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This document serves as an extended exploration of our research, offering an overview of our methods
and results. In Appendix A, we provide a detailed account of the training process, datasets, model
structures, and the specific configurations used to create the optimal triggers employed in the proposed
Irreversible Backdoor Attack (IBA) for Federated Learning (FL). Moving beyond the technical details,
in Appendix B, we present a wealth of experimental results showcasing the effectiveness of IBA in
bypassing common FL defenses. Appendix C offers a closer look at ablation studies, which reinforce
IBA’s long-lasting impact and its ability to withstand diverse scenarios even after the removal of
the backdoor, distinguishing it from other state-of-the-art attacks. In Appendix D, we delve into the
limitations of IBA, shedding light on potential areas of improvement. Finally, in Appendix E, we
engage in a discussion about the broader implications of IBA.

A Training Details and Experimental Settings for IBA in FL

We conduct all the experiments using PyTorch version 2.0 [13] and refer to the frameworks provided
by [17] and [18] for implementing backdoor attacks in FL.

A.1 Dataset

We uses three datasets that are widely used for image classifications task with non-i.i.d. data
distribution, i.e., MNIST, CIFAR-10 and Tiny ImageNet. The data description and parameter setups
are summarized in Table 1.

• MNIST [3]: dataset of 60,000 small square 28×28 pixel grayscale images of handwritten
single digits between 0 and 9.

• CIFAR-10 [6]: is an established computer-vision dataset used for object recognition. It is
a subset of the 80 million tiny images dataset and consists of 60,000 32×32 color images
containing one of 10 object classes, with 6000 images per class.

• Tiny ImageNet [7]: Tiny ImageNet contains 110000 images of 200 classes (550 for each
class) downsized to 64×64 colored images. Each class has 500 training images and 50 test
images.

∗Work done while DTN was at VinUniversity.
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Table 1: Dataset description and parameters under IBA backdoor attack.

MNIST CIFAR-10 Tiny ImageNet

# Samples 60,000 60,000 110,000

Total Clients N = 200 N = 200 N = 200

Clients/Rounds K = 10 K = 10 K = 10

Model LeNet VGG-9 Resnet-18
[8] [15] [5]

A.2 Experimental setup.

We implemented the proposed IBA attack on a single machine with the following hardware config-
uration: an 64-core Intel Xeon CPU with a GeForce RTX 3090 GPU to accelerate training. Our
codebase primarily relied on the PyTorch 2.0 framework for deep learning tasks. Additionally, we
utilized utilities from Scikit-learn, Pandas, and Matplotlib to support various functionalities in our
experiments. Our simulated FL environment follows [1, 17] where for each FL round, the data center
selects a subset of available clients and broadcasts the current model to the selected clients. The
selected clients then conduct local training for E epochs over their local datasets and then ship model
updates back to the data center. The data center then conducts model aggregation (e.g. weighted
averaging in FedAvg). The FL setups in our experiment are inspired by [17, 1, 18], the number of
total clients, number of clients participates per FL round, and the specific choices of E for various
datasets in our experiment are summarized in Table 2. For the task with MNIST, we retrain a LeNet
model from scratch. Regarding tasks with CIFAR-10/Tiny ImageNet datasets, our FL process starts
from a VGG-9 model with 77.68% test accuracy, a Resnet18 model with 63.35% accuracy top-1
accuracy, respectively.

Table 2: Dataset specifications and parameters

Dataset Classes Features Model Benign lr/E Poison lr/E
Batch size/

Test batch size
MNIST 10 784 LeNet 0.01 / 2 0.01 / 2 32/256
CIFAR-10 10 1024 VGG-9 0.02 / 2 0.02 / 2 32/256
Tiny ImageNet 200 4096 Resnet-18 0.001 / 2 0.001 / 2 256/256

Followed by [17], we simulate heterogeneous data partitioning by sampling pk ∼ DirK(φ) and
allocating a pk,i proportion of Dk of class k to local user i. Note that this will partition D into K
unbalanced subsets of likely different sizes. Under this strategy, fraction of φ samples of each class is
assigned to group clients associated with this class, and the remaining is randomly distributed to others.
As a result, non-IID degree φ is zero means the data is distributed completely IID (homogeneity),
likewise, the data distribution is absolutely non-IID when φ equals one. The value of φ is set to be
0.5 in all our experiments, which is align with prior works [17, 18].

A.3 Hyper-parameters used with IBA.

