
Supplementary Materials for:
Max-Sliced Mutual Information

A Proofs

A.1 Proof of Proposition 1

We note that 1 is restated and was proved in [25, Appendix A.1]

Proof of 2: Non-negativity directly follows by non-negativity of mutual information. Equivalence
directly follows from the bound. When X ⊥⊥ Y we have I(X;Y) = 0 and therefore SIk(X;Y) ≤ 0,
which implies SIk(X;Y) = 0 due to non-negativity. When SIk(X;Y) = 0 we have SIk(X;Y) = 0,
which implies X ⊥⊥ Y .

Proof of 3: The representation immediately follows from the representation of mutual information
I(X;Y) = D(µXY ∥µX ⊗ µY). The expressions follows by plugging it into the definition of mSMI
((3) in the main text).

Proof of 4: For the triplet (X1, X2, Y), we have

SIk(X1, X2;Y) = max
A,B,ψ

I(A⊺X1,B
⊺X2;ψ

TY)

= max
A,B,ψ

(
I(A⊺X1;ψ

TY) + I(B⊺X2;ψ
TY |A⊺X1)

)
≤ max

A,ψ
I(A⊺X1;ψ

TY) + max
A,B,ψ

I(B⊺X2;ψ
TY |A⊺X1)

= SIk(X1;Y) + SIk(X2;Y |X1),

where the penultimate inequality follows from the properties of the maximum function. This proof
straightforward generalizes to n variables.

Proof of 5: The proof relies on the independence of functions of independent random variables.
We have

SIk(X
n, Y n) = max

A1,...,An,B1,...,Bn

I(A⊺
1X1, . . . ,A

⊺
nXn; B

⊺
1Y1, . . . ,B

⊺
nYn)

= max
A1,...,An,B1,...,Bn

(
n∑
i=1

I(A⊺
iXi; B

⊺
1Y1, . . . ,B

⊺
nYn|A

⊺
1X1, . . . ,A

⊺
i−1Xi−1)

)

= max
A1,...,An,B1,...,Bn

 n∑
i=1

n∑
j=1

I(A⊺
iXi; B

⊺
jYj |A

⊺
1X1, . . . ,A

⊺
i−1Xi−1,B

⊺
1Y1, . . . ,B

⊺
j−1Yj−1)


= max

A1,...,An,B1,...,Bn

 n∑
i=1

n∑
j=1

I(A⊺
iXi; B

⊺
jYj)


=

n∑
i=1

max
Ai,Bi

I(A⊺
iXi; B

⊺
i Yi),

where the last inequality follows from the independence of the maximal I(A⊺
iXi,A

⊺
i Yi) in (Aj ,Bj).

This concludes the proof. □

1

A.2 Proof of Proposition 2

We first show that the k-dimensional Gaussian mSMI can be realized as an optimization of the
projected mutual information over the same domain as the CCA problem from (2). This equivalence
follows by invariance of mutual information to bijections.

Lemma 1. For jointly Gaussian X ∼ N (mX ,ΣX) and Y ∼ N (mY ,ΣY) with cross-covariance
ΣXY , we have

SIk(X;Y) = sup
(A,B)∈Rdx×k×Rdy×k:
A⊺ΣXA=B⊺ΣY B=Ik

I(A⊺X; B⊺Y)

= sup
(A,B)∈Rdx×k×Rdy×k:
A⊺ΣXA=B⊺ΣY B=Ik

−1

2
log det

(
Ik − (A⊺ΣXY B)

⊺(A⊺ΣXY B)
)
.

Proof. By translation invariance of mutual information, we may assume w.l.o.g. that the means are
zero, i.e., mX = mY = 0. The mSMI is defined as a supremum over pairs of matrices from the
Stiefel manifold (cf. Definition 1). We first show that changing the optimization domain to the space
of all (A,B) ∈ Rdx×k × Rdy×k without changing the mSMI value. Fix (A,B) ∈ Rdx×k × Rdy×k
and let A = UAΣAV

⊺
A and B = UBΣBV

⊺
B be their compact SVDs, i.e., such that ΣA,ΣB ∈ Rk×k.

