ≻+ be as in the statement. We denote by d, d−, and868

d+ the distance metrics associated to x, x−, and x+, respec-869

tively.870

We first consider an arbitrary committee S′ ∈
(
A
k

)
and871

compute the difference between the social cost of this com-872

mittee under metric d and under both of the other metrics.873

From the definition of the additive social cost, for any a ∈ A874

such that xa < x̄ we have that875

SC(S′, a;x−) =
∑

b∈S′∩A(x̄)

d−(a, b) +
∑

b∈S′\A(x̄)

d−(a, b)

=
∑

b∈S′∩A(x̄)

(d(a, b)− δ) +
∑

b∈S′\A(x̄)

d(a, b)

= SC(S′, a;x)− δ |S′ ∩A(x̄)|. (1)

Similarly, for any a ∈ A such that xa > x̄ we have that876

SC(S′, a;x−) =
∑

b∈S′∩A(x̄)

d−(a, b) +
∑

b∈S′\A(x̄)

d−(a, b)

=
∑

b∈S′∩A(x̄)

(d(a, b) + δ) +
∑

b∈S′\A(x̄)

d(a, b)

= SC(S′, a;x) + δ |S′ ∩A(x̄)|. (2)

Finally, for every a with xa = x̄, i.e., a ∈ A(x̄), we have that 877

SC(S′, a;x−) =
∑

b∈S′∩A((−∞,x̄))

d−(a, b) (3)

+
∑

b∈S′∩A((x̄,+∞))

d−(a, b)

=
∑

b∈S′∩A((−∞,x̄))

(d(a, b)− δ) (4)

+
∑

b∈S′∩A((x̄,+∞))

(d−(a, b) + δ)

= SC(S′, a;x)+ (5)

δ (|S′ ∩A((x̄,+∞))| − |S′ ∩A((−∞, x̄))|).
(6)

Combining eqs. (1), (2) and (6), we obtain from the definition 878

of utilitarian social cost that 879

SC(S′, A;x−) =
∑
a∈A

SC(S′, a; d−)

= SC(S′, A;x)−
δ |S′ ∩A(x̄)|

(
|A(−∞, x̄)| − |A(x̄,+∞)|

)
−

δ |A(x̄)|
(
|S′ ∩A((−∞, x̄))| − |S′ ∩A((x̄,+∞))|

)
.

One can proceed analogously for d+ to obtain 880

SC(S′, A;x+) = SC(S′, A;x)+

δ |S′ ∩A(x̄)|
(
|A(−∞, x̄)| − |A(x̄,+∞)|

)
+

δ |A(x̄)|
(
|S′ ∩A((−∞, x̄))| − |S′ ∩A((x̄,+∞))|

)
.

Hence, there exists a value ∆(S′), that only depends on the 881

committee δ, such that 882

SC(S′, A;x−) = SC(S′, A;x)−∆(S′),
883

SC(S′, A;x+) = SC(S′, A;x) + ∆(S′). (7)

We let S∗ denote an optimal committee for the metric d 884

in what follows, i.e., a committee such that SC(S∗, A;x) = 885

min
{

SC(S′, A;x) | S′ ∈
(
A
k

)}
. We observe that 886

dist(S, (A, k,≻−);x−) =
SC(S,A;x−)

minS′∈(Ak)
SC(S′, A;x−)

887

≥ SC(S,A;x−)

SC(S∗, A;x−)
=

SC(S,A;x)−∆(S)

SC(S∗, A;x)−∆(S∗)
, (8)

and 888

dist(S, (A, k,≻−);x+) =
SC(S,A;x+)

minS′∈(Ak)
SC(S′, A;x+)

889

≥ SC(S,A;x+)

SC(S∗, A;x+)
=

SC(S,A;x) + ∆(S)

SC(S∗, A;x) + ∆(S∗)
. (9)

If either SC(S∗, A;x) = ∆(S∗) or SC(S∗, A;x) = −∆(S∗) 890

holds, the distortion becomes unbounded in one of the new 891

instances and the result follows directly. Otherwise, it follows 892

from the simple property stated in the following claim. 893



Claim B.1. For any values y, z ∈ R+ and w ∈ (−z, z), we894

have either y+w
z+w ≥

y
z or y−w

z−w ≥
y
z .895

Proof. Suppose towards a contradiction that both y+w
z+w < y

z896

and y−w
z−w < y

z hold. Since w < z, the first inequality is897

equivalent to898

z(y + w) < y(z + w)⇐⇒ zw < yw.

Since w > −z, the second inequality is equivalent to899

z(y − w) < y(z − w)⇐⇒ yw < zw.

As the inequalities contradict each other, we conclude.900

Applying these properties to inequalities (8) and (9), we901

obtain that either902

dist(S, (A, k,≻−);x+) ≥ SC(S,A;x) + ∆(S)

SC(S∗, A;x) + ∆(S∗)
903

≥ SC(S,A;x)
SC(S∗, A;x)

= dist(S, E ;x)

or904

dist(S, (A, k,≻−);x−) ≥ SC(S,A;x)−∆(S)

SC(S∗, A;x)−∆(S∗)
905

≥ SC(S,A;x)
SC(S∗, A;x)

= dist(S, E ;x)

holds, concluding the proof.906

We can use the previous lemma to conclude that, for every907

election and consistent metric, MEDIAN ALTERNATION se-908

lects a committee such that, under another metric with only909

two locations, the distortion does not improve. Indeed, we910

can iterating the argument in Lemma B.2 to move (sets of)911

agents in non-extreme positions in their non-improving di-912

rection. This procedure terminates with all agents in one of913

the original extreme positions x1 or xn and that the distortion914

has not improved. The following lemma formally states this915

fact.916

Lemma B.3. Let E = (A, k,≻) be an election with A = [n],917

let S ∈
(
A
k

)
be the committee selected by MEDIAN ALTER-918

NATION on this election, and let x ∈ (−∞,∞)n with x ▷ ≻919

be a consistent position vector. Then, there exists a position920

vector x′ ∈ (−∞,∞)n such that x′
a ∈ {x1, xn} for every921

a ∈ A and dist(S′, (A, k,≻′);x′) ≥ dist(S, E , x), where ≻′922

is any preference profile such that x′ ▷ ≻′ and S′ ∈
(
A
k

)
923

is the committee selected by MEDIAN ALTERNATION on the924

election (A, k,≻′).925

Proof. Let E = (A, k,≻) and x be as in the statement, where,926

as usual, x1 and xn represent the positions of the two extreme927

agents. To construct x′ as claimed in the statement, we itera-928

tively move agents toward the positions of the extreme agents929

using Lemma B.2. Specifically, we initialize x′ = x and, as930

long as x′
a ∈ (x1, xn) for some a ∈ A, we fix x̄ = xa, we931

define932

δ∗ = max{δ > 0 | A((x̄− δ, x̄+ δ)) = A(x̄)},

and we update x′
b ← x′

b± δ∗ for every b ∈ A(x̄) and the sign 933

that ensures not increasing the distortion dist(S,A;x′) of S. 934

Note that the definition of δ∗ ensures both the existence of 935

this sign, due to Lemma B.2, and the fact that the number of 936

different positions |{y ∈ (−∞,∞) | ∃a ∈ [n] : x′
a = y}| is 937

reduced in each step. Thus, the procedure terminates with a 938

vector x′ ∈ (−∞,∞) such that (1) x′
a ∈ {x1, xn} for every 939

a ∈ A, and (2) the distortion of S under the resulting metric 940

has not decreased. Note that, since the order of the agents 941

has not been changed besides ties, we have either S′ = S if 942

the committee selected by MEDIAN ALTERNATION has not 943

changed or S′ ̸= S but SC(S′, A, x′) = SC(S,A;x′) if the 944

committee has changed due to a different tie-breaking. 945

We now proceed with the proof of Theorem 3.1. 946

Proof of Theorem 3.1. Let E = (A, k,≻) be an arbitrary 947

election, where A = [n] is the set of agents. Let d ▷ ≻ 948

be any consistent distance metric induced by positions x ∈ 949

(−∞,∞)n, and let S denote the committee selected by ME- 950

DIAN ALTERNATION on this election. From Lemma B.3, we 951

know that there exists a new position vector x′ ∈ (−∞,∞)n 952

and associated election E ′ = (A, k,≻′), with x′ ▷ ≻′, such 953

that where all agents are positioned at the two extreme posi- 954

tions of the original instance and the distortion in E ′ is at least 955

as bad as the distortion in E ; i.e., x′
a ∈ {x1, xn} for every 956

a ∈ A and dist(S′, (A, k,≻′);x′) ≥ dist(S, E , x), where S′ 957

denotes the committee selected by MEDIAN ALTERNATION 958

on E ′. Thus, it suffices to compute the distortion for this elec- 959

tion E ′ to bound the distortion of the voting rule. As usual, 960

we denote by d′ the metric induced by the position vector x′. 961

We partition the set of agents into two groups, A = 962

A1∪̇An, where 963

A1 = {a ∈ A | x′
a = x1} and An = {a ∈ A | x′

a = xn}

denote the sets of agents located at positions x1 and xn under 964

the position vector x′, respectively. We let S1 = S′ ∩ A1 965

and S2 = S′ ∩ A2 denote the agents selected by MEDIAN 966

ALTERNATION on E ′ from agents in A1 and A2, respectively. 967

Then, the social cost of S′ is given by 968

SC(S′, A; d′) =
∑
a∈A1

∑
b∈S′

d′(x1, xb) +
∑
a∈An

∑
b∈S′

d′(xn, xb)

= |A1| · |Sn| · d′(x1, xn) + |An| · |S1| · d′(x1, xn).