Backdoor learning’s harmony-controlling parameters α, β. When training the classifier, the
parameters α and β regulate the mixing strengths of the loss signals from the clean and backdoor data.
In our studies, we find that if α is greater than β, the classifier’s performance on clean data quickly
converges to the vanilla classifier’s optimum. When β is more significant than α, the classifier’s
performance on the backdoor data rapidly achieves the perfect value. However, if the trigger generator
G is properly trained, the backdoor classifier converges to the same optimal performances on both
clean and backdoor data. For these reasons, in the remaining part of the paper, we assume α = 0.5
and β = 0.5 for the MNIST and CIFAR-10 datasets. Tiny ImageNet, on the other hand, is a difficult
dataset to backdoor, especially when the data distribution is highly non-iid, because the local model
is prone to over-fitting. To circumvent this, we used α = 0.7 and β = 0.3 in our studies with this
dataset.
Learning rate ηξ̂ of attack model G. This setting governs the trigger generator’s speed of learn-
ing. We observed that t ηξ̂ = 0.0001, 0.0005 are appropriate for MNIST/CIFAR-10 and Tiny
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ImageNet, respectively, by empirical experiments. The learning rate ηξ̂ is suggested to be in range
(0.0001, 0.001).

Number of local training epoch ε for G. In both phases, the trigger generator G is updated for
predefined ε iterations. This parameter should be adjusted accordingly to the convergence speed
of the targeted dataset. For instance, with the MNIST dataset, we keep the value for ε at 3 for
both phases. Regarding CIFAR-10 and Tiny ImageNet, ε is set to 10 and 7, respectively. Since the
training of generator G is completely exclusive at the client side and is performed after local model
training is finished, it can be conducted even when the adversary A does not participate in the training.
Furthermore, this factor can be manually adjusted to help the backdoor be more effective, i.e., the ε
can be increased to 10 for Tiny ImageNet at the retraining steps of the attack model.

Expected backdoor accuracy λ. This value serves as a threshold for transitioning from phase
1 (attack model’s warm-up) to phase 2 (backdoor insertion). When the adversary engages in the
training, the local backdoor accuracy is calculated, and the adversary enters the second phase if it is
larger than the λ threshold. In all experiments, we used the value λ = 0.85. The smaller the λ, the
faster the local model will be poisoned. However, a low threshold may make it difficult for the local
model to learn both the backdoor and the main job, resulting in a considerable deviation from the
local model to the benign ones.

Decay rate λξ. λξ is the decay rate controling how fast the reduction by round is. The larger λξ

is, the faster the backdoor images become stealthy and the harder it is for the generative model to
learn to perform well, i.e., it may overfit with the local data. Therefore, via empirical study, we fix
the value of λξ to be 0.001 to balance out the two factors mentioned above. Our suggestion is that
(1− λξ) should be set in the range [1× (1− γ); 3× (1− γ)], where γ is the decay factor of learning
rate, i.e., in our inherited setup, γ is set to be 0.998.

Norm-bound for PGD attack. The norm-bound for PGD attack should be selected based on the
observation of the L2-norm variation of the global model by round. Following the work [1] and [17],
the norm bound is set to be 2 for the CIFAR-10/Tiny ImageNet dataset and 1.5 for the MNIST dataset.

A.4 Hyper-parameters used within the defense mechanisms.

With the implementations of Krum/Multi-Krum [2], FoolsGold [4], RFA [14], RLR [12],
NDC/NCA [16], the majority of hyper-parameters are inherited with minor modifications. There are
several parameters that are adjusted to make experiment settings more appropriate. Other hyperpa-
rameters without mention are setup as in the original works.

Norm-clipping threshold in NDC/NCA [16]. In our experiments, we set the norm difference
threshold at 2, which is followed the previous work [17].

Robust threshold θ of RLR [12]. The value of θ in the RLR method is specified to be any value
between [K · F + 1, K −K · F ], where K is the number of participants each round and F is the
proportion of malicious clients, according to the authors. Because there is limited to one malicious
client each round, the value of θ is set to 1 throughout the experiments with all datasets.

Estimated number of Byzantine clients F in Krum/Multi-Krum [2]. Since the experiments are
conducted under fixed-frequency backdoor attacks with maximum of one malicious client, so F is set
to be 1.

