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Abstract
We address the online unconstrained submodular maximization problem (Online USM), in a setting
with stochastic bandit feedback. In this framework, a decision-maker receives noisy rewards from
a non monotone submodular function taking values in a known bounded interval. This paper pro-
poses Double-Greedy - Explore-then-Commit (DG-ETC), adapting the Double-Greedy approach
from the offline and online full-information settings. DG-ETC satisfies a O(d log(dT )) problem-
dependent upper bound for the 1/2-approximate pseudo-regret, as well as a O(dT 2/3 log(dT )1/3)
problem-free one at the same time, outperforming existing approaches. In particular, we intro-
duce a problem-dependent notion of hardness characterizing the transition between logarithmic
and polynomial regime for the upper bounds.
Keywords: Submodular maximization; combinatorial optimization; stochastic bandits; logarith-
mic regret.

1. Introduction

1.1. Context and problem formulation

Several real-world settings can be cast as combinatorial optimization problems over a finite set.
Without some assumptions on the utility function to be maximized and/or the constraints to be sat-
isfied, such problems cannot be solved in polynomial time. In practice, different types of assump-
tions and constraints can be introduced to make these problems manageable, even approximately.
One can, for example, assume the utility to be linear, but in some cases even this already strong
assumption can be helpless to make the problem easier.

This paper focuses on the cases where we maximize a submodular set-function, meaning that
it satisfies a “diminishing marginal gains” property. We consider the unconstrained setting, where
the whole combinatorial super-set is available and the utlitity may be nonmonotone (if we know
that it is monotone, the solution is straightforward, being either the full or the empty set). We
also place ourselves in a stochastic (combinatorial) bandit setting, where a decision-maker / player
chooses different sets in sequential rounds, and receives noisy rewards. In this framework, a classic
challenge is to balance exploration and exploitation, but the problem of managing the combinatorial
complexity of the action set is stacked over it. In particular, a good strategy should efficiently
leverage the underlying structure of the reward – submodularity in this case – by monitoring relevant
quantities.
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Problem formulation and assumptions. We consider a finite set of d ∈ N∗ items D. The player
has access to actions from the whole superset P(D) and plays for an horizon of T ∈ N∗ rounds.
The player receives noisy rewards from a non monotone submodular set-function f : P(D)→ [0, c]
with c > 0. At each round t ∈ [T ] = {1, . . . , T}, the player chooses an action At ∈ P(D) and
receives

Zt = f(At) + ηt , (1)

where ηt is a random variable. Let σ > 0 (known), we assume that ηt is σ2-sub-Gaussian condi-
tionally to the past (including the possibly random process generating At).

The algorithms that we study in this paper all consider items sequentially. For convenience, we
identify D with [d] and assume an arbitrary ordering, but a player with prior knowledge could try to
optimize over permutations.

1/2-Approximate pseudo-regret minimization. The objective of the player is to maximize its
cumulative rewards over the T rounds. As it is common in the bandit literature, we look instead at a
pseudo-regret, neglecting the contribution of the noise (ηt)t∈[T ]. Besides, rather than looking at the
exact pseudo-regret, we minimize an 1/2-approximation defined as

RT =

T∑
t=1

[1
2
f(A∗)− f(At)

]
, (2)

where A∗ ∈ argmaxA⊆D
{
f(A)

}
.

Considering approximate regrets is usual in settings where we have access to an oracle solv-
ing the offline optimization approximately (Chen et al., 2013). In our framework, the 1/2 factor
comes from the impossibility of solving the offline unconstrained submodular maximization prob-
lem (USM), with a competitive ratio better than 1/2, using a polynomial number of calls (Feige
et al., 2011).

In the following, if not specified, the expressions “pseudo-regret” or just “regret” refer to the
1/2-approximate pseudo-regret.

1.2. Contributions

We propose a novel algorithm Double-Greedy - Explore-then-commit (DG-ETC) for the online
unconstrained submodular maximization problem (Online USM), with stochastic bandit feedback
(Section 3). We introduce a new notion of hardness for this problem (Section 4.1), and prove
that DG-ETC satisfies both a logarithmic problem-dependent (hardness-dependent) upper bound
for the 1/2-approximate pseudo-regret, as well as a worst-case O(dT 2/3 log(dT )1/3) upper bound
(Sections 4.2 and 5). These bounds are satisfied both with high-probability and in expectation (The-
orem 2), and rely on the stationarity of the stochastic setting. Asymptotically, DG-ETC allocates
a logarithmic, hardness-dependent, number of rounds to the design of a strategy that compensates
the randomness errors with per-round negative losses (therefore, with gains). In practice, DG-ETC
exploits the looseness of the 1/2-approximation ratio in non-adversarial cases, and we argue that
this kind of strategy could also be applied to other settings involving approximations.
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1.3. Related works

In this section, we mention the closest related works, concerning combinatorial bandits, offline
(unconstrained) submodular maximization, as well as its online and bandit versions. Supplementary
discussions with other lines of work can be found Appendix A (offline and online minimization,
constrained maximization, and other online maximization problems).

Combinatorial bandits. The recent monograph by Lattimore and Szepesvári (2020) makes an
extensive study of bandit problems. We are more particularly interested in settings where the action
space is combinatorial and too big to be explored in its entirety. Chen et al. (2013) (extended by
Chen et al. (2016)) introduces the stochastic semi-bandit framework, and derives results for approx-
imate pseudo-regrets and smooth, monotone aggregation functions. When the aggregation is linear,
the leading factors in the regret upper bounds have been refined in several subsequent works (Kve-
ton et al., 2015; Degenne and Perchet, 2016; Perrault et al., 2020; Zhou et al., 2024). A matching
adversarial semi-bandit setting has also been explored (Ito, 2021; Neu and Valko, 2014). While the
player gets one feedback per chosen item in the semi-bandit setting, the full-bandit (or just “bandit”)
setting with a single feedback per action is more challenging. If the aggregation remains linear, one
could see the problem as a linear bandit and use the corresponding methods, as long as the offline
problem can be solved (Abbasi-Yadkori et al., 2011; Bubeck et al., 2012). However, Considering
a nonlinear aggregation function with a full-bandit feedback remains challenging without further
assumptions (Han et al., 2021).

Unconstrained sumbodular maximization (USM). Several systems can be modeled with a sub-
modular structure in various fields, including economics, game theory and combinatorial optimiza-
tion. As it shares properties similar to both convexity and concavity in continuous optimization
(Lovász, 1983), both viewpoints are of interest. The monograph by Bach (2013) details various
cases where submodular set-functions appear and highlights the parallels between submodular min-
imization and convex optimization. While minimization can be solved in polynomial time, maxi-
mization is more challenging and can in general only be solved approximately (Feige et al., 2011).
A (1 − 1/e)-approximation is possible in the cardinally-constrained monotone case (Nemhauser
et al., 1978), but the unconstrained non monotone setting can only be solved up to a 1/2 approxima-
tion ratio (Feige et al., 2011). In particular, Buchbinder et al. (2012) provides a linear-time approach
reaching this ratio, closing the gap between upper and lower bounds.