By invariance of mutual information, we have

I(A⊺X; B⊺Y) = I(VAΣAU
⊺
AX; VBΣBU

⊺
BY) = I(U⊺

AX; U⊺
BY),

since VAΣA,VBΣB ∈ Rk×k are invertible. Noticing that (UA,UB) ∈ St(k, dx) × St(k, dy), we
obtain

SIk(X;Y) = sup
(A,B)∈Rdx×k×Rdy×k

I(A⊺X; B⊺Y).

Next, we show that we may equivalently optimize with the added unit variance constraint. For
(A,B) ∈ Rdx×k × Rdy×k, define ΓA = A⊺ΣXA and ΓB = B⊺ΣY B, and consider their respective
eigenvalue decompositions ΓA = WAΛAW

⊺
A and ΓB = WBΛBW

⊺
B. By invariance, once more, we

have
I(A⊺X; B⊺Y) = I

(
Λ
− 1

2

A W⊺
AA

⊺X; Λ
− 1

2

B W⊺
BB

⊺Y
)
= I(Ã⊺X; B̃⊺Y

)
,

where Ã = AWAΛ
−1/2
A and B̃ = BWBΛ

−1/2
B , for which we have Ã⊺ΣXÃ = B̃⊺ΣY B̃ = Ik. This

proves the first equality in Lemma 1.

For the second inequality, fix (A,B) ∈ Rdx×k × Rdy×k with A⊺ΣXA = B⊺ΣY B = Ik, and note
that A⊺X ∼ N (0,A⊺ΣXA) and B⊺Y ∼ N (0,B⊺ΣY B) are jointly Gaussian with cross-covariance
A⊺ΣXY B. By the closed-form expression for mutual information between Gaussians (cf. [58,
Example 3.4]), we have

I(A⊺X; B⊺Y) = −1

2
log det

([
A⊺ΣXA A⊺ΣXY B
B⊺Σ⊺

XYA B⊺ΣY B

])
= −1

2
log
(
Ik − (A⊺ΣXY B)

⊺(A⊺ΣXY B)
)
,

where the last equality uses the unit variance property and Schur’s determinant formula.

Armed with Lemma 1, we are in place to prove Proposition 2. Since the CCA solutions (ACCA,BCCA)
satisfy the unit variance constraint, we trivially have SIk(X;Y) ≥ I(A⊺

CCAX; B⊺
CCAY). Recall

that (ACCA,BCCA) = (Σ
−1/2
X U,Σ

−1/2
Y V), where U and V are obtained from the SVD of TXY =

Σ
−1/2
X ΣXY Σ

−1/2
Y = UΛV⊺ and contain its first k left- and right-singular vectors of TXY in their

columns; the matrix Λ is diagonal and contains the top k singular values of TXY . Noticing that
(A⊺

CCAΣXY BCCA)
⊺(A⊺

CCAΣXY BCCA) = Λ2, we have

SIk(X;Y) ≥ I(A⊺
CCAX; B⊺

CCAY) = −1

2
log det(Ik − Λ2) = −1

2

k∑
i=1

log
(
1− σi(TXY)

2
)
. (7)

2

Further observe that σi(TXY) ≤ 1, for all i = 1, . . . k. Indeed, for any unit vectors (a, b) ∈
Sdx−1 × Sdy−1, the value a⊺TXY b = a⊺Σ

−1/2
X ΣXY Σ

−1/2
Y b is exactly the correlation coefficient

ρ(a⊺X, b⊺Y) ∈ [−1, 1]. Taking the supremum over all such vector pairs we arrive at the operator
norm of TXY , which coincides with its largest singular value. In sum, σ1(TXY) = ∥TXY ∥op ≤ 1

For the opposite inequality, we use a generalization of the Poincaré separation theorem from [48,
Theorem 2.2], which is restated next for completeness.

Theorem 2 (Generalized Poincaré separation [48]). Let Σ ∈ Rm×n and (A,B) ∈ St(r,m)×St(k, n).
Then

σt+i(Σ) ≤ σi(A
⊺ΣB) ≤ σi(Σ), i = 1, . . . , r ∧ k,

where t = m+ n− r − k.

