
Under review as a conference paper at ICLR 2024

A APPENDIX

Proof of Lemma 2.

Proof. Suppose the root of the tree is τ , and id(τ) = i. Let t be a tree node at level 1, and j = id(t).
Then j ∈ N (i) in G. We consider a rotation operation and move t up to be the root, then τ a child
of t. Now all t’s children correspond to N (j). After rotation, t becomes the parent of τ . Now τ ’s
children correspond i’s neighbors except j. All other tree nodes do not need rearrangement because
their parent do not change.

In the new tree, the bottom two levels of decendents of τ are now at level � and � + 1. Then we
prune these decendents and get a tree with depth � − 1. This new tree satisfies the definition of the
BFS-tree, and thus is the BFS-tree with depth (�− 1) obtained at j ∈ G.

For a node t at level k, then we need to rotate its k − 1 ancestors to be roots, and then rotate t to be
the root. Each rotation reduces the depth of the tree by 1. After k rotations, we will get the BFS-trees
B�−k

j .

Proof of Lemma 4

Proof. Suppose we move a tree node t to be the root of T �
i . The WL-tree T �

i must be derived from a
BFS-tree. Suppose t corresponds to a node t� in the BFS-tree. Then moving t� gives a new BFS-tree,
which has the same structure the tree obtained by moving t to be the root, so the latter one is the
WL-tree derived at id(t�).

Proof of Theorem 5.

Proof. We construct the bijection by induction. We consider � = 0 in the base case: an anchored
graph S0

i is a singleton with the node in color ci, then i gets color c0i = ci from the 1-WL algorithm,
and the CR-tree T 0

i is also a singleton in color ci. The bijection maps a color c0i to a singleton in the
same color.

Then we assume that the statement is true for �, then we show that such an injective mapping exists
for � + 1. That is, if both T �+1

i and c�+1
i = (c�i , {{c�j : (i, j) ∈ E}}) are both computed from

an anchored subgraph S�+1
i , then we can read out T �+1

i or c�+1
i from the other. We first consider

mapping T �+1
i to the color c�+1

i . By the assumpition, the color c�i can be read from T �
i from the

assumption. For each j ∈ N (i), the color c�j is computed from S�
j . From the Lemma above, we

can identify all T �
j -s for all S�

j , j ∈ N i. Then we map each W k
j to ckj for each j ∈ N i by the

assumption. With all these components we can map W k+1
i to ck+1

i .

Now we consider the mapping from ck+1
i to W k+1

i . From cki , we have W k
i , which is the CR-tree

with depth k. We only need to expand one more level from W k
i . For each leaf node at level k in W k

i ,
it must appear in one of {W k

j } at level k−1. We can find all its neighbor colors there {{c0, . . . , ck}}.
Suppose the color of parent is cp, then we just creat nodes as children of this node. These children
take colors {{c0, . . . , ck}} \ cp.

Proof of Theorem 6

Proof. In the construction of the BFS-tree, a node can only have children corresponding to children
from Si. Therefore, the BFS-tree with depth �� = � is the same as Si. If �� < �, then the BFS-tree
can only include the top �� levels of Si. When �� > �, a leaf node cannot expand to any children in
the BFS-tree, the BFS-tree will still be Si.

Proof of Corollary 7

12



Under review as a conference paper at ICLR 2024

Proof. For each node in a cycle in the graph Si, the corresponding tree node can always add at least
one node as its child. The child can be expanded in the same way, so the depth of the WL-tree can
be arbitrarily deep.

Proof of Corollary 8

Proof. With Theorem 6 and Corollary 7, T k+1
i and T k+1

i� cannot have the same depth, so they cannot
be isomorphic.

Proof of Corollary 9

Proof. We only need to reverse the argument in Theorem 6 to show part i). If S0 is a tree, then it
has the same structure as its WL-tree, so S0 has the same structure as T �

0 . For ii) we only to use the
conclusion from Corollary 7. If � > d, then S0 must be a tree, and then by i), S0 must be T �

0 .

Proof of Theorem 10

Proof. The algorithm must converges because a tree node appears at most once in the queue.

After the labeling procedure is done. Suppose id(c) = id(p�), we can match the subtree rooted
at c to a subtree rooted at p�. p� must be the first appearance of id(p�), so its children must be
labeled. We can copy (p�)’s children’s ids to c’s children according to the matching. By applying
this operation recursively, all nodes will be labeled. When two nodes take the same id, they will have
same neighbor set. So this tree is consistent with the definition of a BFS-tree, so we can recover an
anchored graph from it.

Proof of Theorem 12

Proof. Given the same input, the GIN computes representations equivalent with 1-WL colors (Xu
et al., 2018) as well as WL-trees. Since the set of colorings is known, we can permute node colors
of WL trees to get all WL-trees that can be compute from all colorings in C. Therefore, We can
identify GIN outputs from a WL-tree.

Proof of Theorem 13

Proof. The GIN computes representations that are equivalent to 1-WL colors (Xu et al., 2018), and
thus they are also equivalent to WL-trees. So there is an injective mapping between the inputs to the
outer layer GNN and colors used by the 1-WL algorithm.

At the same time, the outer-layer GNN also has the same ability as the 1-WL algorithm, so the
injective mapping is able to be maintained across GNN layers/1-WL iterations. Therefore, the final
output will be equivalent to 1-WL colors and WL-trees.

13


