Supplementary Materials for:
Max-Sliced Mutual Information

A Proofs

A.1 Proof of Proposition 1

We note that 1 is restated and was proved in [25, Appendix A.1]

Proof of 2: Non-negativity directly follows by non-negativity of mutual information. Equivalence
directly follows from the bound. When X L Y we have I(X;Y) = 0 and therefore Sl (X;Y) <0,
which implies SIj,(X;Y) = 0 due to non-negativity. When Sl;,(X;Y) = 0 we have Sl (X;Y) = 0,
which implies X 1 Y.

Proof of 3: The representation immediately follows from the representation of mutual information
(X;Y) =D(puxvyl|lppx ® py). The expressions follows by plugging it into the definition of mSMI
((3) in the main text).

Proof of 4:  For the triplet (X7, X2,Y"), we have
Sl(X1, X2;Y) = max, I(ATX1,BTX5;9Y)
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where the penultimate inequality follows from the properties of the maximum function. This proof
straightforward generalizes to n variables.

Proof of 5: The proof relies on the independence of functions of independent random variables.
We have

S(X"Y") = max I(ATX),... ATX.:BIY:,.. BIY,)
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where the last inequality follows from the independence of the maximal |(A] X;, ATY;) in (A;, B;).
This concludes the proof. O



A.2 Proof of Proposition 2

We first show that the k-dimensional Gaussian mSMI can be realized as an optimization of the
projected mutual information over the same domain as the CCA problem from (2). This equivalence
follows by invariance of mutual information to bijections.

Lemma 1. For jointly Gaussian X ~ N'(mx,Yx) andY ~ N (my, Xy ) with cross-covariance
Y xvy, we have

SIk(X;Y) = sup I((ATX;BTY)
(A,B)eR% s *F Rty ¥,
ATYx A=BT%y B=I,

1
= sup ——= log det (Ik — (AszyB)T(ATZXY’B)).
(A,B)eR% e *F Ry > ¥,
ATExA=BTZyB=I;

Proof. By translation invariance of mutual information, we may assume w.l.o.g. that the means are
zero, i.e., mx = my = 0. The mSMI is defined as a supremum over pairs of matrices from the
Stiefel manifold (cf. Definition 1). We first show that changing the optimization domain to the space
of all (A, B) € R%*F x R%*F without changing the mSMI value. Fix (A, B) € Ré= >k x Rdv <k
and let A = Uy XAV} and B = UgXg VY, be their compact SVDs, i.e., such that X4, X € R¥¥E,
By invariance of mutual information, we have

I(ATX;BTY) = I(VAXAULX; VgEgULY) = I(UT X; ULY),

since VAXa, VpEp € R**¥ are invertible. Noticing that (Ua, Ug) € St(k,d,) x St(k,d,), we
obtain .
SL(X;Y) = sup I(ATX;BTY).
(A,B)€Rda Xk xRy Xk

Next, we show that we may equivalently optimize with the added unit variance constraint. For
(A,B) € R¥%=*k x Rdv*k define 'y = ATY.x A and 'y = BTXy B, and consider their respective
eigenvalue decompositions 'y = W A AWL and 'y = WBABW]TB. By invariance, once more, we
have
1 1 - -
I(ATX;BTY) = I(AA PWIATX; A2 WEBTY) =I1(ATX; BTY)7

where A = AW, A "/% and B = BWgA;'/?, for which we have AT x A = BTSy B = Ij. This
proves the first equality in Lemma 1.

For the second inequality, fix (A, B) € R% >k x R4>k with ATS x A = BTYyB = I, and note
that ATX ~ N (0,ATE xA) and BTY ~ N(0, BTXy B) are jointly Gaussian with cross-covariance

ATY. xyB. By the closed-form expression for mutual information between Gaussians (cf. [58,
Example 3.4]), we have

1 ATESxA ATExyB
I(ATX;BTY)——Qlogdet<[BTZ}(XYA BTEXYYB D

- _% log (I — (ATExyB)T(ATExyB)),

where the last equality uses the unit variance property and Schur’s determinant formula. O

