
A LGB PSEUDO-CODE

Algorithm 1 and 2 present the high-level pseudo-code of any algorithm following the LGB architec-
ture for each of the three phases.

Algorithm 1 LGB architecture
G→B phase

. Goal→ Behavior phase
1: Require Env E
2: Initialize policy Π, goal sampler Gs,

buffer B
3: loop
4: g ← Gs.sample()
5: (s, a, s′, g, cp, c

′
p)traj ← E.rollout(g)

6: Gs.update(cTp )
7: B.update((s, a, s′, g, cp, c′p)traj)
8: Π.update(B)
9: return Π, Gs

10:
11:
12:

Algorithm 2 LGB architecture
L→G and L→G→B phases

. Language→ Goal phase
1: Require Π, E,Gs, social partner SP
2: Initialize language goal generator LGG
3: dataset← SP .interact(E,Π, Gs)
4: LGG.update(dataset)
5: return LGG
. Language→ Behavior phase

6: Require E,Π, LGG, SP
7: loop
8: instr. ← SP .listen()
9: loop . Strategy switching loop

10: g ← LGG.sample(instr., c0)
11: cTp ← E.rollout(g)
12: if g == cTp then break

B SEMANTIC PREDICATES AND APPLICATION TO FETCH MANIPULATE

In this paper, we restrict the semantic representations to the use of the close and above binary pred-
icates applied to M = 3 objects. The resulting semantic configurations are formed by:

cp = [c(o1, o2), c(o1, o3), c(o2, o3), a(o1, o2), a(o2, o1), a(o1, o3), a(o3, o1), a(o2, o3), a(o3, o2)],

where c() and a() refer to the close and above predicates respectively and (o1, o2, o3) are the red,
green and blue blocks respectively.

Symmetry and asymmetry of close and above predicates. We consider objects o1 and o2.

• close is symmetric: “o1 is close to o2” ⇔ “o2 is close to o1”. The corresponding semantic
mapping function is based on the Euclidean distance, which is symmetric.

• above is asymmetric: “o1 is above o2”⇒ not “o2 is above o1”. The corresponding semantic
mapping function evaluates the sign of the difference of the object Z-axis coordinates.

C THE DECSTR ALGORITHM

C.1 INTRINSICALLY MOTIVATED GOAL-CONDITIONED RL

Overview. Algorithm 3 presents the pseudo-code of the sensorimotor learning phase (G→B) of
DECSTR. It alternates between two steps:

• Data acquisition. A DECSTR agent has no prior on the set of reachable semantic config-
urations. Its first goal is sampled uniformly from the semantic configuration space. Using
this goal, it starts interacting with its environment, generating trajectories of sensory states
s, actions a and configurations cp. The last configuration cTp achieved in the episode after T
time steps is considered stable and is added to the set of reachable configurations. As it in-
teracts with the environment, the agent explores the configuration space, discovers reachable
configurations and selects new targets.

• Internal models updates. A DECSTR agent updates two models: its curriculum strategy and
its policy. The curriculum strategy can be seen as an active goal sampler. It biases the selection
of goals to target and goals to learn about. The policy is the module controlling the agent’s
behavior and is updated via RL.

1



Algorithm 3 DECSTR: sensorimotor phase G→B.

1: Require: env E, # buckets Nb, # episodes before biased init. nunb, self-evaluation probability
pself eval, noise function σ()

2: Initialize: policy Π, buffer B, goal sampler Gs, bucket sampling probabilities pb, language
module LGG.