On the other hand, the optimal committee S∗ clearly min- 969

imizes the total social cost by selecting as many agents as 970

possible from the larger group between A1 and An, as this 971

cost is only incurred by agents in the smaller set. We suppose 972

that |An| ≥ |A1| w.l.o.g. We have two cases: either |An| ≥ k 973

or |An| < k. In the former case, 974

SC(S∗, A; d) = |A1| · k · d′(x1, xn),

while in the latter case, 975

SC(S∗, A; d) = |A1|·|An|·d′(x1, xn)+|An|·(k−|An|)·d′(x1, xn).

Since |An| ≥ |A1| implies 976

|A1|·|An|·d′(x1, xn)+|An|·(k−|An|)·d′(x1, xn) ≥ |A1|·k·d′(x1, xn),



the social cost induced by S∗ is smaller when |An| ≥ k and977

it suffices to bound the distortion in this case. Therefore,978

dist(f) ≤ SC(S,A; d′)
SC(S∗, A; d′)

(10)

=
|A1| · |Sn| · d′(x1, xn) + |An| · |S1| · d′(x1, xn)

|A1| · k · d′(x1, xn)

=
|A1| · |Sn|+ |An| · |S1|

|A1| · k
. (11)

If |Sn| = k, we obtain dist(f) = 1. In what follows, we thus979

assume S1 ̸= ∅. From the definition of the MEDIAN ALTER-980

NATION voting rule, we know that |An| − |Sn| = |A1| − |S1|981

if n − k is even, and either |An| − |Sn| = |A1| − |S1| + 1982

or |An| − |Sn| = |A1| − |S1| − 1 if n − k is odd. Since983

the distortion increases in |S1| for fixed n and k due to the984

assumption that |An| ≥ |A1|, the worst case is |An|− |Sn| =985

|A1| − |S1|+1 when n− k is odd, so we restrict to it in what986

follows. For ease of notation, we define a value χ ∈ {0, 1},987

such that χ = 0 if n− k is even and χ = 1 if n− k is odd, so988

that we can express the previous equations simply as989

|An| − |Sn| = |A1| − |S1|+ χ.

From this equality, alongside |A1| + |An| = n and |S1| +990

|Sn| = k, we can express all |A1|, |S1|, and |Sn| in terms of991

|An| as follows:992

|A1| = n− |An|, |S1| =
n+ k + χ

2
− |An|,

993

|Sn| = |An| −
n− k − χ

2
.

Replacing in inequality (11), we obtain994

dist(f) ≤
(n− |An|)

(
|An| − n−k−χ

2

)
+ |An|

(
n+k+χ

2 − |An|
)

(n− |An|)k

=
1

k

(
2|An| −

(n− k − χ)n

2(n− |An|)

)
= h(|An|), (12)

where we have defined a function h :
{⌈

n
2

⌉
, . . . , n−1

}
→ R,995

which evaluated at |An| gives the last expression. Its first and996

second derivatives are given by997

h′(y) =
1

k

(
2− (n− k − χ)n

2(n− y)2

)
,

998

h′′(y) = − (n− k − χ)n

k(n− y)3
.

Since h′′(y) ≤ 0 for every y in the domain of h, an upper999

bound for the value of h is given by its value at y∗, where y∗1000

is such that1001

h′(y∗) = 0⇐⇒ y∗ = n− 1

2

√
(n− k − χ)n.

Combining this fact with inequality (12), we conclude that 1002

dist(f) ≤ h(y∗) =

1

k

(
2

(
n− 1

2

√
(n− k − χ)n

)
− (n− k − χ)n

2 · 12
√

(n− k − χ)n

)
=

2

k

(
n−

√
(n− k − χ)n

)
,

which is the same as the expression in the statement. 1003

Impossibility Results 1004

In this section, we provide two strong impossibilities regard- 1005

ing distortion bounds for q-cost, analyzing the cases with 1006

q ≤ k
2 and with q ≥

⌈
k
2

⌉
+ 1 separately. 1007

We begin with a strong impossibility for the case where we 1008

focus, for each agent, on their qth closest selected agent with 1009

q ≤ k
2 . We show that no constant distortion is possible in this 1010

setting, regardless of the number of agents to select. 1011

Theorem B.4. For every k ∈ N with k ≥ 2 and q ∈ N with 1012

q ≤ k
2 , there exists n ∈ N with n ≥ k such that, for every 1013

(n, k)-voting rule f , dist(f) is unbounded for utilitarian q- 1014

cost. 1015

Proof. We let k and q be as in the statement, fix n ∈ N to 1016

a large value, in particular with n ≥ 2k + q (we will ul- 1017

timately take the limit n → ∞), and consider an arbitrary 1018

(n, k)-voting rule f . We denote p =
⌊
k
q

⌋
≥ 2 and parti- 1019

tion the agents into p + 1 sets A =
⋃̇p

i=1Ai ∪ B, such that 1020

|Ai| ∈
{⌊

n−q
p

⌋
,
⌈
n−q
p

⌉}
for every i ∈ [p] and |B| = q. Note 1021

that this is possible since 1022

p

⌊
n− q

p

⌋
+ q ≤ n ≤ p

⌊
n− q

p

⌋
+ q.

We consider the profile ≻∈ Ln(n), where 1023

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some 1024

i, j, ℓ ∈ [p] with |i− j| < |i− ℓ|; 1025

(ii) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ B for some 1026

i, j ∈ [p]; 1027

(iii) b ≻a c whenever a, b ∈ B, c ∈ Ai for some i ∈ [p]; 1028

(iv) b ≻a c whenever a ∈ B, b ∈ Ai, c ∈ Aj for some 1029

i, j ∈ [p] with i > j; 1030

and the remaining pairwise comparisons are arbitrary. We 1031

consider the election E = (A, k,≻) with A = [n]. 1032

In what follows, we distinguish whether f selects all q 1033

agents in B or not and construct appropriate distance metrics 1034

to show that, in either case, the distortion can be arbitrarily 1035

large. Intuitively, if f selects B we will consider this set to be 1036

relatively close to Ap, so that picking q agents from each set 1037

A1, . . . , Ap would give a much lower social cost. On the con- 1038

trary, if f does not select B, we will place this set extremely 1039

far from all others, so that the social cost of the selected set is 1040

huge compared to the social cost of a committee containing 1041

B. 1042

Formally, we first consider the case with B ⊆ S and define 1043

the distance metric d1 on A given by the following positions 1044

x ∈ (−∞,∞)n: xa = i − 1 for every a ∈ Ai and every 1045



i ∈ [p], and xa = 2(p − 1) for every a ∈ B. It is not hard1046

to see that d1 ▷ ≻; see Figure 4 for an illustration. Since1047

B ⊆ S, we have that
∣∣S ∩⋃

i∈[p] Ai

∣∣ ≤ k − q. Hence, from1048

an averaging argument, there exists j ∈ [p] with1049

|S ∩Aj | ≤
k − q

p
=

q

k
(k − q) < q.

From the definition of q-cost, we thus have1050

SC(S, a; d1) ≥ min{d1(a, b) | b ∈ A\Aj} ≥ 1 for every a ∈ Aj .
(13)

On the other hand, consider the set S = ∪i∈[p]Si, where Si ⊆1051

Ai and |Si| ≥ q for every i ∈ [p]. Note that this set exists1052

because pq = k and1053

|Ai| ≥
⌊
n− q

p

⌋
≥

⌊
2k

k
q

⌋
≥ q,

where we used our assumption n ≥ 2k + q. From the def-1054

inition of q-cost, we have that SC(S, a; d1) = 0 for every1055

a ∈ Ai and every i ∈ [p]. For each a ∈ B, we have1056

SC(S, a; d1) = p − 1. Combining these facts with inequal-1057

ity (13), we obtain1058

dist(f(≻), E) ≥ SC(S,A; d1)
SC(S,A; d1)

≥ |Aj |
(p− 1)|B|

≥
1059 ⌊

n− q

p

⌋
1

(p− 1)q
=

⌊
(n− q)q

k

⌋
· 1

k − q
.

We now consider the case with B ̸⊆ S and define the1060

distance metric d2 on A given by the following positions1061

x ∈ (−∞,∞)n: xa = i − 1 for every a ∈ Ai and every1062

i ∈ [p], and xa = p − 1 + Mn for every a ∈ B. It is not1063

hard to see that d2 ▷ ≻; see Figure 4 for an illustration. Since1064

B ̸⊆ S, we have that |S ∩ B| < q and thus, by the definition1065

of q-cost, we have1066

SC(S, a; d2) ≥ min{d2(a, b) | b ∈ A\B} ≥Mn for every a ∈ B.
(14)

On the other hand, consider the set T = B ∪ ∪i∈[p−1]Ti,1067

where Ti ⊆ Ai and |Ti| ≥ q for every i ∈ [p − 1]. Note that1068

this set exists because (p− 1)q = k − q and1069

|Ai| ≥
⌊
n− q

p

⌋
≥

⌊
2k

k
q

⌋
≥ q,

where we used our assumption n ≥ 2k + q. From the def-1070

inition of q-cost, we have that SC(T, a; d2) = 0 for every1071

a ∈ Ai and every i ∈ [p − 1] and SC(T, a; d2) = 0 for ev-1072

ery a ∈ B. For each a ∈ Ap, we have SC(T, a; d2) = 1.1073

Combining these facts with inequality (14), we obtain1074

dist(f(≻), E) ≥ SC(S,A; d2)
SC(T,A; d2)

≥ Mn|B|
|Ap|

≥
1075

1⌈
n−q
p

⌉Mnq =
1⌈ (n−q)q
k

⌉Mnq.

