A APPENDIX

Proof of Lemma 2.

Proof. Suppose the root of the tree is τ , and $id(\tau) = i$. Let t be a tree node at level 1, and j = id(t). Then $j \in \mathcal{N}(i)$ in G. We consider a rotation operation and move t up to be the root, then τ a child of t. Now all t's children correspond to $\mathcal{N}(j)$. After rotation, t becomes the parent of τ . Now τ 's children correspond i's neighbors except j. All other tree nodes do not need rearrangement because their parent do not change.

In the new tree, the bottom two levels of decendents of τ are now at level ℓ and $\ell + 1$. Then we prune these decendents and get a tree with depth $\ell - 1$. This new tree satisfies the definition of the BFS-tree, and thus is the BFS-tree with depth $(\ell - 1)$ obtained at $j \in G$.

For a node t at level k, then we need to rotate its k - 1 ancestors to be roots, and then rotate t to be the root. Each rotation reduces the depth of the tree by 1. After k rotations, we will get the BFS-trees $B_i^{\ell-k}$.

Proof of Lemma 4

Proof. Suppose we move a tree node t to be the root of T_i^{ℓ} . The WL-tree T_i^{ℓ} must be derived from a BFS-tree. Suppose t corresponds to a node t' in the BFS-tree. Then moving t' gives a new BFS-tree, which has the same structure the tree obtained by moving t to be the root, so the latter one is the WL-tree derived at id(t').

Proof of Theorem 5.

Proof. We construct the bijection by induction. We consider $\ell = 0$ in the base case: an anchored graph S_i^0 is a singleton with the node in color c_i , then *i* gets color $c_i^0 = c_i$ from the 1-WL algorithm, and the CR-tree T_i^0 is also a singleton in color c_i . The bijection maps a color c_i^0 to a singleton in the same color.

Then we assume that the statement is true for ℓ , then we show that such an injective mapping exists for $\ell + 1$. That is, if both $T_i^{\ell+1}$ and $c_i^{\ell+1} = (c_i^{\ell}, \{\{c_j^{\ell} : (i, j) \in E\}\})$ are both computed from an anchored subgraph $S_i^{\ell+1}$, then we can read out $T_i^{\ell+1}$ or $c_i^{\ell+1}$ from the other. We first consider mapping $T_i^{\ell+1}$ to the color $c_i^{\ell+1}$. By the assumption, the color c_i^{ℓ} can be read from T_i^{ℓ} from the assumption. For each $j \in \mathcal{N}(i)$, the color c_j^{ℓ} is computed from S_j^{ℓ} . From the Lemma above, we can identify all T_j^{ℓ} -s for all $S_j^{\ell}, j \in \mathcal{N}i$. Then we map each W_j^k to c_j^k for each $j \in \mathcal{N}i$ by the assumption. With all these components we can map W_i^{k+1} to c_i^{k+1} .

Now we consider the mapping from c_i^{k+1} to W_i^{k+1} . From c_i^k , we have W_i^k , which is the CR-tree with depth k. We only need to expand one more level from W_i^k . For each leaf node at level k in W_i^k , it must appear in one of $\{W_j^k\}$ at level k-1. We can find all its neighbor colors there $\{\{c_0, \ldots, c_k\}\}$. Suppose the color of parent is c_p , then we just creat nodes as children of this node. These children take colors $\{\{c_0, \ldots, c_k\}\} \setminus c_p$.

Proof of Theorem 6

Proof. In the construction of the BFS-tree, a node can only have children corresponding to children from S_i . Therefore, the BFS-tree with depth $\ell' = \ell$ is the same as S_i . If $\ell' < \ell$, then the BFS-tree can only include the top ℓ' levels of S_i . When $\ell' > \ell$, a leaf node cannot expand to any children in the BFS-tree, the BFS-tree will still be S_i .

Proof of Corollary 7

Proof. For each node in a cycle in the graph S_i , the corresponding tree node can always add at least one node as its child. The child can be expanded in the same way, so the depth of the WL-tree can be arbitrarily deep.

Proof of Corollary 8

Proof. With Theorem 6 and Corollary 7, T_i^{k+1} and $T_{i'}^{k+1}$ cannot have the same depth, so they cannot be isomorphic.

Proof of Corollary 9

Proof. We only need to reverse the argument in Theorem 6 to show part i). If S_0 is a tree, then it has the same structure as its WL-tree, so S_0 has the same structure as T_0^{ℓ} . For ii) we only to use the conclusion from Corollary 7. If $\ell > d$, then S_0 must be a tree, and then by i), S_0 must be T_0^{ℓ} .

Proof of Theorem 10

Proof. The algorithm must converges because a tree node appears at most once in the queue.

After the labeling procedure is done. Suppose id(c) = id(p'), we can match the subtree rooted at c to a subtree rooted at p'. p' must be the first appearance of id(p'), so its children must be labeled. We can copy (p')'s children's ids to c's children according to the matching. By applying this operation recursively, all nodes will be labeled. When two nodes take the same id, they will have same neighbor set. So this tree is consistent with the definition of a BFS-tree, so we can recover an anchored graph from it.

Proof of Theorem 12

Proof. Given the same input, the GIN computes representations equivalent with 1-WL colors (Xu et al., 2018) as well as WL-trees. Since the set of colorings is known, we can permute node colors of WL trees to get all WL-trees that can be compute from all colorings in C. Therefore, We can identify GIN outputs from a WL-tree.

Proof of Theorem 13

Proof. The GIN computes representations that are equivalent to 1-WL colors (Xu et al., 2018), and thus they are also equivalent to WL-trees. So there is an injective mapping between the inputs to the outer layer GNN and colors used by the 1-WL algorithm.

At the same time, the outer-layer GNN also has the same ability as the 1-WL algorithm, so the injective mapping is able to be maintained across GNN layers/1-WL iterations. Therefore, the final output will be equivalent to 1-WL colors and WL-trees.