3: loop
4: self eval← random() < pself eval . If True then evaluate competence
5: g ← Gs.sample(self eval, pb)
6: biased init← epoch < nunb . Bias initialization only after nunb epochs
7: s0, c0p ← E.reset(biased init) . c0: Initial semantic configuration
8: for t = 1 : T do
9: at ← policy(st, ct, g)

10: if not self eval then
11: at ← at + σ()

12: st+1, ct+1
p ← E.step(at)

13: episode← (s, c, a, s′, c′)
14: Gs.update(cT )
15: B.update(episode)
16: g ← Gs.sample(pb)
17: batch← B.sample(g)
18: Π.update(batch)
19: if self eval then
20: pb ← Gs.update LP()

Policy updates with a goal-conditioned Soft Actor-Critic. Readers familiar with Markov Deci-
sion Process and the use of SAC and HER algorithms can skip this paragraph.

We want the DECSTR agent to explore a semantic configuration space and master reachable
configurations in it. We frame this problem as a goal-conditioned MDP (Schaul et al., 2015):
M = (S,Gp,A, T ,R, γ), where the state space S is the usual sensory space augmented with
the configuration space Cp, the goal space Gp is equal to the configuration space Gp = Cp, A is the
action space, T : S ×A×S → [0, 1] is the unknown transition probability,R : S ×A → {0, 1} is
a sparse reward function and γ ∈ [0, 1] is the discount factor.

Policy updates are performed with Soft Actor-Critic (SAC) (Haarnoja et al., 2018), a state-of-the-art
off-policy actor-critic algorithm. We also use Hindsight Experience Replay (HER) (Andrychowicz
et al., 2017). This mechanism enables agents to learn from failures by reinterpreting past trajectories
in the light of goals different from the ones originally targeted. HER was designed for continuous
goal spaces, but can be directly transposed to discrete goals (Colas et al., 2019). In our setting, we
simply replace the originally targeted goal configuration by the currently achieved configuration in
the transitions fed to SAC. We also use our automatic curriculum strategy: the LP-C-based probabil-
ities are used to sample goals to learn about. When a goal g is sampled, we search the experience
buffer for the collection of episodes that ended in the configuration cp = g. From these episodes,
we sample a transition uniformly. The HER mechanism substitutes the original goal with one of
the configurations achieved later in the trajectory. This substitute g has high chances of being the
sampled one. At least, it is a configuration on the path towards this goal, as it is sampled from a
trajectory leading to it. The HER mechanism is thus biased towards goals sampled by the agent.

Object-Centered Inductive Biases. In the proposed Fetch Manipulate environment, the three
blocks share the same set of attributes (position, velocity, color identifier). Thus, it is natural to
encode a relational inductive bias in our architecture. The behavior with respect to a pair of objects
should be independent from the position of the objects in the inputs. The architecture used for the
policy is depicted in Figure 1.

A shared network (NNshared) encodes the concatenation of: 1) agent’s body features; 2) object pair
features; 3) current configuration (cp) and 4) current goal g. This is done independently for all object
pairs. No matter the location of the features of the object pair in the initial observations, this shared
network ensures that the same behavior will be performed, thus skills are transferred between object

2



pairs. A sum is then used to aggregate these outputs, before a final network (NNpolicy) maps the
aggregation to actions a. The critic follows the same architecture, where a final network NNcritic
maps the aggregation to an action-valueQ. Parallel encoding of each pair-specific inputs can be seen
as different modules trying to reach the goal by only seeing these pair-specific inputs. The intuition
is that modules dealing with the pair that should be acted upon to reach the goal will supersede
others in the sum aggregation.

NN
sharedSemantic

mapping 
function

body

2obj

3obj

g

cp

1obj

body

2obj

3obj

1obj a

1
2
3
4
5

+ NN
policy

6

Figure 1: Object-centered modular architecture for the policy.