Since dist(f(≻), E) ≥
⌊ (n−q)q

k

⌋
· 1

k−q if B ⊆ S and1076

dist(f(≻), E) ≥ 1⌈
(n−q)q

k

⌉Mnq otherwise, we conclude that1077

dist(f) ≥ min

{⌊
(n− q)q

k

⌋
· 1

k − q
,

1⌈ (n−q)q
k

⌉Mnq

}
,

Metric d1
A1 A2 A3 Ap−1 Ap B

1 1 1 p− 1

Metric d2
A1 A2 A3 Ap−1 Ap B

1 1 1 Mn

Figure 4: Metrics considered in the proof of Theorem B.4. In this
and all similar figures throughout the paper, the (sets of) agents are
represented by circles, with the identity of the agents or sets be-
low them, and the distances between them are written on top of the
corresponding line segments. All figures consider indistinguishable
metrics for a certain preference profile of the agents and thus any
voting rule must select the same subsets for any of these metrics.

which can be unbounded by taking n and M arbitrarily large. 1078

1079

Next, we prove a lower bound of 2 − k−q
4q−k−3 for the dis- 1080

tortion of any voting rule for utilitarian q-cost when
⌈
k
2

⌉
< 1081

q ≤ k and k ≥ 3. 1082

Theorem B.5. For every k ∈ N with k ≥ 3 and q ∈ N with 1083
k
2 + 1 ≤ q ≤ k, there exists n ∈ N with n ≥ k such that, for 1084

every (n, k)-voting rule f , dist(f) is at least 2− k−q
4q−k−3 for 1085

utilitarian q-cost. 1086

Proof. We let k and q be as in the statement and fix n = 1087

2(3q− k− 2), and consider an arbitrary (n, k)-voting rule f . 1088

We partition the agents into four sets A =
⋃̇4

i=1Ai such that 1089

|A1| = |A4| = q − 1 and |A2| = |A3| = 2q − k − 1. Note 1090

that all these values lie between 1 and q − 1. Indeed, this is 1091

trivial for |A1| and |A4|, whereas for |A2| and |A3| we have 1092

2q − k − 1 ≥ 2
(
k
2 + 1

)
− k − 1 = 1 and 2q − k − 1 ≤ 1093

2q − q − 1 = q − 1, where we have used that q lies between 1094
k
2 + 1 and k. 1095

We consider the profile ≻∈ Ln(n), where 1096

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some 1097

i, j, ℓ ∈ [4] with |i− j| < |i− ℓ|; 1098

(ii) b ≻a c whenever a ∈ A2, b ∈ A1, c ∈ A3; 1099

(iii) b ≻a c whenever a ∈ A3, b ∈ A4, c ∈ A2; 1100

and the remaining pairwise comparisons are arbitrary. We 1101

consider the election E = (A, k,≻) with A = [n]. 1102

In what follows, we distinguish whether f selects q or more 1103

agents from A1∪A2, from A3∪A4, or from none of them, and 1104

construct appropriate distance metrics to show that, in either 1105

case, the distortion is at least the one claimed in the statement. 1106

Intuitively, if f selects less than q agents from both A1 ∪ A2 1107

and from A3 ∪A4, we will consider A1 ∪A2 on one extreme 1108

and A3 ∪ A4 on the other, so that picking q agents from any 1109

of these sets would lead to a lower social cost. If f selects q 1110

or more agents from A1∪A2 we will consider a metric where 1111

A1 lies in one extreme, A2 in the middle, and both A3 and A4 1112

in the other extreme, so that picking all agents from A4 would 1113

lead to a lower social cost. If f selects q or more agents from 1114

A3 ∪A4, we will construct a symmetric instance. 1115

Formally, we first consider the case with |S∩(A1∪A2)| < 1116

q and |S ∩ (A3 ∪ A4)| < q and define the distance metric d1 1117

on A by the following positions x ∈ (−∞,∞)n: xa = 0 1118



for every a ∈ A1 ∪ A2 and xa = 2 for every a ∈ A3 ∪ A4.1119

It is not hard to check that d1 ▷ ≻; see Figure 5.(b) for an1120

illustration. It is clear that SC(S, a; d1) = 2 for every a ∈ A.1121

If we consider the alternative committee S′ = A1 ∪ A2 ∈1122 (
A
k

)
, we have SC(S′, a; d1) = 0 for every a ∈ A1 ∪ A2 and1123

SC(S′, a; d1) = 2 for every a ∈ A3 ∪A4. We obtain1124

dist(f(≻), E) ≥ SC(S,A; d1)
SC(S′, A; d1)

=
2 · n
2n
2

= 2.

If |S ∩ (A3 ∪ A4)| ≥ q, we define the distance metric d21125

on A by the following positions x ∈ (−∞,∞)n: xa = 0 for1126

every a ∈ A1 ∪ A2, xa = 1 for every a ∈ A3, and xa = 21127

for every a ∈ A4. It is not hard to check that d2 ▷ ≻; see1128

Figure 5.(b) for an illustration. Since |S∩ (A1∪A2∪A3)| ≤1129

(k − q) + |A3| = q − 1 < q, we have that SC(S, a; d2) = 21130

for every a ∈ A1∪A2. Furthermore, since both |A3| < q and1131

|A4| < q, we have that SC(S, a; d2) = 1 for every a ∈ A3 ∪1132

A4. If we consider an alternative committee S′ ⊆ A1 ∪A2 ∈1133 (
A
k

)
, which exists due to |A1∪A2| = 3q−k−2 ≥ q, we have1134

SC(S′, a; d2) = 0 for every a ∈ A1 ∪ A2, SC(S′, a; d2) = 11135

for every a ∈ A3, and SC(S′, a; d2) = 2 for every a ∈ A4.1136

Thus, we obtain1137

dist(f(≻), E) ≥ SC(S,A; d2)
SC(S′, A; d2)

=
2|A1 ∪A2|+ |A3 ∪A4|

|A3|+ 2|A4|

=
3(3q − k − 2)

(2q − k − 1) + 2(q − 1)

= 2− k − q

4q − k − 3
.

Analogously, if |S∩(A1∪A2)| ≥ q, we define the distance1138

metric d3 on A by the following positions x ∈ (−∞,∞)n:1139

xa = 0 for every a ∈ A1, xa = 1 for every a ∈ A2, and1140

xa = 2 for every a ∈ A3 ∪ A4. It is not hard to check1141

that d3 ▷ ≻; see Figure 5.(b) for an illustration. Since1142

|S ∩ (A2 ∪ A3 ∪ A4)| ≤ (k − q) + |A2| = q − 1 < q,1143

we have that SC(S, a; d3) = 2 for every a ∈ A3 ∪ A4. Fur-1144

thermore, since both |A1| < q and |A2| < q, we have that1145

SC(S, a; d3) = 1 for every a ∈ A1 ∪ A2. If we consider an1146

alternative committee S′ ⊆ A3 ∪A4 ∈
(
A
k

)
, which exists due1147

to |A3 ∪ A4| = 3q − k − 2 ≥ q, we have SC(S′, a; d3) = 01148

for every a ∈ A3 ∪ A4, SC(S′, a; d3) = 1 for every a ∈ A2,1149

and SC(S′, a; d3) = 2 for every a ∈ A1. Thus, we obtain1150

dist(f(≻), E) ≥ SC(S,A; d3)
SC(S′, A; d3)

=
2|A3 ∪A4|+ |A1 ∪A2|

|A2|+ 2|A1|

=
3(3q − k − 2)

(2q − k − 1) + 2(q − 1)

= 2− k − q

4q − k − 3
.

Since dist(f(≻), E) ≥ 2− k−q
4q−k−3 regardless of f(≻), we1151

conclude that dist(f) ≥ 2− k−q
4q−k−3 .1152

q

distortion

50 60 70 80 90 100

1.5

1.6

1.7

1.8

1.9

2

(a) Lower bounds for k = 100, q ∈ {51, . . . , 100}.

Metric d1
A1 ∪A2 A3 ∪A4

2

Metric d2
A1 ∪A2 A3 A4

1 1

Metric d3
A1 A2 A3 ∪A4

1 1

(b) Metrics considered in the proof.

Figure 5: Lower bound on the distortion of any rule for utilitarian
q-cost stated in Theorem B.5, and metrics used to prove it.

The lower bound provided in this theorem increases in q 1153

and varies between 3
2 +

3
2(k+1) for q = k

2 +1 and 2 for q = k; 1154

Figure 5.(a) illustrates it for k = 100 and q between 51 and 1155

100. 1156

B.3 Proof of Lemma B.6 1157

Lemma B.6. Let E = (A, k,≻) be an election and d ▷ ≻ a 1158

consistent metric. Then, for every committee S′ = {s1, s2} ∈ 1159(
A
2

)
, 1160

SC(S′, A; d) ≥


∑n−1

2
i=1 d(i, n− i+ 1) + n−1

2 · d(s1, s2)+
SC

(
S′,

{
n+1
2

}
; d
)

if n is odd,∑n
2
i=1 d(i, n− i+ 1) + n

2 · d(s1, s2) if n is even.

Proof. Let E = (A, k,≻) with A = [n] and d be as in the 1161

statement and S′ = {s1, s2} ∈
(
A
k

)
an arbitrary committee. 1162

We assume that s1 < s2 w.l.o.g.. Let i ∈ {1, . . . ,
⌊
n
2 ⌋} be a 1163

fixed agent. If i ≤ s1 < s2 ≤ n− i+1, we have that the cost 1164

of the committee for agents i and n− i+ 1 is at least 1165

SC(S′, i; d)+SC(S′, n−i+1; d) = d(i, s2)+d(s1, n−i+1)
1166

≥ d(i, n− i+ 1) + d(s1, s2).

Similarly, if s2 < i, we have 1167

SC(S′, i; d)+SC(S′, n−i+1; d) = d(s1, i)+d(s1, n−i+1)
1168

≥ d(i, n− i+ 1) + d(s1, s2),

and if s1 > n− i+ 1, 1169

SC(S′, i; d)+SC(S′, n−i+1; d) = d(i, s2)+d(n−i+1, s2)



1170
≥ d(i, n− i+ 1) + d(s1, s2).