For any (A,B) ∈ Rdx×k × Rdy×k with A⊺ΣXA = B⊺ΣY B = Ik, defining AX = Σ
1/2
X A and

BY = Σ
1/2
Y B, note that (AX ,BY) ∈ St(k, dx) × St(k, dy) and A⊺ΣXY B = A⊺

XTXY BY . By
Theorem 2, we obtain

σi(A
⊺ΣXY B) = σi(A

⊺
XTXY BY) ≤ σi(TXY), i = 1, . . . , k. (8)

Starting from the log-determinant expression in Lemma 1, consider

SIk(X;Y) = sup
(A,B)∈Rdx×k×Rdy×k:
A⊺ΣXA=B⊺ΣY B=Ik

−1

2
log det

(
Ik − (A⊺ΣXY B)

⊺(A⊺ΣXY B)
)

= sup
(A,B)∈Rdx×k×Rdy×k:
A⊺ΣXA=B⊺ΣY B=Ik

−1

2

k∑
i=1

log
(
1− σi(A

⊺ΣXY B)
2
)

= sup
(A,B)∈Rdx×k×Rdy×k:
A⊺ΣXA=B⊺ΣY B=Ik

−1

2

k∑
i=1

log
(
1− σi(A

⊺
XTXY BY)

2
)

≤ −1

2

k∑
i=1

log
(
1− σi(TXY)

2
)
, (9)

where the last two steps use (8) and the fact that x 7→ − log(1− x) is monotonically increasing (for
the last inequality). Combining (7) and (9) yields the result. □

A.3 Equivalence Between Max-Sliced Entropy and PCA

The argument is similar to that in the proof of Proposition 2. Let X ∼ N (m,Σ) and assume w.l.o.g.
that m = 0 and Σ ∈ Rd×d is full-rank. The k-dimensional PCA problem for Σ is

sup
A∈St(k,d)

tr(A⊺ΣA)

and the global optimum APCA is the matrix that contains the first k eigenvectors of Σ (i.e., corre-
sponding to the largest k eigenvalues). Consequently,

shk(X) = sup
A∈St(k,d)

h(A⊺X)

= sup
A∈St(k,d)

1

2
log
(
(2πe)k det(A⊺ΣA)

)
= sup

A∈St(k,d)

1

2

k∑
i=1

log
(
2πeλi(A

⊺ΣA)
)

=
1

2

k∑
i=1

log
(
2πeλi(Σ)

)
,

3

where the second equality is the formula for the differential entropy of a k-dimensional Gaussian
random vector, while the last one is justified via two-sided inequalities as follows. The ≥ relation
follows by substituting the PCA solution APCA. For the reverse inequality we use the Poincaré
separation theorem (cf., e.g., [59, Theorem 10.10]), whereby for any A ∈ St(k, d) we have

λd−k−i(Σ) ≤ λi(A
⊺ΣA) ≤ λi(Σ), ∀i = 1, . . . , k.

Together with the monotonicity of the logarithm this yields the result.

A.4 Proof of Theorem 1

The proof leverages an error bound that is uniform over all µXY ∈ Pk(M, b), from which a minimax
bound will follow. Fix µXY ∈ Pk(M, b). We have

E
[∣∣∣SIk(X,Y)− ŜI

n,l

k

∣∣∣] ≤ max
(A,B)∈St(k,dx)×St(k,dy)

E
[∣∣∣I(A⊺X,B⊺Y)− Î((A⊺X)n, (B⊺Y)n)

∣∣∣] ,
where Î((A⊺X)n, (B⊺Y)n) is a neural estimator of I(A⊺X,B⊺Y), calculated from
((A⊺X)n, (B⊺Y)n) := {(A⊺Xi,B

⊺Yi)}ni=1 with (Xn, Y n) that are independent and identi-
cally distributed according to µXY . Thus, a uniform bound over (A,B) ∈ St(k, dx)× St(k, dy) will
suffice to bound the maximum. We obtain such bound via the following result [26, Lemma 5]:
Proposition 5 (Neural estimation of I(A⊺X; B⊺Y)). Let µXY ∈ Pk(M, b). Then, uniformly in
(A,B) ∈ St(k, xd)× St(k, dy), we have the neural estimation bound