Although in principle our architecture could work with combinations of objects (3 modules), we
found permutations to work better in practice (6 modules). With combinations, the shared network
would need to learn to put block A on block B to achieve a predicate above(oi, oj), and would
need to learn the reverse behavior (put B on A) to achieve the symmetric predicate above(oj , oi).
With permutations, the shared network can simply learn one of these behaviors (e.g. A on B).
Considering the predicate above(oA, oB), at least one of the modules has objects organized so that
this behavior is the good one: if the permutation (oB , oA) is not the right one, permutation (oA, oB)
is. The symmetry bias is explained in Section ??. It leverages the symmetry of the behaviors required
to achieve the predicates above(oi, oj) and above(oj , oi). As a result, the two goal configurations
are:

g1 = [c(o1, o2), c(o1, o3), c(o2, o3), a(o1, o2), a(o1, o3), a(o2, o3)],

g2 = [c(o1, o2), c(o1, o3), c(o2, o3), a(o2, o1), a(o3, o1), a(o3, o2)],

where g1 is used in association with object permutations (oi, oj) with i < j and g2 is used
in association with object permutations (oj , oi) with i < j. As a result, the shared network
automatically ensures transfer between predicates based on symmetric behaviors.

Implementation Details. This part includes details necessary to reproduce results. The code is
available at https://sites.google.com/view/decstr/.

Parallel implementation of SAC-HER. We use a parallel implementation of SAC (Haarnoja et al.,
2018). Each of the 24 parallel worker maintains its own replay buffer of size 106 and performs its
own updates. Updates are summed over the 24 actors and the updated network are broadcast to all
workers. Each worker alternates between 2 episodes of data collection and 30 updates with batch
size 256. To form an epoch, this cycle is repeated 50 times and followed by the offline evaluation of
the agent on each reachable goal. An epoch is thus made of 50 × 2 × 24 = 2400 episodes.

Goal sampler updates. The agent performs self-evaluations with probability self eval = 0.1.
During these runs, the agent targets uniformly sampled discovered configurations without explo-
ration noise. This enables the agent to self-evaluate on each goal. Goals are organized into buckets.
Main Section ?? presents our automatic bucket generation mechanism. Once buckets are formed,
we compute C, LP and P , based on windows of the past W = 1800 self-evaluation interactions
for each bucket.

3

https://sites.google.com/view/decstr/


Modular architecture. The shared network of our modular architecture NNshared is a 1-hidden layer
network of hidden size 256. After all pair-specific inputs have been encoded through this module,
their output (of size 84) are summed. The sum is then passed through a final network with a hidden
layer of size 256 to compute the final actions (policy) or action-values (critic). All networks use
ReLU activations and the Xavier initialization. We use Adam optimizers, with learning rates 10−3.
The list of hyperparameters is provided in Table 1.

Table 1: Sensorimotor learning hyperparameters used in DECSTR.

Hyperparam. Description Values.
nb mpis Number of workers 24
nb cycles Number of repeated cycles per epoch 50
nb rollouts per mpi Number of rollouts per worker 2
nb updates Number of updates per cycle 30
start bias init Epoch from which initializations are biased 100
W Curriculum window size 1800
self eval Self evaluation probability 0.1
Nb Number of buckets 5
replay strategy HER replay strategy future
k replay Ratio of HER data to data from normal experience 4
batch size Size of the batch during updates 256
γ Discount factor to model uncertainty about future decisions 0.98
τ Polyak coefficient for target critics smoothing 0.95
lr actor Actor learning rate 10−3

lr critic Critic learning rate 10−3

α Entropy coefficient used in SAC 0.2
automatic entropy Automatically tune the entropy coefficient False

Computing resources. The sensorimotor learning experiments contain 8 conditions: 2 of 10 seeds
and 6 of 5 seeds. Each run leverages 24 cpus (24 actors) for about 72h for a total of 9.8 cpu years.
Experiments presented in this paper requires machines with at least 24 cpu cores. The language
grounding phase runs on a single cpu and trains in a few minutes.