Summing up over all agents, we obtain1171

SC(S′, A; d) =
1172

n
2∑

i=1

(SC(S′, i; d) + SC(S′, n− i+ 1; d)) ≥
1173

n
2∑

i=1

d(i, n− i+ 1) +
n

2
d(s1, s2)

if n is even, and1174

SC(S′, A; d) =

n−1
2∑

i=1

(SC(S′, i; d)

+SC(S′, n− i+ 1; d)) + SC
(
S′,

n+ 1

2
; d

)

≥

n−1
2∑

i=1

d(i, n− i+ 1) +
n− 1

2
d(s1, s2)

+SC
(
S′,

n+ 1

2
; d

)
if n is odd.1175

B.4 Proof of Theorem 3.21176

Proof. We consider an arbitrary election E = (A, k,≻) with1177

n ≥ 5 and A = [n], and a consistent metric d ▷ ≻. We1178

denote the five middle agents by a1, . . . , a5 from left to right,1179

with a3 being the median agent. We let S denote the commit-1180

tee selected by FAVORITE COUPLE and S∗ denote the opti-1181

mal committee for the metric d. We analyze two main cases,1182

depending on whether the rule selects the median agent or1183

not.1184

Case 1: a3 ∈ S w.l.o.g., we assume that a2 ≻a3
a4,1185

which implies that the selected committee is S = {a2, a3}.1186

This implies that agents a2 and a3 form a couple, and both1187

d(a2, a3) ≤ d(a1, a2) and d(a2, a3) ≤ d(a3, a4) hold.1188

Therefore,1189

d(a1, a5) ≥ 3 · d(a2, a3), d(a2, a4) ≥ 2 · d(a2, a3). (15)
For each i ≤ n−1

2 , the joint cost of S for agents i and1190

n− i+ 1 is given by1191

SC(S, i; d)+SC(S, n−i+1; d) = d(i, a3)+d(a2, n−1+1) =
1192

d(i, n− i+ 1) + d(a2, a3).
Since the median agent incurs a cost of SC(A, a3; d) =1193

d(a2, a3), we obtain:1194

SC(S,A; d) =

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4)+(
n− 1

2

)
d(a2, a3) + d(a2, a3)

=

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 1

2

)
d(a2, a3)

+ d(a2, a4).

On the other hand, by Lemma B.6, we have: 1195

SC(S∗, A; d) ≥

n−1
2∑

i=1

d(i, n− i+ 1) + SC({a3}, A; d)

≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4) + d(a2, a3),

where we used, for the second inequality, that the cost of the 1196

median agent is at least d(a2, a3) due to the assumption that 1197

a2 ≻a3
a4. Thus, the distortion is: 1198

dist(f) =
SC(S,A; d)

SC(S∗, A; d)

≤
∑n−3

2
i=1 d(i, n− i+ 1) +

(
n+1
2

)
d(a2, a3) + d(a2, a4)∑n−3

2
i=1 d(i, n− i+ 1) + d(a2, a3) + d(a2, a4)

≤
(
n−3
2

)
· 3 · d(a2, a3) +

(
n+1
2

)
· d(a2, a3) + 2 · d(a2, a3)(

n−3
2

)
· 3 · d(a2, a3) + d(a2, a3) + 2 · d(a2, a3)

=
4n−8

2 + 2
3n−9

2 + 3
=

4n− 4

3n− 3
=

4

3
,

where the second inequality follows from inequalities (15) 1199

and the fact that d(i, n− i+ 1) ≥ d(1, 5) for every i ≤ n−3
2 . 1200

This concludes the proof for this case. 1201

Case 2: a3 /∈ S In this case, we either have S = {a1, a2} 1202

or S = {a4, a5}; we assume the former w.l.o.g.. From the 1203

definition of FAVORITE COUPLE, this implies that {a2, a3} 1204

and {a3, a4} are not couples, so we must have a1 ≻a2
a3 and 1205

a5 ≻a4
a3. It also implies that a1 ≻a3

a5, since {a4, a5} 1206

would be selected otherwise. In terms of distances: 1207

d(a2, a3) ≥ d(a1, a2), d(a3, a4) ≥ d(a4, a5),
1208

d(a3, a5) ≥ d(a1, a3). (16)
Similarly as before, the social cost of the selected commit- 1209

tee is 1210

SC(S,A; d) =

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n− 3

2

)
d(a1, a2)

+ d(a1, a2) + d(a1, a3) + d(a1, a4)

=

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 3

2

)
d(a1, a2)

+ d(a2, a3) + d(a2, a4).

We now consider two cases depending on whether a3 is in 1211

the optimal committee. 1212

Case 2.1: a3 ∈ S∗. If the median agent is selected in the 1213

optimal committee, we have from Lemma B.6 that 1214

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4)+

1215(
n− 1

2
+ 1

)
min{d(a2, a3), d(a3, a4)}. (17)



We now claim that
(
n−1
2 +1

)
min{d(a2, a3), d(a3, a4)} ≥1216

3
2d(a1, a3). Indeed, if we have min{d(a2, a3), d(a3, a4)} =1217

d(a2, a3), this holds because n−1
2 + 1 ≥ 3 and, due1218

to inequalities (B.4), 3d(a2, a3) ≥ 3
2d(a1, a3). If1219

min{d(a2, a3), d(a3, a4)} = d(a3, a4), this holds because1220
n−1
2 + 1 ≥ 3 and, due to inequalities (B.4), 3d(a3, a4) ≥1221

3
2d(a3, a5) ≥

3
2d(a1, a3).1222

Replacing in inequality (17), we obtain1223

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a4)+

1224
3

2
· d(a1, a2) +

3

2
· d(a2, a3).

Thus, the distortion is1225

dist(f) =
SC(S,A; d)

SC(S∗, A; d)
1226

≤
∑n−3

2
i=1 d(i, n− i+ 1) +

(
n+3
2

)
d(a1, a2) + d(a2, a3) + d(a2, a4)∑n−3

2
i=1 d(i, n− i+ 1) + d(a2, a4) +

3
2 · d(a1, a2) +

3
2 · d(a2, a3)

≤
(
n−3
2

)
· 4 · d(a1, a2) +

(
n+3
2

)
d(a1, a2) + d(a1, a2) + 2 · d(a1, a2)(

n−3
2

)
· 4 · d(a1, a2) + 2 · d(a1, a2) + 3

2 · d(a1, a2) +
3
2 · d(a1, a2)

1227

≤
(
n−3
2

)
· 4 +

(
n+3
2

)
+ 1 + 2(

n−3
2

)
· 4 + 2 + 3

2 + 3
2

=
4n− 12 + n+ 3 + 2 + 4

4n− 12 + 4 + 3 + 3
=

5n− 3

4n− 2
≤ 5

4
≤ 4

3
,

where the second inequality follows by applying inequalities1228

(B.4) and the fact that d(i, n − i + 1) ≥ d(1, 5) for every1229

i ≤ n−3
2 . We conclude the distortion bound of 4

3 for this1230

case.1231

Case 2.2: a3 /∈ S∗. We begin by rewriting the social cost1232

of S more conveniently as1233

SC(S,A; d)

=

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n− 3

2

)
d(a1, a2)+

d(a1, a2) + d(a1, a3) + d(a1, a4)

=

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 1

2

)
d(a1, a2)+

d(a1, a3) + d(a2, a3) + d(a3, a4)

≤

n−3
2∑

i=1

d(i, n− i+ 1) +

(
n+ 1

2

)
d(a1, a2)+

d(a3, a5) + d(a2, a3) + d(a3, a5),

where the last inequality follows from inequalities (B.4). We1234

distinguish two further cases to bound the social cost of the1235

optimal committee from below, depending on whether the op-1236

timal committee selects agents from the left or from the right1237

side of the median.1238

Case 2.2.1: S∗ ⊆ {a4, a5, . . . , n} If the optimal commit- 1239

tee selects an agent on the right side of the median agent, its 1240

social cost satisfies 1241

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a5) + d(a3, a5)

1242

=

n−3
2∑

i=1

d(i, n− i+ 1) + d(a2, a3) + 2d(a3, a5).

Thus, the distortion is 1243

dist(f) =
SC(S,A; d)

SC(S∗, A; d)
1244

≤
∑n−3

2
i=1 d(i, n− i+ 1) +

(
n+1
2

)
d(a1, a2) + d(a2, a3) + 2d(a3, a5)∑n−3

2
i=1 d(i, n− i+ 1) + d(a2, a3) + 2d(a3, a5)

≤
(
n−3
2

)
· 4 · d(a1, a2) +

(
n+1
2

)
d(a1, a2) + d(a1, a2) + 2 · 2 · d(a1, a2)(

n−3
2

)
· 4 · d(a1, a2) + d(a1, a2) + 2 · 2 · d(a1, a2)

1245

≤
(
n−3
2

)
· 4 +

(
n+1
2

)
+ 1 + 4(

n−3
2

)
· 4 + 1 + 4

=
4n− 12 + n+ 1 + 2 + 8

4n− 12 + 2 + 8
=

5n− 1

4n− 2
≤ 4

3
,

where we used inequalities (B.4) for the second inequality. 1246

Case 2.2.2: S∗ ⊆ {1, . . . , a1, a2}. If S∗ = S, the distortion 1247

is trivially 1 and we conclude. Otherwise, the social cost of 1248

S∗ satisfies 1249

SC(S∗, A; d) ≥

n−3
2∑

i=1

d(i, n−i+1)+d(a1, a2)+d(a1, a3)+d(a1, a4).