Online USM with full-information and bandit feedback. Following the results from Buch-
binder et al. (2014), Roughgarden and Wang (2018) studies the particular case of non monotone,
unconstrained maximization in the online adversarial full-information setting and provides an algo-
rithm satisfying a O(d

√
T ) regret upper bound. Harvey et al. (2020) manages to gain a

√
d factor

by using tools related to online dual averaging and Blackwell approachability. Fourati et al. (2023)
considers a stochastic bandit setting, and proposes an Explore-then-Commit type algorithm satis-
fying a O(dT 2/3 log(T )1/3) regret upper bound. However, Niazadeh et al. (2021) claims a similar
O(dT 2/3) in an adversarial bandit setting. As the latter framework seems significantly more dif-
ficult, one may reasonably wonder if better guarantees can be satisfied in the stochastic setting.
We answer this question positively and propose an algorithm satisfying both logarithmic problem-
dependent and O(d(T log(dT ))2/3) problem-free upper bounds.
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2. Preliminary

In this section, we introduce submodularity, and remind the approach of the Double-Greedy (DG)
algorithm (Buchbinder et al., 2012) on which our DG-ETC is based.

2.1. Submodularity

Submodularity is a “diminishing marginal gains” property, it is formally defined as follows.

Definition 1 (Submodularity) Let D be a finite set and c > 0. A set-function f : P(D) → [0, c]
is said to be (bounded) submodular if, equivalently,

• For all A ⊆ B ⊆ D and i ∈ D , f(B ∪ {i})− f(B) ≤ f(A ∪ {i})− f(A) ;
• For all (A, B) ∈ P(D)× P(D) , f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) .

Besides, f is said to be monotone if for all A ⊆ B ⊆ D, f(A) ≤ f(B). Otherwise, we say that f
is non monotone.

2.2. Double-Greedy for USM

In this section, we outline Double-Greedy Algorithm (DG, Algorithm 1) from Buchbinder et al.
(2012).

Algorithm 1 Double-Greedy (DG from Buch-
binder et al., 2012)

1: Inputs: D .
2: (X0, Y0)← (∅, D) .
3: for i = 1, . . . d do
4: αi ← f(Xi−1 ∪ {i})− f(Xi−1) .
5: βi ← f(Yi−1 \ {i})− f(Yi−1) .
6: pi ← max{αi,0}

max{αi,0}+max{βi,0} .
7: Ki ∼ B(pi) .
8: if Ki then
9: (Xi, Yi)← (Xi−1 ∪ {i}, Yi−1) .

10: else
11: (Xi, Yi)← (Xi−1, Yi−1 \ {i}) .
12: end if
13: end for
14: Return: Xd ⊆ D .

When maximizing a nonmonotone sub-
modular function f , DG works in d steps (one
per item) and considers the items sequentially,
th order being chosen by the user beforehand.

It first initializes a pair of sets X0 = ∅ and
Y0 = D respectively as the empty set and the
full set, and then modifies them sequentially.

At each step i ∈ [d], DG looks at the
“marginal gains” αi and βi respectively corre-
sponding to adding item i to Xi−1 or removing
it from Yi−1 [Line 4-5]. It makes the decision of
either adding or removing the item by sampling
a Bernoulli random variable Ki with parame-
ter pi, defined from the positive part of αi and
βi [Line 6-7]. After the d-th and last step, DG
returns the set Xd, which is identical to Yd by
construction [Line 14].

Overall, DG requires 4d calls to f and satisfies the following guarantee.

Theorem 1 (Buchbinder et al., 2012, Theorem I.2.) Let D be a finite set. Algorithm DG returns
a set S such that

E
[
f(S)

]
≥ 1

2
f(A∗) .

The result being in expectation, one can repeatedly run DG to obtain an acceptable set with a
high enough probability. In particular, we prove the following proposition in Appendix C.
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Proposition 1 Let D be a finite set, δ > 0 and T ∈ N∗ such that T > 2 log(1/δ) . If (Si)i∈[T ] is
the sequence of sets obtained by running independently T times Algorithm DG, then

max
i∈[T ]

f(Si) >
(1
2
− log(1/δ)

T

)
f(A∗) , w.p. 1− δ .

Stochastic bandit setting. In our setting, using DG directly is not possible as we do not have
access to the marginal gains αi and βi but only to noisy estimates. To overcome this difficulty,
Fourati et al. (2023) propose the Randomized Greedy Learning (RGL) algorithm, an Explore-then-
Commit strategy satisfying a O(dT 2/3 log(T )1/3) expected regret upper bound. Similarly to DG,
RGL works in d steps, one per item, each lasting T 2/3 log(T )1/3 rounds. During the i-th step,
RGL estimates the coefficients αi and βi , chooses a set Xi (and Yi) and move on to the next item.
After dT 2/3 log(T )1/3 exploration rounds, RGL commits to the last chosen set Xd .

However, we argue that RGL explores too much, and that logarithmic, problem-dependent regret
upper bounds can be obtained both in expectation and with high-probability,

3. Full-bandit feedback algorithm: Double-Greedy - Explore-then-Commit (DG-ETC)

In this section, we propose Double-Greedy - Explore-then-Commit (DG-ETC), a novel algorithm
for unconstrained submodular maximization (USM) with stochastic full bandit feedback. DG-ETC
builds on insights from Buchbinder et al. (2012), Roughgarden and Wang (2018) and Harvey et al.
(2020). We present the theoretical guarantees of DG-ETC in Section 4, which outperform existing
approaches for this setting.

In the following, the word round refers to a single increment of time t, the word step refers to
the per-item exploration steps (containing several rounds) and the word phase refers to the explo-
ration/exploitation phases (the exploration phase containing one step per item).

3.1. Algorithms presentation

DG-ETC is presented in Algorithm 2, and is built on two subroutines: DG-Sp (Algorithm 3) to
sample sets, and UpdExp (Algorithm 4) to update exploration parameters.

Double-Greedy - Explore-then-Commit (DG-ETC, Algorithm 2). Algorithm DG-ETC is an al-
gorithm implementing an Explore-then-Commit type strategy. It takes as inputs the set of items D,
the range of f c > 0 , the sub-Gaussian parameter of the noise σ > 0, as well as the horizon T ∈ N∗

and a confidence level δ ∈ (0, 1) . It first performs d exploration steps (one per item in D) [Lines
12 to 26], each lasting at most 4τmax rounds where

τmax = T 2/3 log(dT )1/3 . (3)

Contrarily to RGL (Fourati et al., 2023), the duration of each exploration step is problem-adaptive,
and can be considerably smaller than the aforementioned worst case (See Section 5.3). It then
spends the rest of the rounds (at least T 1/3 log(dT )2/3 ones) exploiting the collected information
[Lines 27 to 32]. During this phase, it does not play a fixed set, but repeatedly samples random sets
based on d Bernoulli random variables with parameters (pj)j∈[d] determined during the exploration
phase.
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Algorithm 2 Double-Greedy - Explore-then-Commit (DG-ETC)

1: Inputs: D, c > 0, σ > 0, δ > 0, T ∈ N∗ .
2: /* Instantiating */
3: d← |D| .
4: Instantiate gT,δ and τmax with (4) and (3).
5: Instantiate UpdExp with gT,δ and τmax .
6: /* Initialisation */
7: (t, i)← (1, 1) .
8: (α̂j , β̂j)j∈[d] ← 0 .
9: (pj)j∈[d] ← 1/2 .