B Additional experiments IBA

B.1 Stealthiness of IBA under defenses

The evaluation of the backdoor attack in FL was conducted using three datasets: MNIST, CIFAR-10,
and Tiny ImageNet. The experimental results, including the performance of the IBA under various
backdoor defenses, are summarized in Table 3. The fluctuation of MAs and BAs by rounds of IBA
under these defenses is illustrated in Figure 1, 2, 3. In addition, the performance of IBA combined
with different model poisoning techniques with MNIST and Tiny ImageNet datasets can be observed
in Figure 4, 5.
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Table 3: Robustness of IBA under mainstream backdoor defenses in FL

Dataset Defense IBA (Standalone) IBA + PGD IBA + PGD + MR

MA BA MA BA MA BA

CIFAR-10

RFA 81.97% 98.03% 80.71% 96.7% 81.25% 98.17%
NCA 84.64% 95.11% 84.77% 98.73% 84.21% 99.12%
Krum 81.65% 27.07% 81.59% 50.33% 81.44% 65.98%

Multi-krum 82.40% 79.5% 83.78% 97.16% 83.25% 95.02%
RLR 83.91% 63.94% 82.59% 65.14% 82.85% 47.07%

FoolsGold 84.90% 76.46% 85.02% 76.78% 82.90% 84.36%
No-defense 84.28% 85.63% 84.35% 83.80% 83.81% 97.79%

MNIST

RFA 98.04% 100.0% 98.89% 99.64% 98.04% 100.0%
NCA 98.66% 100.0% 98.97% 99.69% 98.62% 100.0%
Krum 97.60% 14.13% 97.82% 87.48% 97.44% 17.29%

Multi-krum 97.98% 81.27% 99.01% 80.18% 98.97% 98.82%
RLR 90.91% 12.60% 87.48% 18.74% 90.03% 29.97%

FoolsGold 98.87% 80.08% 99.10% 96.43% 99.05% 99.83%
No-defense 99.98% 98.03% 98.81% 99.73% 98.84% 99.97%

Tiny ImageNet

RFA 65.09% 90.70% 65.07% 88.65% 65.05% 92.74%
NCA 65.00% 91.97% 64.94% 93.67% 64.97% 93.33%
Krum 63.53% 86.57% 63.3% 85.67% 63.65% 86.36%

Multi-krum 65.16% 87.03% 65.08% 87.57% 65.14% 85.16%
RLR 63.28% 89.67% 63.29% 89.09% 63.3% 86.52%

FoolsGold 64.84% 91.39% 64.8% 89.9% 64.73% 85.72%
No-defense 65.21% 94.51% 65.22% 85.66% 65.21% 93.53%
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Figure 1: Effectiveness of stand-alone IBA against mainstream defenses for FL on MNIST.

Based on the observations for MNIST, CIFAR-10, and Tiny ImageNet datasets, we can summarize
the effectiveness of IBA under different FL defenses as follows:

• Stand-alone IBA: The stand-alone IBA attack demonstrates its capability to circumvent
certain defenses and achieve high backdoor accuracy. Specifically, it can bypass NCA, Multi-
Krum, and FoolsGold defenses, resulting in backdoor accuracies ranging from approximately
60% to nearly 100%. However, Krum defense poses the most significant challenge for the
stand-alone IBA. Krum replaces the global model with only the most representative local
model in each round, leading to substantial fluctuations in the global model and a decline in
primary task accuracy. This mechanism hampers the learning process of the attack model as
it heavily relies on the stability of the global model.

• Hybrid Attacks: The combination of IBA with partial model poisoning, specifically PGD-
based techniques, enhances the performance of IBA against challenging defenses. The
inclusion of PGD-based model replacement improves the backdoor accuracy, ranging from
10% to 20%. Notably, the improved IBA achieves almost 100% backdoor accuracy against
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Figure 2: Effectiveness of stand-alone IBA against mainstream defenses for FL on CIFAR-10 dataset.
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Figure 3: Effectiveness of stand-alone IBA against mainstream defenses for FL on Tiny ImageNet.

the Multi-Krum defense. This demonstrates the effectiveness of the hybrid approach in
enhancing the bypassing capabilities of IBA.

• Defense Trade-offs: While the proposed IBA can bypass most existing defenses and achieve
significant backdoor accuracy, certain defenses such as RLR and Krum impose trade-offs
between defensive efficiency and primary task performance. For example, under the RLR
defense, there is a 10% drop in accuracy on the MNIST dataset, raising concerns about its
feasibility in this scenario. These trade-offs highlight the challenges faced when balancing
defense effectiveness and maintaining acceptable primary task performance.