Armed with Lemma 1, we are in place to prove Propositioi 2. Since the CCA solutions (Acca, Beea)
satisfy the unit variance constraint, we trivially have Sl (X;Y) > I(Al,X;BlcAY). Recall
that (Acca, Beca) = (352U, 55/2V), where U and V are obtained from the SVD of Txy =

E)_(l/ ) XyZ;,l/ 2 — UAVT and contain its first k left- and right-singular vectors of T xy in their
columns; the matrix A is diagonal and contains the top k& singular values of T xy. Noticing that
(AECAEXYBCCA)T(AECAEXYBCCA) = A2, we have

k
— 1 1
SIL(X;Y) > (AL A X;BL,\Y) = — logdet(Ix — A?) = -5 > log (1-0i(Txy)?). (D
=1



Further observe that o;(Txy) < 1, for all i = 1,...%. Indeed, for any unit vectors (a,b) €

Sde—1 % §%—1 the value aTT xyb = aTZ}l/ZEXyz;,l/zb is exactly the correlation coefficient
p(aTX,b7Y) € [—1,1]. Taking the supremum over all such vector pairs we arrive at the operator
norm of T xy, which coincides with its largest singular value. In sum, o1 (Txy) = || Txy|lop < 1

For the opposite inequality, we use a generalization of the Poincaré separation theorem from [48,
Theorem 2.2], which is restated next for completeness.

Theorem 2 (Generalized Poincaré separation [48]). Let X € R™*™ and (A, B) € St(r, m)xSt(k, n).
Then
011i(X) < 0;(ATEB) < 04(%), i=1,...,r Ak,

wheret =m+n —r — k.

For any (A,B) € R% >k x R%*k with ATS x A = BTEyB = I, defining Ax = E%QA and
By = %V/”B, note that (Ax,By) € St(k,d,) x St(k,d,) and ATS xyB = ALTxyBy. By

Theorem 2, we obtain
0i(ATExyB) = 0;(AY TxyBy) < 0i(Txy), i=1,...,k ¥

Starting from the log-determinant expression in Lemma 1, consider

Sl 1

SIp(X;Y) = sup —Zlogdet (I, — (ATExyB)T(ATSxyB))
(A,B)eRe Xk xRy Xk, 2
ATSx A=BTSyB=Iy

k
1
= sup - Z log (1 - O’i(ATEXyB)z)
(A,B)eR¥= Xk 5 Ry Xk, 2 i—1
ATSx A=BTSyB=I,,

k
1
= sup —3 Zlog (1 - O’i(ATXTxyBy)Q)
(A,B)eR% e *F xRy > ¥, i=1
ATS x A=BTSyB=I,

k
1
< —§ZZ=;IOg (1-0iy(Txy)?), ©

where the last two steps use (8) and the fact that © — — log(1 — ) is monotonically increasing (for
the last inequality). Combining (7) and (9) yields the result. U

A.3 Equivalence Between Max-Sliced Entropy and PCA

The argument is similar to that in the proof of Proposition 2. Let X ~ N (m,3) and assume w.l.0.g.
that m = 0 and ¥ € R?*? is full-rank. The k-dimensional PCA problem for ¥ is

sup tr(ATXA)
A€St(k,d)

and the global optimum Apcp is the matrix that contains the first k& eigenvectors of X (i.e., corre-
sponding to the largest k eigenvalues). Consequently,

shy,(X)= sup h(ATX)
AeSt(k,d)

= sup 1log ((2me)” det(ATEA))
A€St(k,d)

k

1
= sup = log (2meX;(ATXA
AeSt(k,d) 2 ; ( ( )

k
= % Z log (2meXi (X)),
i=1



where the second equality is the formula for the differential entropy of a k-dimensional Gaussian
random vector, while the last one is justified via two-sided inequalities as follows. The > relation
follows by substituting the PCA solution Apca. For the reverse inequality we use the Poincaré
separation theorem (cf., e.g., [59, Theorem 10.10]), whereby for any A € St(k, d) we have

M—i—i(S) S N(ATSA) < A(8), Vi=1,... k.

Together with the monotonicity of the logarithm this yields the result.