10: (τj)j∈[d] ← 0 .
11: /* Exploration phase */
12: while i ≤ d do
13: /* 4 rounds exploration */
14: (Xi−1, Yi−1)← DG-Sp

(
D, (pj)j , i

)
.

15: Play:
16: At ← Xi−1, At+1 ← Xi−1 ∪ {i} ,
17: At+2 ← Yi−1, At+3 ← Yi−1 \ {i} .

18: Receive:
19: Zt , Zt+1 , Zt+1 , Zt+3 .
20: Update:
21: α̂i ←

(
τiα̂i + (Zt+1 − Zt)

)
/(τi + 1) ,

22: β̂i ←
(
τiβ̂i + (Zt+3 − Zt+2)

)
/(τi + 1) ,

23: τi ← τi + 1 ,
24: (pi, i)← UpdExp

(
i, (α̂i, β̂i), τi

)
,

25: t← t+ 4 .
26: end while
27: /* Exploitation phase */
28: while t ≤ T do
29: (Xd, Yd)← DG-Sp

(
D, (pj)j , i

)
.

30: Play: At ← Xd .
31: Update: t← t+ 1 .
32: end while

Xj Yj

j = 0

j = 1

j = 2

j = 3

j = 4

j = d

Figure 1: Example of sampling from DG-Sp, for
i = d+ 1 and (Kj)j∈[d] = (1, 0, 1, 0, . . . 1) .

Double-Greedy - Sampling (DG-Sp, Algo-
rithm 3). Both exploration and exploitation
phases rely on the DG-Sp subroutine [Lines
14 and 29 in Algorithm 2], which is a varia-
tion of DG from Buchbinder et al. (2012) (Al-
gorithm 1). DG-Sp relies on the parame-
ters (pj)j∈[d] provided by the meta-algorithm
DG-ETC, which also provides a step i ∈
{1, . . . , d, d + 1} before which DG-Sp should
stop. Like DG, it begins by initializing two sets
X0 and Y0 as the empty and the full sets. Then
it iterates over the parameters (pj)j∈[d] and pro-
ceeds to either add (to Xj−1) or remove (from Yj−1) item j in order to create (Xj , Yj)j<i , by
sampling Bernoulli random variables. At the end, DG-Sp returns (Xi−1, Yi−1) and DG-ETC then
decides to either collect information when i ≤ d or exploit when i = d+1 . An example of sampling
from DG-Sp is illustrated in Figure 1.

Exploration update for DG-ETC (UpdExp, Algorithm 4). During the exploration, DG-ETC
makes calls to Subroutine UpdExp [Line 24 in Algorithm 2]. The latter takes as inputs the index of
the current step i , estimates of the marginal gains (α, β) and the current values of τ for item i . The
objective of UpdExp is to check if we can determine an adequate Bernoulli parameter p for item i
and/or if the exploration has lasted too long (if τ ≥ τmax). In both those cases, UpdExp returns an
adequate parameter p and index i+ 1 to tell DG-ETC to switch to the next item. Otherwise, p stays
the default 1/2 and UpdExp returns current index i .
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Algorithm 3 Double-Greedy - Sampling
(DG-Sp)

1: Inputs: D, (pj) ∈ [0, 1]d, i ∈ [d+ 1].
2: (X0, Y0)← (∅, D).
3: for j = 1, . . . , (i− 1) do
4: Kj ∼ B(pj).
5: if Kj then
6: (Xj , Yj)← (Xj−1 ∪ {j}, Yj−1).
7: else
8: (Xj , Yj)← (Xj−1, Yj−1 \ {j}).
9: end if

10: end for
11: Return: (Xi−1, Yi−1).

Algorithm 4 Exploration update (UpdExp)

1: Inputs: i ∈ [d], (α, β) ∈ [−c, c]2, τ ∈ N∗.
2: Λ← {x ∈ [0, 1] s.t. ℓ(α, β, x) + gT,δ√

τ
≤ 0}.

3: p← 1/2.
4: if Λ ̸= ∅ then
5: p← argminx∈Λ ℓ(α, β, x).
6: i← i+ 1.
7: else
8: if τ ≥ τmax then
9: p← α+

α++β+
where (·)+ = max{·, 0}.

10: i← i+ 1.
11: end if
12: end if
13: Return: (p, i).

3.2. Exploring just enough for zero exploitation regret: the key idea

In DG-ETC, the number of rounds devoted to the exploration for each item is adaptive, and is
controlled by Subroutine UpdExp. Given estimated marginal gains (α̂i, β̂i) and an exploration
time τ , UpdExp checks if it is possible to counterbalance the (high-probability) errors coming
from the different sources of uncertainties.

On the one hand, the per-round exploitation regret induced by all sources of uncertainty (esti-
mations errors, random sampling, noise fluctuations) for item i , is bounded with high-probability
(Proposition 2 in our analysis) by gT,δ√

τi
where

gT,δ =
√

2(2σ2 + c2)
√

2 log(dT ) + log(1/δ)

(
1 + 2

√
log(dT )

T + 9c√
2σ2+c2

(
log(dT )

T

)1/3)
. (4)

On the other hand, the decision to either add or remove item i with probability pi [Line 30 in
DG-ETC (Alg. 2) and Lines 4-9 in DG-Sp (Alg. 3)] induces an average loss1 per exploration round
bounded by ℓ(α̂i, β̂i, pi) where

ℓ(α, β, p) = max
(
ℓ+(α, β, p), ℓ−(α, β, p)

)
, (5)

with ℓ+(α, β, p) =
(
1− p

)
α− 1

2(pα+ (1− p)β), ℓ−(α, β, p) = pβ − 1
2(pα+ (1− p)β) .

In this definition, ℓ+ and ℓ− are per-round regrets of using parameter p when the (estimated)
marginal gains are (α, β), corresponding to the two cases {i ∈ A∗} and {i /∈ A∗}. As one
wants to hedge against both eventualities, we consider the worst-case loss ℓ which explains the max
of both ℓ+ and ℓ− in in Eq. (11).

UpdExp checks if, given estimations (α̂i, β̂i) and a current number of exploration rounds 4τi,
it is possible to find a parameter pi so that the errors from uncertainties gT,δ√

τi
are absorbed by the

(hopefully negative) loss ℓ(α̂i, β̂i, pi) . Formally, it looks for the existence of a pi ∈ [0, 1] so that

l(α̂i, β̂i, pi) +
gT,δ√
τi
≤ 0 , (6)

1. Average with respect to the sampling variable Ki.
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which is guaranteed to happen after a logarithmic number of rounds (Proposition 3). If it is the case,
UpdExp returns this parameter pi and makes DG-ETC move on to the next item. Otherwise, the
exploration for the current item i continues unless it has already lasted too long (i.e. if τi ≥ τmax).
In this case, UpdExp returns parameter pi =

α̂i,+

α̂i,++β̂i,+
and makes DG-ETC move on to the next

step. This last choice for pi ensures the loss ℓ(α̂i, β̂i, pi) to be negative (or null) in the exploitation
phase and the per-round regret for item i to be bounded simply by gT,δ√

τmax
.