In summary, the evaluation of IBA under different FL defenses reveals the circumvention capabilities
of stand-alone IBA against certain defenses and the improved performance achieved through hybrid
attacks. However, the trade-offs between defense efficiency and primary task performance should be
carefully considered when selecting and deploying defense mechanisms in practical scenarios.
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Figure 4: The improved stealthiness of IBA when combined with partial model poisoning attacks
under various defenses for MNIST.
Observations with Tiny ImageNet. As shown in Table 3, IBA attains consistent performance on
the Tiny ImageNet. Even against difficult defenses like RLR and Krum, IBA can obtain BAs of
approximately 85%. The fundamental reason is that the Resnet-18 model is significantly larger
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Figure 5: The improved stealthiness of IBA when combined with partial model poisoning attacks
under various defenses for Tiny ImageNet dataset.

than the LeNet and VGG-9 models used in the MNIST/CIFAR-10 dataset, therefore when the
local model is poisoned, the difference between poisoned neurons and benign ones may come
unpredictable. Furthermore, Tiny ImageNet contains 200 classes, and data distribution amongst
clients is substantially divergent, resulting in a large variance between local models. As a result, the
performance of these defenses may be negatively impacted. In addition, the main accuracy of the
classification task with Tiny ImageNet does not improve significantly under such FL settings, which
is analogous with the observation in [18], which is also a benefit for IBA to learn the optimal trigger
generation by rounds.

B.2 Stability of IBA under different settings

Results under a different number of clients.

We adopt standard settings with 10 clients, as seen in previous works [1, 18]. However, our study
also explores scenarios with different client counts, specifically 5 and 20 clients. Remarkably, IBA
consistently performs well across these variations, as evident in Figure 6. In this experiment, we
extended our evaluation with FLAME [11] defense, which . . . . The results show that even stand-alone
IBA can bypass this defense, i.e., IBA can achieve BAs of 99% with the task of MNIST for both
cases of K (K is the number of clients selected in each round): 5 and 20.

Results under different settings of data distribution. In FL, data distribution across parties is
typically non-i.i.d. Following established protocols [1, 17, 18], we generate diverse data distributions
using Dirichlet distributions [10], i.e., pk ∼ DirK(φ) with different hyperparameter φ. Then, we
allocate a pk,i proportion of class k to local client i. The result is the whole dataset will be partitioned
into K unbalanced subsets of likely different sizes. As a result, a non-IID degree φ is zero means the
data is distributed completely IID (homogeneity), likewise, the data distribution is non-IID when
φ equals one. Without any clarification, we set up pk ∼ DirK(0.5) for MNIST, CIFAR-10, and
pk ∼ DirK(0.01) for Tiny Imagenet.

We explore various values of φ ∈ (0.2, 0.5, 0.7) within the Dirichlet distribution, simulating transi-
tions from non-i.i.d. to i.i.d. data distributions for image datasets. Our evaluation encompasses two
distinct datasets, highlighting the stability of IBA across diverse distributions. This underscores the
practicality and resilience of IBA when employed in conventional FL settings. Table 4 below presents
the results of IBA under different φ values in the Dirichlet distribution.

Table 4: Main Accuracy (MA) and Backdoor Accuracy (BA) of IBA under different α values in the
Dirichlet distribution.

Dataset φ = 0.2 φ = 0.5 φ = 0.7

MA BA MA BA MA BA

MNIST 99.01% 98.89% 99.98% 98.03% 98.99% 98.81%
CIFAR-10 82.73% 83.26% 84.28% 85.63% 84.53% 88.93%
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Figure 6: The performance of IBA (stand-alone) under different numbers of participating clients K.

B.3 IBA in the scenario of fixed-pool attacks

In this experiment, we investigate the performance of IBA under fixed-pool backdoor attacks, in
which A compromises a fraction of clients in FL, i.e., ϵ. In this scenario, each compromised client has
its local generator, and the global generator is calculated using the average operator of the parameters
of the local generators. This concept resembles the FedAvg aggregator. The experiment in CIFAR-10
demonstrated a clear trade-off between MA and BA as depicted in Figure 8. As the number of
compromising clients increased, BA also increased while MA gradually decreased. We can see
the impact of the compromising ratio in Figure 7, in which the higher ϵ can significantly boost the
backdoor effect with both experimented datasets. Notably, even with small fraction of compromised
clients, i.e., 2.5%, IBA can achieve at least more than 85% of BA.