E
[∣∣∣I(A⊺X,B⊺Y)− Î((A⊺X)n, (B⊺Y)n)

∣∣∣] ≤ Ck
1
2 (l−

1
2 + kn− 1

2) (10)

where the constant C depends on M, b, k, and ∥X × Y∥

The proof of proposition 5 consists of showing that the densities of the pushforward measures
(pA, pB)♯µXY and pA♯ µX ⊗ pB♯ µY satisfy certain smoothness conditions that are sufficient for the
spectral condition of the neural estimation bound from [38].

Consequently, we have a bound that is uniform in both (A,B) ∈ St(k, dx)× St(k, dy) and µXY ∈
Pk(M, b), providing us with the desired result. □

B Maximization of Max-Sliced Entropy

Let µ ∈ P(X) and let µA = pA♯ µ be the distribution of A⊺X . We next define two classes of
distributions and characterize the corresponding max-sliced entropy maximizing distribution from
each class.

Mean and covariance constraints. The following lemma shows that the Gaussian distribution
maximizes max-sliced entropy under first and second moment constraints.
Lemma 2. Let P1(m,Σ) :=

{
µ ∈ P(Rd) : spt(µ) = Rd , Eµ[X] = m, Eµ

[
(X−m)(X−m)⊺

]
=

Σ
}

be the class of probability measures on Rd with fixed mean and covariance. Then,

argmax
µ∈P1(m,Σ)

shk(µ) = N (m,Σ). (11)

Proof. Fix µ ∈ P1(m,Σ) and A ∈ St(k, d). The distribution of A⊺X also has fixed mean A⊺m and
covariance matrix A⊺ΣA. Among all distributions with these mean and covariance, it is the Gaussian
distribution N (A⊺m,A⊺ΣA) that maximizes differential entropy [40]. Consequently,

sup
µ∈P1(m,Σ)

shk(µ)= sup
A∈St(k,d)

sup
µ∈P1(m,Σ)

h(pA♯ µ) ≤ sup
A∈St(k,d)

h
(
N (A⊺m,A⊺ΣA)

)
= shk

(
N (m,Σ)

)
,

and the inequality is achieved by setting µ = N (m,Σ). This proves the claim.

Support inside d-dimensional ball. The next claim is analogous to the fact that the uniform
distribution maximizes differential entropy over the class of compactly supported distributions.

4

Lemma 3. Let P2(c, r) :=
{
µ ∈ P(Rd) : spt(µ) ⊆ Bd(c, r)

}
be the class of probability measures

supported inside a d-dimensional ball, centered at c ∈ Rd with radius r > 0. Then

Unif
(
Bk((c1, . . . , ck), r))

)
⊗ δ(ck+1,...,cd) ∈ argmax

µ∈P2(c,r)

shk(µ),

i.e., the max-sliced entropy maximizing distribution is the uniform distribution on a k-dimensional
ball, with the remaining n− k variables equal to the corresponding entries of c. The corresponding
maximal max-sliced entropy is

sup
µ∈P2(c,r)

shk(µ) = log
(
(πr2)k/2/Γ(k/2 + 1)

)
,

where Γ is the Gamma function.

Proof. The proof shows that within the projected k-dimensional space the entropy maximizing
distribution is the uniform distribution over the k-dimensional ball of radius r.

First, due to the maximum entropy principle [40, Theorem 12.1.1], when the only constraint on the
distribution family is a compact support X , maximum entropy is achieved by the uniform distribution
with density pX = exp(− logVol(X)). We know that every linear k-dimensional projection of a
d-dimensional ball is a k-dimensional ball, implying that the support set of each k-dimensional
projection is compact. Thus, we look for a distribution µ ∈ P2(c, r) with a k-dimensional projection
that (i) has the largest possible volume of support in the projected space, and (ii) is uniform distribution
over this projected support. Such a distribution, if it exists, will be the maximizer of shk(µ) over
µ ∈ P2(c, r).