While RGL (Fourati et al., 2023) devotes the same number of rounds to all the items in the
exploration phase, Subroutine UpdExp enables more flexibility. In particular, Section 4 links the
number of exploration rounds necessary with problem-dependent quantities.

Remark 1 The possibility to counterbalance the accumulated errors with negative losses is enabled
by the approximate regret criterion using the worst-case 1/2 ratio, and an in-depth analysis of the
original Double-Greedy algorithm. In all generality, this kind of intuition could also be applied to
other methods to recover similar logarithmic upper bounds.

4. Theoretical guarantees for DG-ETC

This section presents theoretical guarantees satisfied by our approach. We introduce a concept
of problem-dependent hardness that characterizes how difficult it can be to maximize a given
submodular function with our Double-Greedy approach. We then show that DG-ETC satisfies
logarithmic 1/2-approximate pseudo-regret upper bounds which depend on this hardness, with a
O(dT 2/3 log(dT )1/3) worst-case.

Remark 2 We remind that the items are taken in an arbitrary order, and the quantities may depend
on it.

4.1. Double-Greedy hardness

The following hardness notion relates to the sufficient number of exploration rounds that guarantees
to find parameters (pi)i∈[d] suitable to induce zero 1/2-approximate regret during the exploitation.

Definition 2 (DG-hardness) Let D be a set of d elements (considered in an given order). Let f be
a submodular set-function over D and i be an item in D .

We define the local DG-hardness for item i as

hf,i = max
X⊆[i−1]

(
αf (i,X)+ + βf (i,X)+

)2(
αf (i,X)+ − βf (i,X)+

)4 ,
where ( · )+ = max{ · , 0} and

αf (i,X) = f(X ∪ {i})− f(X) ,

βf (i,X) = f
(
(D \ [i]) ∪X

)
− f

(
(D \ [i− 1]) ∪X

)
.

We define the global DG-hardness as Hf =
∑

i∈[d] hf,i .

1 0 1

f(i, X)

1

0

1

f(i
,X

)

100.0

101.5

103.0

104.5

106.0

107.5

inf

Figure 2: hf,i as a function of αf (i,X)
and βf (i,X) for c = 1 .
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Remark 3
• This definition is actually not completely tight, as we will see in the analysis. But this form

is more readable and convenient to use than the whole case disjunctions depending on the
(α, β) configurations.

• We can also define a dual quantity, a local DG-gap ∆f,i =
(
hf,i
)−1/2 , playing the same role

as the suboptimality gaps in pseudo-regret upper bounds for stochastic multi-armed bandits
(it is homogeneous to a difference of rewards). The corresponding global DG-gap would be
∆f = H

−1/2
f .

Example For illustration purposes, let’s consider the following function g : we assume there exists
(ξi) ∈ [−1, 1]d and ν ∈ (0, 1] such that for all X ⊆ [d] ,

g(X) =

( ∑
i∈X, ξi≥0

ξi

)ν

−

( ∑
i∈X, ξi<0

−ξi

)1/ν

+ ∥ξ−∥1/ν1 , (7)

where ξ− = (ξi1{ξi < 0})i and ∥ξ−∥1/ν1 is here to guarantee the positivity of g . Then g is
submodular and for all i ∈ [d] :

∆g,i =

{
g([i])− g([i− 1]) if ξi ≥ 0 ,

g(D \ [i])− g(D \ [i− 1]) if ξi < 0 .

These expressions remind the notion of suboptimality gaps common in bandit literature. If ξi ≥ 0
then i ∈ A∗ and the DG-gap corresponds to the reward gained by adding i to [i− 1] . If ξi < 0 then
i /∈ A∗ and the DG-gap corresponds to the reward increase when removing i from {i, i+1, . . . , d} .

Notably, when g is linear (ν = 1), then the gaps ∆g,i = ξi are independent from the ordering.
They are intuitive as they correspond to the value of adding or removing the item, and the optimal
set is the one containing all the items for which ξi > 0 (assuming that no item has a gap of 0).

4.2. Regret upper bounds for DG-ETC

This section presents our main result. We state a 1/2-approximate pseudo-regret upper bounds for
DG-ETC, the proof of which is outlined in Section 5.

Theorem 2 Let D be a finite set of d ∈ N∗ items, T ∈ N∗ a horizon with d(T
√
log(dT ))2/3 ≤ T

2 ,
σ ∈ R∗

+ and c ∈ R∗
+ . Let δ > 0 .

Then, with probability greater than 1− 10δ/T , DG-ETC satisfies

RT ≤ C1min
{
Hf log(dT ), dT

2/3 log(dT )1/3
}
,

where C1 is a constant independent from d, T and δ.
Likewise, in expectation,

E[RT ] ≤ C2min
{
Hf log(dT ), dT

2/3 log(dT )1/3
}
,

where C1 is a constant independent from d and T .

9
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Remark 4 We can get more fine-grained bounds by using the local DG-hardnesses instead of the
global one. From Eq.8 at the end of Section 5, we can keep the per-item granularity to get with
probability at least 1− 10δ/T

RT ≤ C3

∑
i∈[d]

min
{
hf,i log(dT ), T

2/3 log(dT )1/3
}
,

where C3 is a constant independent from d, T and δ .
In particular, depending on the scale of the horizon T with respect to the different local hard-

nesses (hf,i)i∈[d] , we obtain a mixed sum of some logarithmic terms, and others of magnitude
T 2/3 log(dT )1/3 .

5. Analysis of DG-ETC

This section presents a sketch of proof for Theorem 2.
We denote τ =

∑
i∈[d] 4τi the last exploration round. For all the items i , we also denote

ti =
∑

j≤i 4τi , the last exploration round for item i . In this section, we have i-indices to denote
items, and t-indices to denote that we place ourselves at round t ∈ N∗ . When t is not made explicit
(notably for α̂i , β̂i and pi), it means that we place ourselves after round ti (and that these parameters
are fixed).

Outline of the proof. The idea of the proof is to find a high-probability event (namely, E)
under which the exploration phase takes a logarithmic number of rounds per-item, and the regret is
non positive during the exploitation phase. To that end, we first break the per-round regret of the
exploitation phase down into per-item contributions (Section 5.1). Using this decomposition, we
highlight an event E under which the per-round, per-item, regret is bounded by l(α̂i, β̂i, pi) +

gT,δ√
τi

for all the items i (Section 5.2). Lastly, we prove that under E , depending on the DG-hardness of f
(Definition 2), a logarithmic number of exploration rounds is sufficient to find a weights pi so that
l(α̂i, β̂i, pi) +

gT,δ√
τi
≤ 0 for all items i . Additionally, Subroutine UpdExp (Algorithm 4) returns a

parameters pi so that l(α̂i, β̂i, pi) ≤ 0 when τi reaches τmax for item i (Section 5.3), so that the
regret for this item remains bounded by T 2/3 log(dT )1/3 when the estimation needs more rounds
than what can be afforded.