To maintain a balance between MA and BA, a compromising ratio of ϵ = 10% was chosen for further
analysis. The results presented in Figure 9 revealed that there were no significant differences in
the MA and BA values across the three datasets (MNIST, CIFAR-10, and Tiny ImageNet) with a
compromising ratio of ϵ = 10%. Significantly, the participation of multiple malicious clients leads
to faster convergence of the global attack model. This observation highlights the consistency of the
IBA approach in maintaining comparable levels of MA and BA across different datasets and attack
scenarios.

B.4 Durability Evaluation

We evaluate the backdoor effect of the proposed IBA as well as a SOTA backdoor attack, namely,
DBA [18]. The scenario is that we allow the malicious client(s) to participate in the training
continually over a set number of rounds. We conducted the comparison in the same FL environment
simulation and training parameters such as batch size and number of local training epochs E are
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Figure 7: Backdoor accuracy’s variation by round for different ϵ.
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Figure 9: By-round accuracy of fixed-pool IBA
with compromising ratio ϵ = 10%.

kept the same. With the DBA attack, four malicious clients, each with its own local trigger, will
participate in the training for every 10 rounds until round 400/ 200 for the CIFAR-10/ MNIST datasets,
respectively. In terms of IBA, we allowed a single malicious client to participate in the training with
the same frequency until round 400/ 200 for CIFAR-10/ MNIST datasets. The malicious client(s) are
then completely eliminated from the training process.

Table 5: Performance of DBA and IBA after the malicious client(s) are removed from the training.

Dataset Method Stopping round 50 rounds later 100 rounds later 150 rounds later 200 rounds later 250 rounds later

BA (%) BA % BA (%) BA (%) BA (%) BA (%)

MNIST IBA 99.94 100.00 99.84 99.90 99.52 99.57 99.46 99.52 99.18 99.24 99.08 99.14
DBA 99.70 100.00 98.44 98.74 91.44 91.71 79.88 80.12 65.04 65.24 38.64 38.76

CIFAR-10 IBA 87.51 100.00 86.22 98.53 85.32 97.50 84.89 97.00 83.19 95.06 83.16 95.03
DBA 69.63 100.00 65.55 94.14 63.59 91.32 55.39 79.55 55.07 71.91 42.55 61.11

As demonstrated in Table 5, IBA delivers superior backdoor efficiency and durability within the same
attacking duration. After round 400, the BA of DBA drops quickly compared to IBA. We can see the
most significant difference towards the end of the comparison duration, i.e., at round 700, the BAs of
IBA and DBA are ∼ 85% and ∼ 45%, respectively. After 250 rounds of elimination, the BA of DBA
retains 38.76% of its peak value, but the comparable value of IBA is 99.14%. Furthermore, while the
BA can preserve more than 60% of its peak value with the CIFAR-10 dataset, the highest accuracy
it can attain is significantly lower than IBA, i.e., less than 20%, which is consistent with the prior
conclusion of the original when the scaling factor is 1.

To this end, the IBA outperforms the DBA in terms of durability and efficiency, demonstrating the
more superior impact of learning optimal trigger generation over the conventional homogenous
trigger in prior studies.
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C Ablation Study

C.1 Extended Analysis of IBA’s Longevity

We conducted additional experiments to assess the durability of our proposed method, IBA, in
comparison to other techniques, namely 3DFed [9] and Edge-case [17]. Notably, our approach
consistently outperformed the alternatives in terms of durability, as illustrated in Figure 10. For a fair
assessment of these methods in scenarios characterized by a low participation rate (specifically, an
attack frequency of 10 rounds), we employed a fixed-frequency attack. Our observations revealed that
the Backdoor Accuracy of IBA exhibited remarkable stability, with negligible fluctuations persisting
until the round of 1300. This implies that the backdoor effect can be maintained unchanged for more
than 1000 rounds, highlighting the robustness and effectiveness of our approach.

Figure 10: Durability of IBA after backdoor removal with MNIST dataset

C.2 Neurotoxin Comparision

Since Neurotoxin [19] is a SOTA model poisoning technique in FL, we conducted additional experi-
ments to investigate the efficiency it when it is used as an add-on technique for existing FL backdoor
attacks. Specifically, we consider two combinations: (i) centralized backdoor attack (CBA) with
Neurotoxin and (ii) distributed backdoor attack (DBA) with Neurotoxin. In the experiment with CBA,
the adversary uses a patched trigger to create the backdoor attack and participate with a frequency of
10 rounds. This backdoor trigger is broadly employed in prior works [19, 1]. The second experiment
is conducted with four malicious clients participating in every 10 rounds and each client has its own
local backdoor trigger which partially constructs the global trigger. Then, each malicious client uses
Neurotoxin as a model poisoning technique during the local training process. These experiments are
studied under the same setting as our method (1 attacker participating in every 10 rounds).