Thus, the distortion is 1250

dist(f) =
SC(S,A; d)

SC(S∗, A; d)

≤
∑n−3

2
i=1 d(i, n− i+ 1) +

(
n−3
2

)
d(a1, a2) + d(a1, a2) + d(a1, a3) + d(a1, a4)∑n−3

2
i=1 d(i, n− i+ 1) + d(a1, a2) + d(a1, a3) + d(a1, a4)

≤
(
n−3
2

)
· 4d(a1, a2) +

(
n−3
2

)
d(a1, a2) + d(a1, a2) + 2d(a1, a2) + 3d(a1, a2)(

n−3
2

)
· 4d(a1, a2) + d(a1, a2) + 2d(a1, a2) + 3d(a1, a2)

≤ 4n− 12 + n− 3 + 2 + 4 + 6

4n− 12 + 2 + 4 + 6
=

5n− 3

4n
<

4

3
,

where we used inequalities (B.4) for the second inequality. 1251

This concludes the proof of the distortion of FAVORITE COU- 1252

PLE. 1253

For the lower bound, we fix n = 5 and an arbitrary (n, 2)- 1254

voting rule f , consider the profile ≻∈ L5(5) defined as 1255

1 ≻1 2 ≻1 3 ≻1 4 ≻1 5,

2 ≻2 1 ≻2 3 ≻2 4 ≻2 5,

3 ≻3 2 ≻3 1 ≻3 4 ≻3 5,

4 ≻4 5 ≻4 3 ≻4 2 ≻4 1,

5 ≻5 4 ≻5 3 ≻5 2 ≻5 1,



Metric d1
1 2 3 4, 5

1 1 2

Metric d2
1, 2 3 4 5

1 1 1

Figure 6: Metrics considered in the proof of Theorem 3.2.

1 2 3 4 5 6 7 8

Figure 7: Stair diagram for n = 8. The red area corresponds to the
committee {4, 5}; the green area to {5, 6}.

and consider the election E = (A, 2,≻) with A = [5]. We1256

distinguish two cases depending on the set of agents S =1257

f(≻) selected by the rule.1258

Suppose first that S = {1, 2}. We take the distance metric1259

d1 on A given by positions x1 = 0, x2 = 1, x3 = 2, and1260

x4 = x5 = 4. It is not hard to check that d1 ▷ ≻; see1261

Figure 6 for an illustration. Since SC({1, 2}, A; d1) = 12,1262

and SC({4, 5}, A; d1) = 9, we obtain1263

dist(f(≻), E) ≥ SC(S,A; d1)
minS′∈(A2)

SC(S′, A; d1)
≥ 12

9
=

4

3
.

If S ∈ {{2, 3}, {3, 4}, {4, 5}}, we consider the distance1264

metric d2 on A given by positions x1 = x2 = 0, x3 = 1,1265

x4 = 2, and x5 = 3. It is not hard to check that d2 ▷ ≻;1266

see Figure 6 for an illustration. Since SC({2, 3}, A; d2) =1267

SC({3, 4}, A; d2) = 8 and SC({4, 5}, A; d2) = 10, whereas1268

SC({1, 2}, A; d2) = 6, we obtain1269

dist(f(≻), E) ≥ SC(S,A; d2)
minS′∈(A2)

SC(S′, A; d2)
≥ 8

6
=

4

3
.

Since dist(f(≻), E) ≥ 4
3 in all these cases and sets of non-1270

consecutive agents can only induce a larger social cost, we1271

conclude that dist(f) ≥ 4
3 .1272

B.5 Even number of agents1273

Even number of agents When n is even, we show that the1274

voting rule that selects the two median agents attains the best-1275

possible distortion of 2.1276

Proposition B.7. For an even number of agents n, the voting1277

rule that selects the two median agents achieves a distortion1278

of 2 for utilitarian 2-cost. Moreover, there exists n ∈ N such1279

that, for every (n, 2)-voting rule f , we have dist(f) ≥ 2 for1280

utilitarian 2-cost.1281

Proof. We consider an arbitrary election E = (A, k,≻) with1282

even n ≥ 4 and A = [n], and a consistent metric d ▷ ≻.1283

Note that the assumption n ≥ 4 is w.l.o.g. since, for n = 2, 1284

a distortion of 1 is trivially achieved. We let m1 = n
2 and 1285

m2 = n
2 + 1 denote the left and right median, respectively, 1286

S = {m1,m2} denote the committee selected by the rule, 1287

and S∗ denote the optimal committee for the metric d. The 1288

social cost of S is 1289

SC(S,A; d) =

n
2∑

i=1

d(i, n− i+ 1) +
n

2
d(m1,m2),

whereas Lemma B.6 implies a lower bound on the social cost 1290

of the optimal committee of 1291

SC(S∗, A; d) ≥
n
2∑

i=1

d(i, n− i+ 1).

Thus, the distortion of the voting rule is 1292

dist(f) =
SC(S,A; d)

SC(S∗, A; d)
≤

∑n
2
i=1 d(i, n− i+ 1) + n

2 d(m1,m2)∑n
2
i=1 d(i, n− i+ 1)

1293

≤ 2
∑n

2
i=1 d(i, n− i+ 1)∑n
2
i=1 d(i, n− i+ 1)

= 2,

where the second inequality follows from the fact that 1294

d(m1,m2) ≤ d(i, n− i+ 1) for any i ≤ n
2 . Thus, the voting 1295

rule achieves a distortion of at most 2. 1296

For the lower bound, we fix n = 4 and an arbitrary (n, 2)- 1297

voting rule f , consider the profile ≻∈ L4(4) defined as 1298

1 ≻1 2 ≻1 3 ≻1 4,

2 ≻2 1 ≻2 3 ≻2 4,

3 ≻3 4 ≻3 2 ≻3 1,

4 ≻4 3 ≻4 2 ≻4 1,

and consider the election E = (A, 2,≻) with A = [4]. We 1299

distinguish three cases depending on the set of agents S = 1300

f(≻) selected by the rule. 1301

Suppose first that S = {3, 4}. We take the distance met- 1302

ric d1 on A given by positions x1 = x2 = 0, x3 = 1, 1303

and x4 = 2. It is not hard to check that d1 ▷ ≻; see Fig- 1304

ure 8 for an illustration. Since SC({3, 4}, A; d1) = 6, and 1305

SC({1, 2}, A; d1) = 3, we obtain 1306

dist(f(≻), E) ≥ SC(S,A; d1)
minS′∈(A2)

SC(S′, A; d1)
≥ 6

3
= 2.

If S = {1, 2}, we consider the distance metric d2 on A 1307

given by positions x1 = 0, x2 = 1, and x3 = x4 = 2. It is 1308

not hard to check that d2 ▷ ≻; see Figure 8 for an illustration. 1309

Since SC({1, 2}, A; d2) = 6 and SC({3, 4}, A; d2) = 3, we 1310

obtain 1311

dist(f(≻), E) ≥ SC(S,A; d2)
minS′∈(A2)

SC(S′, A; d2)
≥ 6

3
= 2.

Finally, if S = {2, 3}, we consider the distance metric d3 1312

on A given by positions x1 = x2 = 0 and x3 = x4 = 2. It 1313



Metric d1
1, 2 3 4

1 1

Metric d2
1 2 3, 4

1 1

Metric d3
1, 2 3, 4

2

Figure 8: Metrics considered in the proof of Proposition B.7 and
Proposition 4.1.

is not hard to check that d3 ▷ ≻; see Figure 8 for an illustra-1314

tion. Since SC({2, 3}, A; d3) = 8 and SC({1, 2}, A; d3) =1315

SC({3, 4}, A; d3) = 4, we obtain1316

dist(f(≻), E) ≥ SC(S,A; d3)
minS′∈(A2)

SC(S′, A; d3)
≥ 8

4
= 2.

Since dist(f(≻), E) ≥ 2 in all these cases and sets of non-1317

consecutive agents can only induce a larger social cost, we1318

conclude that dist(f) ≥ 2.1319

C Proofs Deferred from Section 41320

C.1 Proof of Proposition 4.11321

Proposition 4.1. For every n ∈ N, any (n, 1)-voting rule1322

has distortion 2 for egalitarian social cost. There exists n ∈1323

N such that, for every (n, 1)-voting rule f , dist(f) ≥ 2 for1324

egalitarian social cost.1325

Proof. Fix n ∈ N and an (n, 1)-voting rule f arbitrarily. Let1326

≻ ∈ Ln(n) be any preference profile on A = [n] and let s be1327

the agent that f outputs for this profile, i.e., S = f(≻) and1328

S = {s}. We denote the agents by {1, . . . , n} from left to1329

right, and we let d ▷ ≻ be any consistent distance metric. It1330

is clear that, on the one hand, we have1331

SC({s}, A; d) = max{d(a, s) | a ∈ A}
1332

≤ max{d(a, b) | a, b ∈ A} = d(1, n). (18)
On the other hand, for every agent b ∈ A we1333

have that d(1, b) + d(b, n) = d(1, n) and, therefore,1334

max{d(1, b), d(b, n)} ≥ d(1,n)
2 . This implies1335

min
S′∈(A1)

SC(S′, A; d) = min
b∈A

max{d(a, b) | a ∈ A} =

1336

min
b∈A

max{d(1, b), d(b, n)} ≥ d(1, n)

2
. (19)

Combining inequalities (18) and (19), we directly obtain that1337

dist(f) ≤ 2.1338

For the second claim, we denote S = f(≻), and we fix n =1339

4 and an arbitrary (n, 1)-voting rule f , consider the profile1340

≻∈ L4(4) defined as1341

1 ≻1 2 ≻1 3 ≻1 4,

2 ≻2 1 ≻2 3 ≻2 4,

3 ≻3 4 ≻3 2 ≻3 1,

4 ≻4 3 ≻4 2 ≻4 1,

and consider the election E = (A, 1,≻) with A = [4]. We 1342

distinguish two cases depending on the agent selected by f . 1343

Suppose first that S ∈ {1, 2}. We take the distance metric 1344

d1 on A given by positions x1 = x2 = 0, x3 = 1, and x4 = 1345

2. It is not hard to check that d1 ▷ ≻; see Figure 8 for an 1346

illustration. Since SC({1}, A; d1) = 2, SC({2}, A; d1) = 2, 1347

and SC({3}, A; d1) = 1, we obtain 1348

dist(f(≻), E) ≥ SC(S,A; d1)
mina∈A SC({a}, A; d1)

1349

≥ SC({2}, A; d1)
SC({3}, A; d1)

= 2.