Template bound. Let E be an event, defined later in Section 5.2. Then, the 1/2-approximate
pseudo-regret can be bounded as

RT ≤ 1{Ec}
cT

2
+ 1{E}

(
2c

d∑
i=1

τi +
1

2

T∑
t=τ+1

rt

)
. (8)

where rt = f(A∗)− 2f(At).
Under event Ec , the pseudo-regret is upper bounded by a worst case cT/2 . Under E , each

item i uses 4τi exploration rounds, each being bounded by a worst case c/2 regret, the rest of the
rounds (between τ + 1 and T ) are devoted to the exploitation and their regret is upper bounded in
the following. In particular, they yield no regret when the exploration is successful and the instance
is “easy” enough.

10
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5.1. Double-Greedy breakdown: Per-item exploitation regrets

We use an approach similar to Buchbinder et al. (2012) to bound the per-round exploitation regret
rt with a sum of per-item contributions.

Item-wise breakdown. Let t > τ . We considers sets (A∗
i,t)i∈[d] , with A∗

0,t = A∗ and A∗
d,t = At ,

constructed to control the evolution of (f(Ai,t))i∈[d] from f(A∗) to f(At) using the coefficients
(αi,t, βi,t)i∈[d] . We define

For i = 0 , A∗
0,t = A∗ , with X0,t = ∅ , Y0,t = D ,

∀i ∈ [d] , A∗
i,t = (A∗ ∪Xi,t) ∩ Yi,t , with Xi,t ⊆ A∗

i,t ⊆ Yi,t , (9)

For i = d, A∗
d,t = Xd,t = Yd,t = At ,

where Xi,t = {j ≤ i, Kj,t = 1} and Yi,t = D\{j ≤ i, Kj,t = 0} are the sets defined in Subroutine
DG-Sp (Algorithm 3).

Using these sets and the definition of rt in Eq. (8), a telescopic argument yields

rt ≤ f(A∗)− f(At)−
1

2

[
2f(At)− (f(∅) + f(D))

]
← (f ≥ 0)

=
[
f(A∗

0,t)− f(A∗
d,t)
]
− 1

2

[
f(Xd,t)− f(X0,t) + f(Yd,t)− f(Y0,t)

]
=

d∑
i=1

[
f(A∗

i−1,t)− f(A∗
i,t)−

1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
, (10)

where for all i ∈ [d] , αi,t = f(Xi−1,t ∪ {i})− f(Xi−1,t) ,

βi,t = f(Yi−1,t \ {i})− f(Yi−1,t) .

Submodularity. While the marginal gains (αi,t, βi,t)i∈[d] can be estimated, the sets A∗, and
(A∗

i,t)i∈[d] remain unknown. However, the definition of (A∗
i,t)i∈[d] and submodularity yield

• If {i ∈ A∗} , then f(A∗
i−1,t)− f(A∗

i,t) ≤ (1−Ki,t)αi,t ,
• Else {i /∈ A∗} , and f(A∗

i−1,t)− f(A∗
i,t) ≤ Ki,tβi,t .

Using these inequalities, Eq. (10) becomes

rt ≤
∑
i∈[d]

[
1{i∈A∗}(1−Ki,t)αi,t + 1{i/∈A∗}Ki,tβi,t −

1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
.

Since {i ∈ A∗} and {i /∈ A∗} are exclusive events, we have

T∑
t=τ+1

rt ≤
∑
i∈[d]

max
{
R+

T,i, R
−
T,i

}
, (11)

where R+
T,i =

∑T
t=τ+1

[
(1−Ki,t)αi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
,

R−
T,i =

∑T
t=τ+1

[
Ki,tβi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
.

11
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5.2. High-probability exploitation regret

Let i ∈ [d], the objective now is to control max
{
R+

T,i, R−
T,i

}
from Eq. (11). To that end, the

following proposition (proven in Appendix D.1) states how the errors coming from the different
randomness sources concentrate.

Proposition 2 LetH and E be the event

H =

∀i ∈ [d] , ∀t > ti−1 , |ᾱi − α̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1 ,

|β̄i − β̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1

 ,

E = H ∩

{
∀i ∈ [d] , max

{
R+

T,i, R
−
T,i

}
− (T − τ)

(
l(α̂i, β̂i, pi) +

gT,δ√
τi

)
≤ 0

}
,

where for all i ∈ [d] , ᾱi = E
[
αi,t|(pj)j<i

]
and β̄i = E

[
βi,t|(pj)j<i

]
, both quantities being

constant for rounds t > ti−1 , and gT,δ is defined in Eq. (4).
Then, P(Hc) ≤ 4δ

T , and P(Ec) ≤ 10δ
T .

Template bound. Reinjecting Eq. (11) and Proposition 2 yields

RT ≤ 1{Ec}
cT

2
+ 1{E}

∑
i∈[d]

(
2cτi + (T − τ)

(
l(α̂i, β̂i, pi) +

gT,δ√
τi

))
, (12)

where E is the event defined Proposition 2.

5.3. Sufficient exploration

In this section, we analyze the exploration steps for each item and we exhibit sufficient conditions
for them to only last a logarithmic number of rounds. The default choice of pi =

αi,+

αi,++βi,+
when

τi ≥ τmax in Subroutine UpdExp (Algorithm 4) ensures ℓ(α̂i, β̂i, pi) ≤ 0 , which in turns yield a
O
(
T
√
log(dT ))2/3

)
regret upper bound for item i.

Subroutine UpdExp looks for a parameter p ∈ [0, 1] so that both(
1− p

)
α̂i −

1

2

(
pα̂i + (1− p)β̂i

)
≤ −

gT,δ√
τi

, and pβ̂i −
1

2
(pα̂i + (1− p)β̂i) ≤ −

gT,δ√
τi

. (13)

Under E , as we can upper bound |α̂i − ᾱi| and |β̂i − β̄i| (Proposition 2), it is sufficient to have
(
1− p

)
ᾱi − 1

2(pᾱi + (1− p)β̄i) ≤ −gT,δ√
τi
− 3

2

√
2σ2 + c2

√
2 log(dT/δ)+log(1+4τi)

τi+1

pβ̄i − 1
2(pᾱi + (1− p)β̄i) ≤ −gT,δ√

τi
− 3

2

√
2σ2 + c2

√
2 log(dT/δ)+log(1+4τi)

τi+1 ,

for which it is in turn sufficient to have

p(β̄i − 3ᾱi) ≤ −
gi + γT,δ√

τi
+ (βi − 2ᾱi), and p(3β̄i − ᾱi) ≤ −

gi + γT,δ√
τi

+ β̄i , (14)

where γT,δ = 3
√
(2σ2 + c2)(log(dT/δ) + log(1 + T )).