The solution to point (i)) above is simple: the largest possible projected support set is the k-
dimensional ball of radius r. It remains to find a distribution with a k-dimensional projection
that is uniform over this support set. This is achieved by

µk := Unif
(
Bk((c1, . . . , ck), r)

)
⊗ δ(ck+1,...,cd),

noting that the projection Ak := [Ik; 0k×d]
⊺, where 0k×d is a matrix with zero entries, yields

pAk

♯ µk = Unif(Bk((c1, . . . , ck), r)).

The maximum max-sliced entropy is thus given by the logarithm of the ball volume, i.e.,

max
µ∈P2(0,r)

shk(µ) = log
(
(πr2)k/2/Γ(k/2 + 1)

)
Note that the proposed solution holds for any rotation of µk as follows. Let U ∈ St(d, d) be
orthogonal and denote µk,U = pU♯ µk, which is the law of U⊺X , for X ∼ µ. The entropy maximizing
distribution can be obtained with a respective rotation of Ak. Take Ak,U = UAk, we have

A⊺
k,UU

⊺X = A⊺
kX,

as desired. This, in turn, implies that argmaxµ∈P2(c,r) shk(µ) is not unique.

C Additional Implementation Details

Neural estimation. We consider the popular seperable critic [32, 51, 36], which is given by
g(x, y) = h1(x)

⊺h2(y), such that h1 and h2 are two independent copies of the same MLP architecture
with embedding dimension do. In our setting the MLP architecture is given by two hidden layers with
an exponential linear unit activation [60] whose hidden dimension of 256. The MLP output dimension
is 32. We utilize the Adam optimizer [61] with initial learning rate of 2× 10−4. both the mSMI and
the aSMI estimators instances are implemented with similar copies of the aforementioned critic. The
aSMI is estimated via the parallel estimator from [26], following their choice of m = 1000.

Algorithm. We employ a minibatch stochastic gradient-ascent scheme. The DV potential network
fψ and slicing directions (A′,B′) are randomly initialized. Each iteration begins by sampling a batch

5

of positive and negative samples, which are then projected via (A,B) where (A,B) are the projections
of (A′,B′) onto the Stiefel manifold, as computed by QR decomposition. The projected samples are
passed through fψ and the objective of (5) is calculated. Finally, we update the parameters (A′,B′, ψ).
The mechanism is visualised in Figure 4.

Figure 4: Neural estimation of mSMI. QR(·)
blocks denote the application of a QR decom-
position, from which we take the Q (orthog-
onal) part. Blue lines denote gradient propa-
gation and shaded blocks denote parametric
models.

Independence testing. We follow the setting of a
latent shared random variable from [26], given as fol-
lows. Let (Z1, Z2) ∼ N (0, Id) and V ∼ N (0, Id′)
be independent. We set X = P1V + Z1 and
Y = P2V + Z2, where P1,P2 ∈ Rd×d′ are pro-
jection matrices with i.i.d normally distributed en-
tries. We estimate the aSMI via the parallel aSMI
methodology from [26] with m = 1000 estimator
instances, and the mSMI via the LIPO algorithm
[55] with a stopping criteria after m = 1000 sam-
ples. The mutual information estimator we use is the
Kozachenko-Leonenko estimator [54] and the AUC-
ROC is computed over 100 trials.

Multi-view representation learning. The setup
follows the CCA and DCCA implementations from
[7] and mutual information estimation of [51]. The
MLP architectures are similar to the ones used to con-
struct the seperable critic, as described in the neural
estimation implementation. The procedure consists
on dividing each image to its top and bottom halves and flattening each half. These flattened halves
are then projected using the corresponding projection models. The classification is performed via
multi-class logistic regression using SAGA [62], as implemented via scikit-learn python library.