A.4 Proof of Theorem 1

The proof leverages an error bound that is uniform over all pxy € Py (M, b), from which a minimax
bound will follow. Fix pxy € Py (M, b). We have
[l

where I((ATX)", (BTY)™) is a neural estimator of I(ATX,BTY), -calculated from
(ATX)", (BTY)") = {(ATX,,BTY;)}l, with (X™,Y") that are independent and identi-
cally distributed according to ;1 xy . Thus, a uniform bound over (A, B) € St(k, d,) x St(k, d,) will
suffice to bound the maximum. We obtain such bound via the following result [26, Lemma 5]:

Proposition 5 (Neural estimation of [(ATX;BTY)). Let uxy € Px(M,b). Then, uniformly in
(A,B) € St(k, zq) x St(k,d,), we have the neural estimation bound

E[[Sh(x,v) - S

E HI(ATX, BTY) — I((ATX)", (BTY)")

] < max
(A,B)€St(k,dy ) xSt(k,dy)

E HI(ATX, BTY) — 1((ATX)", (BTY)")

} <Ck2(I"% +kn™ %) (10)
where the constant C depends on M, b, k, and || X x V||

The proof of proposition 5 consists of showing that the densities of the pushforward measures
(p™, p®)suxy and pa’* px @ p}f wy satisfy certain smoothness conditions that are sufficient for the
spectral condition of the neural estimation bound from [38].

Consequently, we have a bound that is uniform in both (A, B) € St(k, d;) x St(k,d,) and pxy €
Pr(M,b), providing us with the desired result. O

B Maximization of Max-Sliced Entropy

Let p € P(X) and let up = pfu be the distribution of ATX. We next define two classes of
distributions and characterize the corresponding max-sliced entropy maximizing distribution from
each class.

Mean and covariance constraints. The following lemma shows that the Gaussian distribution
maximizes max-sliced entropy under first and second moment constraints.

Lemma 2. Let Py (m, X) == {p € P(RY) : spt(p) =R, E,[X] =m, E,[(X—m)(X—m)T] =
E} be the class of probability measures on R® with fixed mean and covariance. Then,

argmax shy(p) = N(m, ). (11)
HEP1(M,X)

Proof. Fix p € P1(m,X) and A € St(k, d). The distribution of AT X also has fixed mean ATm and
covariance matrix ATX A. Among all distributions with these mean and covariance, it is the Gaussian
distribution A'(ATm, ATXA) that maximizes differential entropy [40]. Consequently,

sup shgp(u)= sup sup h(P?M) < sup  h(N(ATm,ATSA)) = shy (N (m, X)),
HEP1(M,X) AeSt(k,d) peP1(m,X) AeSt(k,d)

and the inequality is achieved by setting y = N'(m, ). This proves the claim. O

Support inside d-dimensional ball. The next claim is analogous to the fact that the uniform
distribution maximizes differential entropy over the class of compactly supported distributions.



Lemma 3. Let Py(c,r) = {pu € P(RY) : spt(n) C Ba(c,r)} be the class of probability measures
supported inside a d-dimensional ball, centered at ¢ € R with radius r > 0. Then

Unif(IB%k((cl, cees CR), r))) ® O(cppr,.cq) € ATMAx shy (u),
HEP2(c,r)

i.e., the max-sliced entropy maximizing distribution is the uniform distribution on a k-dimensional

ball, with the remaining n — k variables equal to the corresponding entries of c. The corresponding
maximal max-sliced entropy is

sup (1) = log (r)"/2/T(k/2 + 1),
HEP:(c,r)

where I is the Gamma function.

Proof. The proof shows that within the projected k-dimensional space the entropy maximizing
distribution is the uniform distribution over the k-dimensional ball of radius r.

First, due to the maximum entropy principle [40, Theorem 12.1.1], when the only constraint on the
distribution family is a compact support X', maximum entropy is achieved by the uniform distribution
with density px = exp(— log Vol(X)). We know that every linear k-dimensional projection of a
d-dimensional ball is a k-dimensional ball, implying that the support set of each k-dimensional
projection is compact. Thus, we look for a distribution p € Py(c, ) with a k-dimensional projection
that (i) has the largest possible volume of support in the projected space, and (ii) is uniform distribution
over this projected support. Such a distribution, if it exists, will be the maximizer of shy (x) over
€ Pae,r).