The following proposition gives sufficient conditions to find a pi for Eq. (13) to be satisfied.

Proposition 3 For each items i ∈ [d] , under event E defined in Proposition 2, UpdExp finds
a weight pi such that l(α̂i,t, β̂i,t, pi) +

gT,δ√
τi,t
≤ 0 before 4τi,t the current number of exploration

rounds for item i has reached the value 4(gT,δ + γT,δ)
2 hf,i .

12
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Template bound. Using Proposition 3, the upper bound Eq. (12) becomes

RT ≤ 1{Ec}
cT

2
+ 1{E}

∑
i∈[d]

[
2cmin

{
(gT,δ + γT,δ)

2hf,i , τmax

}

+ 1{
(gT,δ+γT,δ)2hf,i>τmax

}τmax
TgT,δ

(τmax)3/2

]

= 1{Ec}
cT

2
+ 1{E}

∑
i∈[d]

(
2c+

gT,δ

log(dT )1/2

)
min

{
(gT,δ + γT,δ)

2hf,i , τmax

}
, (15)

where τmax = T 2/3 log(dT )1/3 is defined in Eq.(3).
The high-probability result comes from event E happening with probability greater than 1− 10δ

T
(Proposition 2). Choosing δ = 1 yields the bound in expectation.

6. Concluding remarks

We propose and analyze Algorithm DG-ETC (Algorithm 2) for the online unconstrained submod-
ular maximization problem, with stochastic bandit feedback. Our algorithm is a considerable im-
provement from other existing approaches, as it satisfies logarithmic upper bounds for the 1/2-
approximate pseudo-regret, dependent on a new notion of hardness that we introduce. Possible
extensions include designing anytime variants, and algorithms adaptive to the adversarial/stochastic
setting (best-of-both worlds).

An interesting feature of DG-ETC is that it leverages the looseness of worst-case approximation
ratios in non-adversarial cases, and we argue that this kind of strategy could also be applied to other
settings to yields similar performances.
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Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Conference on Learning Theory, pages 41–1. JMLR
Workshop and Conference Proceedings, 2012.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmetric
technique. Mathematics of Operations Research, 44(3):988–1005, 2019.

Niv Buchbinder and Moran Feldman. Constrained submodular maximization via new bounds for
dr-submodular functions. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, pages 1820–1831, 2024.

Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In Proceedings of the 2012 IEEE
53rd Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 2012.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 1433–1452. SIAM, 2014.

Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. Subquadratic sub-
modular function minimization. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1220–1231, 2017.
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Appendix A. Extended related works

This section completes the related work of the main paper in Section 1.3.
We discuss additional submodular optimization settings existing in the literature, namely, offline

and online minimization, constrained maximization, as well as other maximization frameworks.

Submodular optimization (offline). Submodularity is also studied in settings different from the
unconstrained non monotone maximization case that we look at.

Minimization can be solved in polynomial time (Grötschel et al., 1981) and there is an extensive
line of work studying that setting. See Lee et al. (2015); Chakrabarty et al. (2017); Axelrod et al.
(2020); Jiang (2021, 2022); Jiang et al. (2023) for the most recent ones.

For maximization, the constrained non monotone setting is even more challenging and there
is a line of work constantly improving the approximations (Lee et al., 2009; Chekuri et al., 2011;
Buchbinder et al., 2014; Vondrák, 2013; Ene and Nguyen, 2016; Buchbinder and Feldman, 2019;
Tukan et al., 2024; Buchbinder and Feldman, 2024), which is known to be smaller than .478 in
polynomial time (Qi, 2024). In the monotone setting, there also exist a line of works interested
in the identification of the best subset with the minimal number of potentially noisy calls to the
function (Singla et al., 2016; Hassidim and Singer, 2017; Karimi et al., 2017; Hassidim and Singer,
2018). Other papers also study maximization of a submodular function only known from given
samples (Balkanski et al., 2016, 2017).

Online and bandit submodular optimization. Both maximization and minimization are ex-
plored in the online learning and bandit literature.

For the minimization version, Hazan and Kale (2012) introduces an online adversarial setting
and proposes an algorithm with sublinear regret. Its results are improved in Matsuoka et al. (2021)
and Ito (2022), the latter also proposing results for the bandit setting. In particular, a commonly
used tool is the Lovász extension, reducing the problem to convex minimization.

The maximization version is studied in Streeter and Golovin (2008) with a resource allocation
perspective, giving guarantees for the (1 − 1/e)-approximate expected regret in the monotone set-
ting. Its results are extended to matroid constraints in Streeter et al. (2009); Golovin et al. (2014),
and improved in Harvey et al. (2020) using curvatures. The case of bandit feedback is also studied
for monotone functions. Yue and Guestrin (2011) and Guillory and Bilmes (2011) are early works
works providing theoretical guarantees. They are followed by several papers considering variants
of this setting (Kohli et al., 2013; Gabillon et al., 2013; Chen et al., 2018).
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Appendix B. Reminders on sub-Gaussianity

We use sub-Gaussianity assumptions and common concentration tools to control deviations of the
noise (ηt)t∈[T ] and the randomization process of our approach. This section remind useful results.

Definition 3 (Sub-Gaussian) Let σ > 0 and X be a real-valued random variable such that
E[X] = 0. We say that X is σ2-sub-Gaussian, for all λ ∈ R,

E[exp(λX)] ≤ exp
(λ2σ2

2

)
.

In particular, for bounded independent random variables, we have the following lemma.

Lemma 1 (Hoeffding’s inequality for sum of i.i.d. bounded r.v.) Let δ > 0, N ∈ N∗, and
(Zn)n∈[N ] a family of i.i.d. real random variables bounded in [a, b] where (a, b) ∈ (R)2, with
mean µ ∈ [a, b].

Then for all n ∈ [N ], Zn is (b−a)2

4 -sub-Gaussian, and with probability at least 1− δ,

1

N

N∑
n=1

[
Zn − µ

]
<

b− a

2

√
2

N
log(1/δ) .

The sub-Gaussianity for bounded random variables an the concentration for the sums of i.i.d
random variables are classical results proven that can be found Wainwright (2019) for example.

As we estimate quantities in an online setting, with observations arriving sequentially and de-
pending on our actions, we need a more powerful tool. This is provided by the following lemma.

Lemma 2 (Hoeffding’s inequality with martingales) Let δ > 0, σ > 0. Let (Gt)t∈N be a filtra-
tion and (Zt)t∈N∗ a (Gt)-adapted martingale with E[Z1] = 0. We assume that for all t ∈ N, Zt+1

is σ2-sub-Gaussian conditionally to Gt. Let (Ut)t∈N∗ be a (Gt)-predictable process. Then, with
probability at least 1− δ, for all t ∈ N∑t

s=1 UsZs

1 +
∑t

s=1 U
2
s

<
σ√

1 +
∑t

s=1 U
2
s

√√√√2 log(1/δ) + log
(
1 +

t∑
s=1

U2
s

)
The proof relies on the method of mixture, widely used in the bandit literature (Abbasi-Yadkori

et al., 2011; Faury et al., 2020; Zhou et al., 2024).
Proof Let δ > 0, σ > 0. Let (Gt) be a filtration and (Zt) be a Gt-adapted martingale with E[Z1] = 0
and so that for all t ∈ N, Zt+1 is σ2-sub-Gaussian conditionally to Gt. Let (Ut) be a Gt-predictable
process.