Similarly, if S ∈ {3, 4}, we consider the distance metric 1350

d2 on A given by positions x1 = 0, x2 = 1, x3 = x4 = 1351

2. It is not hard to check that d2 ▷ ≻; see Figure 8 for an 1352

illustration. Since SC({3}, A; d2) = 2, SC({4}, A; d2) = 2, 1353

and SC({2}, A; d2) = 1, we obtain 1354

dist(f(≻), E) ≥ SC(S,A; d2)
mina∈A SC({a}, A; d2)

≥ SC({3}, A; d2)
SC({2}, A; d2)

= 2.

Since dist(f(≻), E) ≥ 2 both when S ∈ {1, 2} and when 1355

S ∈ {3, 4}, we conclude that dist(f) ≥ 2. 1356

C.2 Lemma C.1 1357

Lemma C.1. For every set of agents A = [n], committee size 1358

k, committee S′ ∈
(
A
k

)
, and distance metric d, it holds that 1359

SC(S′, A; d) = max{SC(S′, 1; d), SC(S′, n; d)}.

Proof. Let A = [n], k, S′, and d be as in the state- 1360

ment, and recall that we refer to the agents sorted from 1361

left to right by {1, . . . , n}. We suppose towards a contra- 1362

diction that there exists a ∈ A such that SC(S′, a; d) > 1363

max{SC(S′, 1; d),SC(S′, n; d)}; i.e., 1364∑
s∈S′

d(a, s) > max

{ ∑
s∈S′

d(1, s),
∑
s∈S′

d(s, n)

}
. (20)

We now distinguish two cases. If a has at least as many agents 1365

in S′ weakly to its left as strictly to its right; i.e., |{s ∈ S′ | 1366

s ≤ a}| ≥ |{s ∈ S′ | s > a}|, then 1367∑
s∈S′

d(s, n) =
∑

s∈S′:s≤a

(d(a, s) + d(a, n))

+
∑

s∈S′:s>a

(d(a, s)− (d(a, s)− d(s, n)))

≥
∑

s∈S′:s≤a

(d(a, s) + d(a, n))

+
∑

s∈S′:s>a

(d(a, s)− d(a, n))

=
∑
s∈S′

d(a, s)

+ (|{s ∈ S′ : s ≤ a}| − |{s ∈ S′ : s > a}|)d(a, n)

≥
∑
s∈S′

d(a, s),



a contradiction to inequality (20). Analogously, if |{s ∈ S′ |1368

s ≤ a}| < |{s ∈ S′ | s > a}|, then1369 ∑
s∈S′

d(1, s)

1370

=
∑

s∈S′:s>a

(d(1, a) + d(a, s))

+
∑

s∈S′:s≤a

(d(a, s)− (d(a, s)− d(1, s)))

≥
∑

s∈S′:s>a

(d(1, a) + d(a, s))

+
∑

s∈S′:s≤a

(d(a, s)− d(1, a))

=
∑
s∈S′

d(a, s)

+(|{s ∈ S′ : s > a}| − |{s ∈ S′ : s ≤ a}|)d(1, a)

≥
∑
s∈S′

d(a, s),

a contradiction to inequality (20).1371

C.3 Proof of Theorem 4.21372

Theorem 4.2. For every n, k ∈ N with n ≥ k ≥ 2, k-1373

EXTREMES has a distortion for egalitarian additive social1374

cost of at most 3
2 −

1
2(k−1) if k is even and at most 3

2 −
1

k(k−1)1375

if k is odd. Conversely, for every k ∈ N with k ≥ 3 there1376

exists n ∈ N with n ≥ k such that, for every (n, k)-voting1377

rule f , dist(f) ≥ 3
2 −

1
k for egalitarian additive social cost.1378

Proof. We first show the bound on the distortion of k-1379

EXTREMES. We fix n, k ∈ N with n ≥ k ≥ 2, a linear1380

order ≻ on A = [n], and a consistent distance metric d ▷ ≻.1381

We write E = (A, k,≻) for the corresponding election and1382

denote k-EXTREMES by f and the outcome by S in this part1383

of the proof for compactness.1384

We claim that, if d is such that SC(S, 1; d) <1385

SC(S, n; d), there exists an alternative distance metric d′1386

with SC(S, 1; d′) ≥ SC(S, n; d′) and dist(f(≻), E ; d′) ≥1387

dist(f(≻), E ; d). Indeed, consider such d defined by posi-1388

tions x ∈ (−∞,∞)n, and let d′ be defined by positions1389

x′ ∈ (−∞,∞)n, where x′
a = xn+1−a for every a ∈ [n].1390

Since f selects
⌊
k
2

⌋
agents closest to the left-most agent and1391

the
⌈
k
2

⌉
agents closest to the right-most agent, we have1392

SC(S, 1; d′) ≥ SC(S, n; d) > SC(S, 1; d) ≥ SC(S, n; d′).

Furthermore, this chain of inequalities combined with1393

Lemma C.1 imply that SC(S,A; d′) ≥ SC(S,A; d). Since1394

min
{

SC(S′, A; d′) | S′ ∈
(
A
k

)}
= min

{
SC(S′, A; d) |1395

S′ ∈
(
A
k

)}
, this yields dist(f(≻), E ; d′) ≥ dist(f(≻), E ; d),1396

so the claim follows. Thanks to this claim, we can assume1397

in what follows that SC(S, 1; d) ≥ SC(S, n; d) and thus, by1398

Lemma C.1, SC(S,A; d) = SC(S, 1; d).1399

We distinguish three cases depending on the distances from1400

agent 1 to other agents and show the claimed distortion for1401

each of them. We first suppose that d
(
1,
⌊
k
2

⌋)
≤ d(1,n)

2 . In 1402

this case, 1403

SC(S, 1; d) =
⌊k/2⌋∑
s=1

d(1, s) +

n∑
s=n−⌈k/2⌉+1

d(1, s)

≤
(⌊

k

2

⌋
− 1

)
d(1, n)

2
+

⌈
k

2

⌉
d(1, n)

=

(
k +

⌈
k

2

⌉
− 1

)
d(1, n)

2
,

where we used the assumption d
(
1,
⌊
k
2

⌋)
≤ d/2 and the fact 1404

that d(1, 1) = 0 for the inequality. From Lemma C.1 and ?? 1405

we know that SC(S′, A; d) ≥ kd(1,n)
2 for any S′ ∈

(
A
k

)
, so 1406

we obtain 1407

dist(f(≻), E) = SC(S, 1; d)
minS′∈(Ak)

SC(S′, A; d)

1408

≤
(
k +

⌈
k
2

⌉
− 1

)d(1,n)
2

kd(1,n)
2

=
3

2
− 2− k mod 2

2k
,

which is smaller than 3
2 −

1
2(k−1) for even k ≥ 2 and smaller 1409

than 3
2 −

1
k(k−1) for odd k ≥ 3. Thus, we conclude the result 1410

in this case. 1411

We next suppose that d
(
1,
⌊
k
2

⌋)
> d(1,n)

2 and 1412∑⌊k/2⌋
s=2 d(1, s) ≤ k−2−k mod 2

k−1 · kd(1,n)
4 . In a similar way 1413

as before, we now have 1414

SC(S, 1; d) =
⌊k/2⌋∑
s=1

d(1, s) +

n∑
s=n−⌈k/2⌉+1

d(1, s)

≤ k − 2− k mod 2

k − 1
· kd(1, n)

4
+

⌈
k

2

⌉
d(1, n)

=

(
3k − k − (k − 2)k mod 2

k − 1

)
d(1, n)

4
,

where the inequality follows from the assumption 1415∑⌊k/2⌋
s=2 d(1, s) ≤ k−2−k mod 2

k−1 · kd(1,n)
4 and the fact 1416

that d(1, 1) = 0. From Lemma C.1 and ?? we know that 1417

SC(S′, A; d) ≥ kd(1,n)
2 for any S′ ∈

(
A
k

)
, so we obtain 1418

dist(f(≻), E) = SC(S, 1; d)
minS′∈(Ak)

SC(S′, A; d)

≤
(
3k − k−(k−2)k mod 2

k−1

)d(1,n)
4

kd(1,n)
2

=
3

2
− k − (k − 2)k mod 2

2k(k − 1)
,

which corresponds to the expression in the statement. 1419

We finally consider the case with d
(
1,
⌊
k
2

⌋)
> d(1,n)

2 and 1420∑⌊k/2⌋
s=2 d(1, s) > k−2−k mod 2

k−1 · kd(1,n)4 . Since the distance 1421

between 1 and the right-most point among
{
2, . . . ,

⌊
k
2

⌋}
, 1422



namely d
(
1,
⌊
k
2

⌋)
, is at least its average distance to points1423

within this set, we know that1424

d

(
1,

⌊
k

2

⌋)
≥ 1⌊

k
2

⌋
− 1

⌊k/2⌋∑
s=2

d(1, s)

1425

≥ 1⌊
k
2

⌋
− 1
· k − 2− k mod 2

k − 1
· kd(1, n)

4
=

kd(1, n)

2(k − 1)
. (21)

Let now S′ ∈
(
A\{1}
k−1

)
be any set of k − 1 agents without 1.1426

Since
{
2, . . . ,

⌊
k
2

⌋}
are the closest agents to 1, we know that1427

1
k−1

∑
s∈S′ d(1, s) ≥ 1

⌊k/2⌋−1

∑⌊k/2⌋
s=2 d(1, s). Rearranging1428

this expression and using our assumption once again, we ob-1429

tain1430

∑
s∈S′

d(1, s) ≥ k − 1⌊
k
2

⌋
− 1

⌊k/2⌋∑
s=2

d(1, s) ≥ kd(1, n)