As observed from Figure 11b, the combination of DBA and Neurotoxin does not have a good effect
on extending the backdoor effect. In specific, the BA reduces gradually after round 600, at which
point the adversaries leave the training. Moreover, this combination even brings down the main task’s
accuracy. On the other hand, as shown in Figure 11a, our proposed model poisoning method brings
better durability compared to the original Neurotoxin, i.e., after round 400 at which the adversary
leaves the training, the IBA+Neurotoxin’s BA drops more quickly.

C.3 Longevity of 3DFed

To shed more light on this aspect, we conducted a comparative analysis with another SOTA backdoor
attack in FL,i.e., 3DFed [9]. 3DFed is designed as a multi-layered evasion structure that obtains
feedback (i.e., gradient updates) from the global model on the attack to find the redundant neurons
to further leverage norm-clipping and masking techniques to enhance the robustness of the attack.
Our investigation concentrated on assessing the method’s resilience post-attack over 200 rounds. As
observed from Figure 12, 3DFed revealed that the model’s proficiency in learning backdoor tasks
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(a) CBA + Neurotoxin (b) DBA + Neurotoxin

Figure 11: Further comparison of IBA and Neurotoxin

eroded significantly. After 50 epochs and reaching round 250, accuracy plummeted from 85.98%
to 9.69% on MNIST, and from 75.92% to 6.06% on CIFAR-10. Since the key to 3DFed’s success
is dependent on the feedback from the global model to adapt their attack parameters automatically,
when the adversarial clients are removed from the training, the backdoor effect will be diluted. In
stark contrast, our IBA method demonstrated remarkable persistence. Even at the round of 450,
accuracy remained below 1% for MNIST and below 5% for CIFAR-10. Notably, when compared to
3DFed and DBA, IBA consistently outperformed them, as they exhibited an incremental accuracy
decline beyond the round of 450. This underscores IBA’s exceptional efficacy in upholding model
robustness amidst adversarial conditions.

(a) Durability of 3DFed on the MNIST dataset (b) Durability of 3DFed on the CIFAR-10 dataset

Figure 12: Durability of 3DFed Backdoor Attack

C.4 Edge-case Backdoor Attacks

Even though we were initially interested in the limitations of existing artificial backdoor attacks (i.e.,
trigger-based backdoor attacks), we did one more study on the durability of trigger-less backdoor
attacks (i.e., the edge-case at [17]) to show that our proposed attack IBA has a longer lifespan. One
can see from Figure 13 the gradual degradation of the edge-case backdoor attack when the adversary
is removed from round 400.

D Limitations

To the best of our knowledge, IBA is the first work that investigates realistic assumptions, impercepti-
bility, and durability in FL backdoor attacks utilizing optimum trigger-generating function learning.
However, the adversary must be able to insert digitally generated triggers into the images before
providing them to the classifier. Additionally, although the performance of IBA is only proved with
image classification tasks, the idea of learning a trigger-generating function can be expanded to other
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Figure 13: Durability of Edge-case Backdoor Attacks with CIFAR-10 dataset

domains such as NLP and IoT. Therefore, extending the learnable trigger situation into physical
attacks and its applicability in other domains is an intriguing future option. Such assessments can
help determine if IBA is only a theoretical phenomenon or a real-world threat.

Besides, the distributed nature of FL has yet to be fully exploited in IBA because we concentrate on
dealing with the attack of a single malicious client. A better cooperatively attacking approach may be
researched further to produce even more impressive results in backdooring the model.

Because this is the first effort in this area, there is no current defense that addresses the scenario of
IBA, and our studies indicate that the existing common defensive approaches are ineffective against
IBA. On the other hand, these experiments do not reasonably or effectively evaluate the performance
of our approach. To this end, we encourage future research on developing more powerful defenses to
combat our stealthy backdoor attack with significantly enhanced adversarial capabilities.

E Societal Impacts

Our work is likely to increase the awareness and understanding of such vulnerability when training
neural networks in the FL setting. The proposed attack may bring harm to existing FL applications if
it is not appropriately used or stronger mitigation methods are not available. We believe our work is
an important step towards understanding the full capability of backdoor attacks in the FL environment.
We hope that this finding will, in turn, facilitate further developments of secure FL models and more
powerful defensive solutions.
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