Let t ∈ N∗, a first direct result is that, UtZt is (σUt)
2-sub-Gaussian conditionally to Gt−1. Let

λ ∈ R. Then,

E
[
exp

(
λUtZt −

λ2

2
(σUt)

2
)
|Gt−1

]
≤ 1 . (16)

We define

Mt(λ) = exp

(
λ

t∑
s=1

UsZs −
λ2

2

t∑
s=1

(σUs)
2

)
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with M0(λ) = 1. From eq. (16),

∀t ∈ N, E[Mt(λ)|Gt] = E

[
exp

(
λ

t∑
s=1

UsZs −
λ2

2

t∑
s=1

(σUs)
2

)∣∣∣∣∣Gt−1

]

= Mt−1(λ) E

[
exp

(
λUtZt −

λ2

2
(σUt)

2

)∣∣∣∣∣Gt−1

]
≤Mt−1(λ) .

Then, (Mt(λ))t is a Gt-supermartingale, with E[Mt(λ)] ≤ 1 .

We now consider λ ∼ N (0, 1/σ2), independent from all the other distributions, then we can
define

M̄t = Eλ∼N (0,1/σ2)[Mt(λ)]

=
σ√
2π

∫
R
exp

(
− (σx)2

2

)
exp

(
x

t∑
s=1

UsZs −
x2

2

t∑
s=1

(σUs)
2
)
dx

=
σ√
2π

∫
R
exp

(
−

(σx)2(1 +
∑t

s=1 U
2
s )

2
+ x

t∑
s=1

UsZs

)
dx

=
σ√
2π

∫
R
exp

(
−

σ2(1 +
∑t

s=1 U
2
s )

2

(
x2 − 2x

∑t
s=1 UsZs

σ2(1 +
∑t

s=1 U
2
s )

))
dx

=
σ√
2π

∫
R
exp

(
−

σ2(1 +
∑t

s=1 U
2
s )

2

(
x−

∑t
s=1 UsZs

σ2(1 +
∑t

s=1 U
2
s )

)2
+

(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)
dx

= exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)
σ√
2π

√
2π

σ
√

1 +
∑t

s=1 U
2
s

σ
√

1 +
∑t

s=1 U
2
s√

2π∫
R
exp

(
−

σ2(1 +
∑t

s=1 U
2
s )

2

(
x−

∑t
s=1 UsZs

σ2(1 +
∑t

s=1 U
2
s )

)2)
dx

= exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)
1√

1 +
∑t

s=1 U
2
s

E
λ∼N

( ∑t
s=1 UsZs

σ2(1+
∑t

s=1 U2
s )

, 1

σ2(1+
∑t

s=1 U2
t )

)[1]

=
1√

1 +
∑t

s=1 U
2
s

exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )

)

M̄t = exp

(
(
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )
− 1

2
log
(
1 +

t∑
s=1

U2
s

))
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Besides,

E
[
M̄t

∣∣∣Gt−1

]
= E

[
Eλ∼N (0,1/σ2)[Mt(λ)]

∣∣∣Gt−1

]
= Eλ∼N (0,1/σ2)

[
E[Mt(λ)|Gt−1]

]
≤ Eλ∼N (0,1/σ2)

[
Mt−1(λ)

]
= M̄t−1 .

So (M̄t)t is also a supermartingale, which yield that

E[M̄t] ≤ E[M̄0] = 1 .

Let ut > 0 . Now, using Chernoff’s method,

P

( ∑t
s=1 UsZs

1 +
∑t

s=1 U
2
s

≥ ut

)
≤ P

(
exp

( (
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )
− u2t

2σ2
(1 +

t∑
s=1

U2
s )
)
≥ 1

)

≤ E

[
exp

( (
∑t

s=1 UsZs)
2

2σ2(1 +
∑t

s=1 U
2
s )
− u2t

2σ2
(1 +

t∑
s=1

U2
s )
)]

≤ E

[
M̄t exp

(1
2
log(1 +

t∑
s=1

U2
s )−

u2t
2σ2

(1 +
t∑

s=1

U2
s )
)]

.

Choosing ut =
σ√

1+
∑t

s=1U
2
s

√
2 log(1/δ) + log(1 +

∑t
s=1 U

2
s ) ,

P

( ∑t
s=1 UsZs

1 +
∑t

s=1 U
2
s

≥ ut

)
≤ E

[
δM̄t

]
≤ δ .

The bound for all t is based on the stopping time construction from Abbasi-Yadkori et al. (2011).
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Appendix C. Proof for the high-probability bound of Double-Greedy (Algorithm 1,
DG from Buchbinder et al. (2012))

Proposition 1 Let D be a finite set, δ > 0 and T ∈ N∗ such that T > 2 log(1/δ) . If (Si)i∈[T ] is
the sequence of sets obtained by running independently T times Algorithm DG, then

max
i∈[T ]

f(Si) >
(1
2
− log(1/δ)

T

)
f(A∗) , w.p. 1− δ .

Proof Let 1 > δ > 0 and T ∈ N∗ such that T > 2 log(1/δ) . Then (f(Si))i∈[T ] is a sequence of T
i.i.d. random variables, bounded in [0, f(A∗)].

Let 1
2 > u > 0. Then

P

(
max
i∈[T ]

f(Si) <
(1
2
− u
)
f(A∗)

)
= P

(
∀i ∈ [T ], f(Si) <

(1
2
− u
)
f(A∗)

)

=
T∏
i=1

P

(
f(Si) <

(1
2
− u
)
f(A∗)

)

≤ P

((1
2
− u
)
f(A∗) + f(A∗)− f(S1) > f(A∗)

)T

≤ 1

f(A∗)T
E

[(1
2
− u
)
f(A∗) + f(A∗)− f(S1)

]T
← Markov

≤ 1

f(A∗)T

[(1
2
− u
)
f(A∗) +

1

2
f(A∗)

]T
← Theorem 1

= (1− u)T

≤ exp(−Tu) .

Therefore, taking u = log(1/δ)
T , we have the result

P

(
max
i∈[T ]

f(Si) <
(1
2
− u
)
f(A∗)

)
≤ δ .
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Appendix D. Proofs for the analysis of Double-Greedy - Explore-Then-Commit
(DG-ETC, ours)

D.1. Proof for the high-probability exploitation regret

Proposition 2 LetH and E be the event

H =

∀i ∈ [d] , ∀t > ti−1 , |ᾱi − α̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1 ,

|β̄i − β̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1

 ,

E = H ∩

{
∀i ∈ [d] , max

{
R+

T,i, R
−
T,i

}
− (T − τ)

(
l(α̂i, β̂i, pi) +

gT,δ√
τi

)
≤ 0

}
,

where for all i ∈ [d] , ᾱi = E
[
αi,t|(pj)j<i

]
and β̄i = E

[
βi,t|(pj)j<i

]
, both quantities being

constant for rounds t > ti−1 , and gT,δ is defined in Eq. (4).
Then, P(Hc) ≤ 4δ

T , and P(Ec) ≤ 10δ
T .