The solution to point (i)) above is simple: the largest possible projected support set is the k-
dimensional ball of radius r. It remains to find a distribution with a k-dimensional projection
that is uniform over this support set. This is achieved by

HE = Unif(Bk((Cla BRRE) Ck)ar)) ® 5(ck+1,...,cd)7

noting that the projection Ay, := [Ix; Oxxa]T, where Oy ¢ is a matrix with zero entries, yields
Py e = Unif (Br((c1,- .., cx), 7).

The maximum max-sliced entropy is thus given by the logarithm of the ball volume, i.e.,

sh =1 k12 )T(k/2 + 1
pe%lf()é,r)s k(p) = log ((7r*)*? /T (k/2 + 1))

Note that the proposed solution holds for any rotation of uy as follows. Let U € St(d,d) be
orthogonal and denote ui v = péj 14k, which is the law of UT X, for X ~ p. The entropy maximizing
distribution can be obtained with a respective rotation of Aj. Take A, v = UAy, we have

Af JUTX = ATX,

as desired. This, in turn, implies that argmax ,cp, (c. ) shy (i) is not unique. O

C Additional Implementation Details

Neural estimation. We consider the popular seperable critic [32, 51, 36], which is given by
g(x,y) = h1(x)Tha(y), such that hy and hs are two independent copies of the same MLP architecture
with embedding dimension d,. In our setting the MLP architecture is given by two hidden layers with
an exponential linear unit activation [60] whose hidden dimension of 256. The MLP output dimension
is 32. We utilize the Adam optimizer [61] with initial learning rate of 2 x 10~%. both the mSMI and
the aSMI estimators instances are implemented with similar copies of the aforementioned critic. The
aSMI is estimated via the parallel estimator from [26], following their choice of m = 1000.

Algorithm. We employ a minibatch stochastic gradient-ascent scheme. The DV potential network
fu and slicing directions (A’, B") are randomly initialized. Each iteration begins by sampling a batch



of positive and negative samples, which are then projected via (A, B) where (A, B) are the projections
of (A’, B) onto the Stiefel manifold, as computed by QR decomposition. The projected samples are
passed through f,, and the objective of (5) is calculated. Finally, we update the parameters (A’, B/, ¢).
The mechanism is visualised in Figure 4.

Independence testing. We follow the setting of a
latent shared random variable from [26], given as fol-
lows. Let (Z1,Z2) ~ N(0,13) and V' ~ N(0,14)
be independent. We set X = P,V 4+ Z; and
Y = PyV + Z,, where Py, Py € R?*? are pro-
jection matrices with i.i.d normally distributed en-
tries. We estimate the aSMI via the parallel aSMI
methodology from [26] with m = 1000 estimator
instances, and the mSMI via the LIPO algorithm
[55] with a stopping criteria after m = 1000 sam-
ples. The mutual information estimator we use is the
Kozachenko-Leonenko estimator [54] and the AUC-
ROC is computed over 100 trials.

Multi-view representation learning. The setup Figure 4: Neural estimation of mSML QR(+)
follows the CCA and DCCA implementations from blocks denote the application of a QR decom-
[7] and mutual information estimation of [51]. The Position, from which we take the Q (orthog-
MLP architectures are similar to the ones used to con- ©nal) part. Blue lines denote gradient propa-
struct the seperable critic, as described in the neural ~&aton and shaded blocks denote parametric
estimation implementation. The procedure consists models.

on dividing each image to its top and bottom halves and flattening each half. These flattened halves
are then projected using the corresponding projection models. The classification is performed via
multi-class logistic regression using SAGA [62], as implemented via scikit-learn python library.

Max-sliced InfoGAN. Following the setting of [26], we replace the mutual information regularizer
from the original InfoGAN implementation® with an mSMI regularizer, and maximize the compound
loss over the InfoGAN parameters and the slice directions. We empirically observed that this joint
optimization sometimes steers the model away from the true maximizing slice. To address this
and improve the accuracy of the overall mSMI estimate, we introduced m independent mSMI
networks and independently initialize and optimize them. At each iteration, each sliced model yields
a corresponding mSMI estimate based on its current slice. Our final mSMI estimate is then obtained
by taking the maximum over the m estimates, which is more likely to be close to the true mSMI. For
differentiability, we approximate the maximum with a logsumexp function. Note that the analogous
average-sliced InfoGAN experiment from [26, Section 5] considers the average of m = 1000 random
slicing directions, while our max-sliced InfoGAN uses only m < 30. This again demonstrates the
utility of mSMI for learning tasks due to its low computational overhead.