Max-sliced InfoGAN. Following the setting of [26], we replace the mutual information regularizer
from the original InfoGAN implementation6 with an mSMI regularizer, and maximize the compound
loss over the InfoGAN parameters and the slice directions. We empirically observed that this joint
optimization sometimes steers the model away from the true maximizing slice. To address this
and improve the accuracy of the overall mSMI estimate, we introduced m independent mSMI
networks and independently initialize and optimize them. At each iteration, each sliced model yields
a corresponding mSMI estimate based on its current slice. Our final mSMI estimate is then obtained
by taking the maximum over the m estimates, which is more likely to be close to the true mSMI. For
differentiability, we approximate the maximum with a logsumexp function. Note that the analogous
average-sliced InfoGAN experiment from [26, Section 5] considers the average of m = 1000 random
slicing directions, while our max-sliced InfoGAN uses only m ≤ 30. This again demonstrates the
utility of mSMI for learning tasks due to its low computational overhead.

D Additional Multi-View Representation Learning Results

Table 3 provides results on a wider range of k values. In Table 4 we present a comparison of the multi-
view setting for the CIFAR10 dataset [63], which is a benchmark dataset for image classification,
consisting of 60,000 small color images divided into 10 classes, similar to the MNIST dataset but
with more complex and varied objects. Because the images in the CIFAR dataset consist of three
channels, straightforward flattening and projection cannot be applied. We therefore consider a simple
convolutional neural network architecture that consists of two convolutional layer with padding and
stride of 2, followed by a layer normalization, average pool and a fully connected output layer to
results with a k-dimensional output. It is clear from Table 4 that mSMI outperforms the DCCA
objective in the CIFAR setting. The results show that under no fine tuning the convolutional DCCA
method doesn’t scale well with the projection dimension, with optimal results for k = 30, while the
mSMI methodology continues to improve with k. All results are averaged over 10 different seeds.

6Code implementation is based on https://github.com/Natsu6767/InfoGAN-PyTorch

6

Table 3: Full classification Results on MNIST
k Linear CCA Linear mSMI MLP DCCA MLP mSMI
1 0.261±0.03 0.274±0.02 0.284±0.03 0.291±0.02
2 0.32±0.02 0.346±0.02 0.314±0.03 0.417±0.02
4 0.42±0.01 0.478±0.02 0.441±0.04 0.546±0.01
6 0.502±0.01 0.634±0.01 0.599±0.01 0.655±0.01
8 0.553±0.03 0.666±0.01 0.645±0.02 0.665±0.01

10 0.595±0.01 0.702±0.01 0.668±0.01 0.715±0.01
12 0.614±0.02 0.751±0.01 0.697±0.01 0.753±0.01
14 0.65±0.01 0.767±0.01 0.71±0.01 0.767±0.01
16 0.673±0.02 0.775±0.01 0.730±0.02 0.779±0.01
18 0.689±0.01 0.785±0.006 0.762±0.009 0.779±0.01
20 0.704±0.007 0.79±0.006 0.774±0.01 0.798±0.01

Table 4: Result in the CIFAR10 dataset.
k DCCA mSMI
1 0.1281 ± 0.0387 0.1374 ± 0.0310
5 0.1324 ± 0.0397 0.1714 ± 0.0110

10 0.1802 ± 0.0050 0.2040 ± 0.0070
20 0.2262 ± 0.0142 0.2471 ± 0.0090
30 0.2433 ± 0.0196 0.2487 ± 0.0105
40 0.1999 ± 0.0397 0.2508 ± 0.0254
50 0.1627 ± 0.0183 0.2555 ± 0.0168
60 0.1840 ± 0.0196 0.2792 ± 0.0115
70 0.1973 ± 0.0085 0.2876 ± 0.0058

E Additional Fairness Representation Learning Results

Table 5 provides fairness representation learning results on the UCI Adult dataset. This dataset
consists of 48,842 rows of US Census data, with 14 features describing educational background, age,
race, marital status, and others. Here, the outcome Y is a binary indicator of whether the individual
has an income at least US$50,000, and the sensitive attribute T is race.

Table 5: Learning a fair representation of the Adult dataset, following the setup of [39].
N/A Slice [39] mSMI (ours)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
ρ∗HGR(Z, Y) ↑ 0.998 0.979 0.998 0.972 0.947 0.992 0.971 0.991 0.962
ρ∗HGR(Z,A) ↓ 0.990 0.068 0.43 0.393 0.137 0.052 0.053 0.137 0.74

7