Proof We remind Eq. (11), ∑T
t=τ+1 rt ≤

∑
i∈[d]max

{
R+

T,i, R
−
T,i

}
, (11)

where R+
T,i =

∑T
t=τ+1

[
(1−Ki,t)αi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
,

R−
T,i =

∑T
t=τ+1

[
Ki,tβi,t − 1

2

(
Ki,tαi,t + (1−Ki,t)βi,t

)]
.

For i ∈ [d], we define ᾱi = E
[
αi,t|(pj)j<i

]
and β̄i = E

[
βi,t|(pj)j<i

]
, both quantities being

constant for rounds t > ti−1 (and thus, for t > τ ). Separating the different sources of randomness
yields

R+
T,i = Ē+

T,i + Ê+
T,i + L+

T,i , R−
T,i = Ē−

T,i + Ê−
T,i + L−

T,i ,

where we have
• errors coming from the deviation of (αi,t, βi,t) from (ᾱi, β̄i) :

Ē+
T,i =

∑T
t=τ+1

[
(1−Ki,t)(αi,t − ᾱi)− 1

2

(
Ki,t(αi,t − ᾱi) +Kc

i,t(βi,t − β̄i)
)]

,

Ē−
T,i =

∑T
t=τ+1

[
Ki,t(βi,t − β̄i)− 1

2

(
Ki,t(αi,t − ᾱi) +Kc

i,t(βi,t − β̄i)
)]

,

• approximation errors for (α̂i, β̂i) :
Ê+

T,i =
∑T

t=τ+1

[
(1−Ki,t)(ᾱi,t − α̂i)− 1

2

(
Ki,t(ᾱi,t − α̂i) + (1−Ki,t)(β̄i,t − β̂i)

)]
,

Ê−
T,i =

∑T
t=τ+1

[
Ki,t(β̄i,t − β̂i)− 1

2

(
Ki,t(ᾱi,t − α̂i) + (1−Ki,t)(β̄i,t − β̂i)

)]
,

• the deviation of losses caused by the random variables (Ki,t)i,t :

L+
T,i =

∑T
t=τ+1

[
(1−Ki,t)α̂i − 1

2(Ki,tα̂i + (1−Ki,t)β̂i)
]
− (T − τ)l+i ,

L−
T,i =

∑T
t=τ+1

[
(Ki)β̂i − 1

2(Ki, tα̂i + (1−Ki,t)β̂i)
]
− (T − τ)l−i ,

• the average loss criterion used in UpdExp :
l+i = l+(α̂i, β̂i, pi) = (1− pi)α̂i − 1

2(piα̂i + (1− pi)α̂i),
l−i = l−(α̂i, β̂i, pi) = piβ̂i − 1

2(piα̂i + (1− pi)α̂i).
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We control these terms using the concentration lemmas in Appendix B. Let δ > 0, we define

G =
{
∀i, Ē+

T,i ≤ 3c
√
2(T − τ) log(dT/δ) and Ē−

T,i ≤ 3c
√
2(T − τ) log(dT/δ)

}
,

H =

∀i ∈ [d], ∀t > ti−1, |ᾱi − α̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1 ;

|β̄i − β̂i,t| ≤
√
2σ2 + c2

√
2
log(dT/δ)+log(1+4τi,t)

τi,t+1

 ,

I =

∀i ∈ [d], Ê+
T,i ≤ (T − τ)

(
1 +

√
2 log(dT/δ)√

T−τ

)
max

(
|ᾱi − α̂i|, |β̄i − β̂i|

)
Ê−

T,i ≤ (T − τ)
(
1 +

√
2 log(dT/δ)√

T−τ

)
max

(
|ᾱi − α̂i|, |β̄i − β̂t|

)
 ,

J =

{
∀i ∈ [d], L+

T,i ≤
3c√
2

√
(T − τ) log(dT/δ) ,

L−
T,i ≤

3c√
2

√
(T − τ) log(dT/δ)

}
.

Applying Lemma 1 and a union bound yields that P(Gc ∪ Ic ∪ J c) ≤ 6δ
T . Likewise Lemma 2

yields P(Hc) ≤ 4δ
T .

Besides , G ∩ H ∩ I ∩ J ⊆ E (calculations assuming d ≥ 2, τ ≤ T/2, and dT ≥ δ).

D.2. Proof for the duration of the exploration phase

The following lemma is a consequence of the definition of submodularity, but it is particularly
useful when analyzing double-greedy approaches, as it limits the range of possible marginal gains
to consider when adding/removing items.

Lemma 3 Let D be a finite set and f be a submodular set-function. Let A ⊂ B ⊆ D and an item
i ∈ (B \A) . Then, (

f(A ∪ {i})− f(A)
)
+
(
f(B \ {i})− f(B)

)
≥ 0 .

We can now use this lemma to prove the following proposition.

Proposition 3 For each items i ∈ [d] , under event E defined in Proposition 2, UpdExp finds a
weight pi such that l(α̂i,t, β̂i,t, pi)+

gT,δ√
τi,t
≤ 0 before 4τi,t the current number of exploration rounds

for item i has reached the value 4(gT,δ + γT,δ)
2 hf,i .

Proof We need to look for conditions for Eq. (14) to be satisfied

p(β̄i − 3ᾱi) ≤ −
gi + γT,δ√

τi
+ (βi − 2ᾱi) , p(3β̄i − ᾱi) ≤ −

gi + γT,δ√
τi

+ β̄i , (14)

where γT,δ = 3
√
(2σ2 + c2)(log(dT/δ) + log(1 + T )) .

Considering the different configurations of (α, β) possible using Lemma 3, gives 5 zones with
different sufficient conditions for the existence of a pi ∈ [0, 1] satisfying Eq. (14). They are sum-
marized in Table 1, and are upper-bounded by the DG-hardness defined in Definition 2.
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Zone Threshold of τi
(gT,δ+γT,δ)2

1 ᾱi ≤ 0, β̄i > 0 1/β̄2
i

2 0 ≤ ᾱi ≤ β̄i/3 1/(β̄i − 2ᾱi)
2

3 0 ≤ β̄i/3 ≤ ᾱi ≤ 3β̄i (ᾱi + β̄i)
2/(β̄i − ᾱi)

4

4 0 ≤ 3β̄i ≤ αi 1/(ᾱi − 2β̄i)
2

5 ᾱi > 0, β̄i ≤ 0 1/ᾱ2
i

Table 1: Exploration thresholds for UpdExp.
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1 2 3

4

5

100.0

101.5

103.0

104.5

106.0

107.5

inf

Figure 3: Exploration thresholds for
Subroutine UpdExp as a function of ᾱi

and β̄i for c = 1.
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