D Additional Multi-View Representation Learning Results

Table 3 provides results on a wider range of k values. In Table 4 we present a comparison of the multi-
view setting for the CIFAR10 dataset [63], which is a benchmark dataset for image classification,
consisting of 60,000 small color images divided into 10 classes, similar to the MNIST dataset but
with more complex and varied objects. Because the images in the CIFAR dataset consist of three
channels, straightforward flattening and projection cannot be applied. We therefore consider a simple
convolutional neural network architecture that consists of two convolutional layer with padding and
stride of 2, followed by a layer normalization, average pool and a fully connected output layer to
results with a k-dimensional output. It is clear from Table 4 that mSMI outperforms the DCCA
objective in the CIFAR setting. The results show that under no fine tuning the convolutional DCCA
method doesn’t scale well with the projection dimension, with optimal results for kK = 30, while the
mSMI methodology continues to improve with k. All results are averaged over 10 different seeds.

8Code implementation is based on https://github.com/Natsu6767/InfoGAN-PyTorch



Table 3: Full classification Results on MNIST

| k | Linear CCA Linear mSMI | MLP DCCA MLP mSMI |
1 0.2614+0.03 0.274+0.02 0.2844+0.03 0.291+0.02
2 0.32+0.02 0.346+0.02 0.314+0.03 0.417+0.02
4 0.424+0.01 0.478+0.02 0.44140.04 0.546+0.01
6 0.502+0.01 0.634+0.01 0.599+0.01 0.655+0.01
8 0.553+0.03 0.666+0.01 0.645+0.02 0.665+0.01
10 | 0.595+0.01 0.702+0.01 0.668+0.01 0.715+0.01
12 | 0.61440.02 0.751+0.01 0.697+0.01 0.753+0.01
14 0.65+0.01 0.767+0.01 0.71+0.01 0.767+0.01
16 | 0.6734+0.02 0.775+0.01 0.730+0.02 0.779+0.01
18 | 0.689+0.01 0.785+0.006 | 0.7624+0.009  0.779+0.01
20 | 0.70410.007 0.79-+£0.006 0.774+0.01 0.798+0.01

Table 4: Result in the CIFAR10 dataset.

| * |

DCCA

mSMI

1 | 0.1281 £ 0.0387
5 | 0.1324 £0.0397
10 | 0.1802 £ 0.0050
20 | 0.2262 £ 0.0142
30 | 0.2433 £ 0.0196
40 | 0.1999 £ 0.0397
50 | 0.1627 £0.0183
60 | 0.1840 £ 0.0196
70 | 0.1973 £ 0.0085

0.1374 + 0.0310
0.1714 £ 0.0110
0.2040 + 0.0070
0.2471 + 0.0090
0.2487 + 0.0105
0.2508 + 0.0254
0.2555 +0.0168
0.2792 + 0.0115
0.2876 £ 0.0058

E Additional Fairness Representation Learning Results

Table 5 provides fairness representation learning results on the UCI Adult dataset. This dataset
consists of 48,842 rows of US Census data, with 14 features describing educational background, age,
race, marital status, and others. Here, the outcome Y is a binary indicator of whether the individual

has an income at least US$50,000, and the sensitive attribute 7" is race.

Table 5: Learning a fair representation of the Adult dataset, following the setup of [39].

N/A | Slice [39] mSMI (ours)
k=1|k=2|k=3|k=4|k=5]k=6]|k=T
Phcr(Z,Y) 1 | 0.998 0.979 0.998 | 0.972 | 0.947 | 0.992 | 0.971 | 0.991 | 0.962
Phcr(Z,A) 1 ] 0.990 0.068 043 | 0393 | 0.137 | 0.052 | 0.053 | 0.137 | 0.74