2
,

where we used inequality (21) for the last inequality. For any1431

committee S′ ∈
(
A
k

)
, this implies that SC(S′, 1; d) ≥ kd(1,n)

2 ,1432

?? implies that SC(S′, 1; d) ≥ SC(S′, n; d), and Lemma C.11433

implies that SC(S′, A; d) = SC(S′, 1; d). Therefore,1434

min
S′∈(Ak)

SC(S′, A; d) = min
S′∈(Ak)

SC(S′, 1; d) =

k∑
s=2

d(1, s);

(22)
i.e., the optimal set in this case corresponds to {1, . . . , k}.1435

Combining the previous expressions, we obtain the following1436

chain of inequalities:1437

dist(f(≻), E)

=
SC(S, 1; d)

minS′∈(Ak)
SC(S′, A; d)

= 1 +
SC(S, 1; d)−minS′∈(Ak)

SC(S′, A; d)

minS′∈(Ak)
SC(S′, A; d)

≤ 1 +
2

kd(1, n)

(∑
s∈S

d(1, s)−
k∑

s=2

d(1, s)

)

= 1 +
2

kd(1, n)

( n∑
s=n−⌈k/2⌉+1

d(1, s)−
k∑

s=⌊k/2⌋+1

d(1, s)

)

≤ 1 +
2

kd(1, n)
·
⌈
k

2

⌉(
d(1, n)− d

(
1,

⌊
k

2

⌋))
≤ 1 +

2

kd(1, n)
·
⌈
k

2

⌉(
d(1, n)− kd(1, n)

2(k − 1)

)
=

3

2
− k − (k − 2)k mod 2

2k(k − 1)
.

Indeed, the first inequality follows from equality (22) and the1438

fact that SC(S′, A; d) ≥ kd(1,n)
2 for every S′ ∈

(
A
k

)
due to1439

??, the third equality from the definition of f , the second in-1440

equality from simple bounds on d(1, s) for different values1441

of s, and the last inequality from inequality (21). The other1442

equalities come from simple calculations. Since the last ex- 1443

pression again corresponds to the expression in the statement, 1444

we conclude. 1445

For the lower bound, we consider any k ∈ N with k ≥ 3, 1446

we fix n = 2(k + 1), and consider an arbitrary (n, k)-voting 1447

rule f . We partition the agents into four sets A =
⋃̇4

i=1Ai 1448

such that A1 = {1}, A4 = {n} and |A2| = |A3| = k. We 1449

consider the profile ≻∈ Ln(n), where S = f(≻), and 1450

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some 1451

i, j, ℓ ∈ [4] with |i− j| < |i− ℓ|; 1452

(ii) 1 ≻a b whenever a ∈ A2, b ∈ A3 ∪A4; 1453

(iii) n ≻a b whenever a ∈ A3, b ∈ A1 ∪A2; 1454

and the remaining pairwise comparisons are arbitrary. We 1455

consider the election E = (A, k,≻) with A = [n]. 1456

In what follows, we distinguish whether f selects more 1457

agents from A1∪A2 or from A3∪A4 and construct appropri- 1458

ate distance metrics to show that, in either case, the distortion 1459

is at least the one claimed in the statement. Intuitively, if f 1460

selects more agents from A1 ∪ A2 we will consider a metric 1461

where these sets lie on one extreme, A4 = n on the other 1462

extreme, and all agents A3 in the middle, so that picking all 1463

agents from A3 would lead to a much lower social cost. In 1464

the opposite case, we will construct a symmetric instance. 1465

Formally, we first consider the case with |S∩(A1∪A2)| ≥ 1466
k
2 and define the distance metric d1 on A by the following 1467

positions x ∈ (−∞,∞)n: xa = 0 for every a ∈ A1 ∪ A2, 1468

xa = 1 for every a ∈ A3, and xn = 2. It is not hard to 1469

check that d1 ▷ ≻; see Figure 9 for an illustration. Since 1470

|S ∩ (A1 ∪A2)| ≥ k
2 , we obtain 1471

dist(f(≻), E) ≥ SC(S,A; d1)
SC(A3, A; d1)

≥ SC(S, n; d1)
SC(A3, n; d1)

1472

≥ (k − 1) + |S ∩ (A1 ∪A2)|
k

≥ 3

2
− 1

k
.

Conversely, if |S ∩ (A3∪A4)| ≥ k
2 , we define the distance 1473

metric d2 on A by the following positions x ∈ (−∞,∞)n: 1474

x1 = 0, xa = 1 for every a ∈ A2, and xa = 2 for every 1475

a ∈ A3∪A4. It is not hard to check that d2 ▷ ≻; see Figure 9 1476

for an illustration. Since |S ∩ (A3 ∪A4)| ≥ k
2 , we obtain 1477

dist(f(≻), E) ≥ SC(S,A; d2)
SC(A2, A; d2)

≥ SC(S, 1; d2)
SC(A2, 1; d2)

1478

≥ (k − 1) + |S ∩ (A3 ∪A4)|
k

≥ 3

2
− 1

k
.

Since dist(f(≻), E) ≥ 3
2 −

1
k regardless of f(≻), we con- 1479

clude that dist(f) ≥ 3
2 −

1
k . 1480

C.4 Egalitarian q-Cost 1481

We now turn our attention to the q-cost aggregation function 1482

of candidates, so that the social cost is the maximum over 1483

agents of the distance from each agent to its qth closest can- 1484

didate; i.e., 1485

SC(S′, A; d) = max
{
d̃(a)q | a ∈ A

}



Metric d1
A1 ∪A2 A3 A4

1 1

Metric d2
A1 A2 A3 ∪A4

1 1

Figure 9: Metrics considered in the proof of Theorem 4.2.

for a set of agents A, a committee size k, a committee S′ ∈1486 (
A
k

)
, and a distance metric d, where d̃(a) ∈ RS′

+ contains the1487

values {d(a, s) | s ∈ S′} in increasing order.1488

We begin by showing that no voting rule can guarantee a1489

constant distortion for q-cost when q ≤ k
3 . This implies that1490

the unbounded distortion for this objective, previously estab-1491

lished in the setting of disjoint voters and candidates [Cara-1492

giannis et al., 2022b], also holds in our setting.1493

Theorem C.2. For every k, q ∈ N with k
3 ≥ q, there exists1494

n ∈ N with n ≥ k such that, for every (n, k)-voting rule f ,1495

dist(f) is unbounded for egalitarian q-cost.1496

Proof. We let k, q ∈ N with k
3 ≥ q be arbitrary, define p =1497 ⌊

k
q

⌋
, and take n = (p + 1)q. We partition the agents into1498

p + 1 ≥ 4 sets A =
⋃̇

i∈[p+1]Ai such that |Ai| ≥ q for1499

every i ∈ [p + 1]; note that this is possible since (p + 1)q ≤1500 (
k
q + 1)q = k + q = n. We consider any fixed (n, k)-voting1501

rule f and the profile ≻∈ Ln(n), where S = f(≻), and1502

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ with |i− j| <1503

|i− ℓ| for some i, j, ℓ ∈ [p+ 1];1504

(ii) b ≻a c whenever a ∈ Ai, b ∈ A1, c ∈ Aj with |i− 1| =1505

|i− j| for some i, j ∈ [p];1506

(iii) b ≻a c whenever a ∈ Ai, b ∈ Ap+1, c ∈ Aj with |i −1507

(p+ 1)| = |i− j| for some i, j ∈ {2, . . . , p+ 1};1508

and the remaining pairwise comparisons are arbitrary. We1509

consider the election E = (A, k,≻) with A = [n]. Since1510

(p + 1)q > k
q q = k, we know that there exists j ∈ [p + 1]1511

such that |S ∩ Aj | < q. We distinguish two cases depending1512

on the identity of j.1513

If j /∈ {p, p+ 1}, we consider the distance metric d1 on A1514

given by the following positions x ∈ (−∞,∞)n: xa = i− 11515

for every a ∈ Ai and i ∈ [p], and xa = p − 1 for every1516

a ∈ Ap+1. It is not hard to see that d1 ▷ ≻; see Figure 10 for1517

an illustration. Since |S ∩ Aj | < q for some j /∈ {p, p + 1},1518

we have that SC(S,Aj ; d1) = 1. On the other hand, we can1519

define an alternative committee S′ =
⋃

i∈[p] S
′
i such that |S′

i∩1520

Ai| ≥ q for every i ∈ [p], which is possible because |Ai| ≥ q1521

for every i ∈ [p] and pq ≤ k
q q = k. Since SC(S′, A; d1) = 01522

and dist(f(≻), E) ≥ SC(S,A;d1)
SC(S′,A;d1)

, we conclude that dist(f(≻1523

), E) is unbounded.1524

If j ∈ {p, p + 1}, we consider the distance metric d2 on1525

A given by the following positions x ∈ (−∞,∞)n: xa = 01526

for every a ∈ Aq , and xa = i − 2 for every a ∈ Ai and i ∈1527

{2, . . . , p+1}. It is not hard to see that d2 ▷ ≻; see Figure 101528

for an illustration. Since |S∩Aj | < q for some j ∈ {p, p+1},1529

we have that SC(S,Aj ; d2) = 1. On the other hand, we can1530

Metric d1
A1 A2 A3 Ap−2 Ap−1Ap ∪Ap+1

1 1 1 1

Metric d2
A1 ∪A2 A3 A4 Ap−1 Ap Ap+1

1 1 1 1

Figure 10: Metrics considered in the proof of Theorem C.2.

define an alternative committee S′ =
⋃

i∈{2,...,p+1} S
′
i such 1531

that |S′
i ∩ Ai| ≥ q for every i ∈ {2, . . . , p + 1}, which is 1532

possible because |Ai| ≥ q for every i ∈ {2, . . . , p + 1} and 1533

pq ≤ k
q q = k. Since SC(S′, A; d2) = 0 and dist(f(≻), E) ≥ 1534

SC(S,A;d2)
SC(S′,A;d2)

, we conclude that dist(f(≻), E) is unbounded. 1535

Since dist(f(≻), E) is unbounded regardless of f(≻), we 1536

conclude that dist(f) is unbounded. 1537

In the context of egalitarian q-cost for q > k
3 , much better 1538

results are possible. The case with q > k
2 behaves similarly 1539

to the setting where a single candidate is to be selected: Any 1540

voting rule achieves a distortion of 2 and this is best possible. 1541

When k
3 < q ≤ k

2 , the best-possible distortion a voting rule 1542

can achieve is again 2, but not any rule does so. We show that 1543

k-EXTREMES attains it. 1544

Theorem C.3. Let n, k, q ∈ N be such that n ≥ k ≥ 2 and 1545

q > k
3 . If q > k

2 , any (n, k)-voting rule has distortion 2 for 1546

egalitarian q-cost. If q > k
3 , k-EXTREMES has distortion 2 1547

for egalitarian q-cost. For every k, q ∈ N with q > k
3 ≥ 1, 1548

there exists n ∈ N with n ≥ k such that, for every (n, k)- 1549

voting rule f , dist(f) ≥ 2. 1550

Proof. Let n, k ∈ N be such that n ≥ k ≥ 2. Let first q ∈ N 1551

be such that q > k
2 . Let f be any (n, k)-voting rule and let 1552

≻ ∈ Ln(n) be an arbitrary preference profile on A = [n]. We 1553

denote, as usual, agents by {1, . . . , n} from left to right, S = 1554

f(≻), and we let d ▷ ≻ be any consistent distance metric. 1555

For a committee S′ ∈
(
A
k

)
, we let d̃(S′, a) ∈ Rk

+ denote the 1556

vector with the values {d(a, s) | s ∈ S′} in increasing order. 1557

It is clear that 1558

SC(S,A; d) = max{d̃(S, a)q | a ∈ A}
1559

≤ max{d(a, b) | a, b ∈ A} = d(1, n). (23)

On the other hand, for every committee S′ ∈
(
A
k

)
, if we de- 1560

note the agents in S′ in increasing order by s1, . . . , sk we 1561

have that sq > sk−q because q > k
2 . This implies that, for 1562

every committee S′ ∈
(
A
k

)
, we have 1563

d̃(S′, 1)q + d̃(S′, n)q = s(1, sq) + d(sk−q, n) > d(1, n),

and thus max{d̃(S′, 1)q, d̃(S
′, n)q} ≥ d(1,n)

2 . Therefore, 1564

min
S′∈(Ak)

SC(S′, A; d) = min
S′∈(Ak)

max{d̃(S′, a)q | a ∈ A}

≥ min
S′∈(Ak)

max{d̃(S′, 1)q, d̃(S
′, n)q}

≥ d(1, n)

2
. (24)



Combining inequalities (23) and (24), we directly obtain that1565

dist(f) ≤ 2.1566

Let now q ∈ N be such that k
3 < q ≤ k

2 , ≻ ∈ Ln(n) be an1567

arbitrary preference profile on A = [n], and d ▷ ≻ be a con-1568

sistent distance metric; we consider the election E = (A, k,≻1569

). We denote the outcome of k-EXTREMES for this profile by1570

S for compactness. We denote agents by {1, . . . , n} from left1571

to right and, for S′ ∈
(
A
k

)
, we let d̃(S′, a) ∈ Rk

+ denote the1572

vector with the values {d(a, s) | s ∈ S′} in increasing order.1573

We finally let a∗ ∈ argmax{min{d(1, a), d(a, n)} | a ∈ A}1574

denote the agent with maximum distance from both extreme1575

agents, assume w.l.o.g. that this is its distance to 1, i.e.,1576

d(1, a∗) ≤ d(a∗, n), and write d∗ = d(1, a∗) for this dis-1577

tance. Observe that1578

min{d(a∗, n), d(1, a∗ + 1)} ≥ d(1, n)

2
. (25)

Indeed, d(a∗, n) ≥ d(1,n)
2 follows directly from the in-1579

equality d(1, a∗) ≤ d(a∗, n) and the equality d(1, a∗) +1580

d(a∗, n) = d(1, n). Having d(1, a∗ + 1) < d(1,n)
2 would1581

imply min{d(1, a∗ + 1), d(a∗ + 1, n)} > d∗, a contradiction1582

to the definition of a∗.1583

We first tackle two simple cases. If a∗ < q, i.e., there1584

are less than q agents between 1 and a∗, then for any com-1585

mittee S′ ∈
(
A
k

)
we have SC(S′, A; d) ≥ SC(S′, 1; d) ≥1586

d(1, a∗ + 1) ≥ d(1,n)
2 , where the second inequality follows1587

from inequality (25). Since SC(S′, A; d) ≤ d(1, n) holds1588

for any committee S′ ∈
(
A
k

)
, we know that in particular1589

SC(S,A; d) ≤ d(1, n) and thus dist(f) ≤ 2. Similarly,1590

if n − a∗ < q, i.e., there are less than q agents between1591

a∗ + 1 and n, then for any committee S′ ∈
(
A
k

)
we have1592

SC(S′, A; d) ≥ SC(S′, 1; d) ≥ d(a∗, n) ≥ d(1,n)
2 , where the1593

second inequality follows from inequality (25). As before,1594

dist(f) ≤ 2 thus follows directly.1595

If none of the previous cases hold, we have both a∗ ≥ q and1596

n − a∗ ≥ 2, so that from the definition of k-EXTREMES we1597

have |S∪{1, . . . , a∗}| =
⌊
k
2

⌋
≥ q and |S∪{a∗+1, . . . , n}| =1598 ⌈

k
2

⌉
≥ q. This implies that1599

SC(S,A; d) ≤ max{d(1, a∗), d(a∗ + 1, n)} ≤ d∗. (26)

We claim that, for every S′ ∈
(
A
k

)
, we have SC(S′, A; d) ≥1600

d∗

2 . Together with inequality (26), this would immediately1601

imply dist(f) ≤ 2 and conclude the proof. To prove this fact,1602

suppose for the sake of contradiction that SC(S′, A; d) < d∗

21603

for some S′ ∈
(
A
k

)
. This is equivalent to the fact that1604

SC(S′, a; d) <
d∗

2
⇐⇒

∣∣∣∣S′ ∪
{
b ∈ A : d(a, b) <

d∗

2

}∣∣∣∣ ≥ q

for every a ∈ A. Since the sets
{
b ∈ A | d(a, b) < d∗

2

}
for1605

a ∈ {1, a∗, n} are disjoint, we conclude that |S′| ≥ 3q > k,1606

a contradiction.1607

For the lower bound, we consider the same instances as1608

in the proof of Theorem 4.2; we repeat the construction for1609

completeness. Naturally, the proof of the lower bound in the1610

end differs from the additive case. We consider any k ∈ N1611

with k ≥ 2, we fix n = 2(k + 1), and consider an arbitrary 1612

(n, k)-voting rule f . We partition the agents into four sets 1613

A =
⋃̇4

i=1Ai such that A1 = {1}, A4 = {n} and |A2| = 1614

|A3| = k. We consider the profile ≻∈ Ln(n), where S = 1615

f(≻), and 1616

(i) b ≻a c whenever a ∈ Ai, b ∈ Aj , c ∈ Aℓ for some 1617

i, j, ℓ ∈ [4] with |i− j| < |i− ℓ|; 1618

(ii) 1 ≻a b whenever a ∈ A2, b ∈ A3 ∪A4; 1619

(iii) n ≻a b whenever a ∈ A3, b ∈ A1 ∪A2; 1620

and the remaining pairwise comparisons are arbitrary. We 1621

consider the election E = (A, k,≻) with A = [n]. 1622

In what follows, we distinguish whether f selects more 1623

agents from A1∪A2 or from A3∪A4 and construct appropri- 1624

ate distance metrics to show that, in either case, the distortion 1625

is at least the one claimed in the statement. Intuitively, if f 1626

selects more agents from A1 ∪ A2 we will consider a metric 1627

where these sets lie on one extreme, A4 = n on the other ex- 1628

treme, and all agents A3 in the middle. This way, the selected 1629

committee gives twice the social cost as picking all agents 1630

from A3 In the opposite case, we will construct a symmetric 1631

instance. 1632

Formally, we first consider the case with |S∩(A1∪A2)| ≥ 1633
k
2 and define the distance metric d1 on A by the following 1634

positions x ∈ (−∞,∞)n: xa = 0 for every a ∈ A1 ∪ A2, 1635

xa = 1 for every a ∈ A3, and xn = 2. It is not hard to 1636

check that d1 ▷ ≻; see Figure 9 for an illustration. Since 1637

|S ∩ (A1 ∪A2)| ≥ k
2 , we obtain SC(S, n; d1) = 2 and thus 1638

dist(f(≻), E) ≥ SC(S,A; d1)
SC(A3, A; d1)

≥ SC(S, n; d1)
SC(A3, n; d1)

≥ 2.

Conversely, if |S ∩ (A3∪A4)| ≥ k
2 , we define the distance 1639

metric d2 on A by the following positions x ∈ (−∞,∞)n: 1640

x1 = 0, xa = 1 for every a ∈ A2, and xa = 2 for every 1641

a ∈ A3∪A4. It is not hard to check that d2 ▷ ≻; see Figure 9 1642

for an illustration. Since |S ∩ (A3 ∪ A4)| ≥ k
2 , we obtain 1643

SC(S, 1; d2) = 2 and thus 1644

dist(f(≻), E) ≥ SC(S,A; d2)
SC(A2, A; d2)

≥ SC(S, 1; d2)
SC(A2, 1; d2)

≥ 2.

Since dist(f(≻), E) ≥ 2 regardless of f(≻), we conclude 1645

that dist(f) ≥ 2. 1646
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