C.2 LANGUAGE-CONDITIONED GOAL GENERATOR

Language-Conditioned Goal Generator Training. We use a conditional Variational Auto-
Encoder (C-VAE) (Sohn et al., 2015). Conditioned on the initial configuration and a sentence describ-
ing the expected transformation of one object relation, it generates compatible goal configurations.
After the first phase of goal-directed sensorimotor training, the agent interacts with a hard-coded
social partner as described in Main Section ??. From these interactions, we obtain a dataset of 5000
triplets: initial configuration, final configuration and sentence describing one change of predicate
from the initial to the final configuration. The list of sentences used by the synthetic social partner
is provided in Table 2. Note that red, green and blue refer to objects o1, o2, o3 respectively.

Content of test sets. We describe the 5 test sets:

1. Test set 1 is made of input pairs (ci, s) from the training set, but tests the coverage of all
compatible final configurations Cf , 80% of which are not found in the training set. In that
sense, it is partly a test set.

2. Test set 2 contains two input pairs: {[0 1 0 0 0 0 0 0 0], put blue close to green} and
{[0 0 1 0 0 0 0 0 0], put green below red} corresponding to 7 and 24 compatible final config-
urations respectively.

3. Test set 3 corresponds to all pairs including the initial configuration ci = [1 1 0 0 0 0 0 0 0]
(29 pairs), with an average of 13 compatible final configurations.

4. Test set 4 corresponds to all pairs including one of the sentences put green on top of red and
put blue far from red, i.e. 20 pairs with an average of 9.5 compatible final configurations.

4



5. Test set 5 is all pairs that include both the initial configuration of test set 3 and one of the
sentences of test set 4, i.e. 2 pairs with 6 and 13 compatible goals respectively. Note that pairs
of set 5 are removed from sets 3 and 4.

Table 2: List of instructions. Each of them specifies a shift of one predicate, either from false to true (0 → 1)
or true to false (1 → 0). block A and block B represent two different blocks from {red, blue, green}.

Transition type Sentences
Close 0→ 1 Put block A close to block B, Bring block A and block B together,

(×3) Get block A and block B close from each other, Get block A close to block B.
Close 1→ 0 Put block A far from block B, Get block A far from block B,

(×3) Get block A and block B far from each other, Bring block A and block B apart,
Above 0→ 1 Put block A above block B, Put block A on top of block B,

(×6) Put block B under block A, Put block B below block A.
Above 1→ 0 Remove block A from above block B, Remove block A from block B,

(×6) Remove block B from below block A, Put block B and block A on the same plane,
Put block A and block B on the same plane.

Testing on logical expressions of instructions. To evaluate DECSTR on logical functions of in-
structions, we generate three types of expressions:

1. 100 instructions of the form “A and B” where A and B are basic instructions corresponding to
shifts of the form above 0 → 1 (see Table 2). These intersections correspond to stacks of 3
or pyramids.

2. 200 instructions of the form “A and B” where A and B are above and close instructions
respectively. B can be replaced by “not B” with probability 0.5.

3. 200 instructions of the form “(A and B) or (C and D))”, where A, B, C, D are basic instruc-
tions: A and C are above instructions while B and D are close instructions. Here also, any
instruction can be replaced by its negation with probability 0.5.

Implementation details. The encoder is a fully-connected neural network with two layers of size
128 and ReLU activations. It takes as input the concatenation of the final binary configuration and
its two conditions: the initial binary configuration and an embedding of the NL sentence. The NL
sentence is embedded with an recurrent network with embedding size 100, tanh non-linearities and
biases. The encoder outputs the mean and log-variance of the latent distribution of size 27. The
decoder is also a fully-connected network with two hidden layers of size 128 and ReLU activations.
It takes as input the latent code z and the same conditions as the encoder. As it generates binary
vectors, the last layer uses sigmoid activations. We train the architecture with a mixture of Kullback-
Leibler divergence loss (KDloss) w.r.t a standard Gaussian prior and a binary Cross-Entropy loss
(BCEloss). The combined loss is BCEloss + β × KDloss with β = 0.6. We use an Adam
optimizer, a learning rate of 5× 10−4, a batch size of 128 and optimize for 150 epochs. As training
is fast (≈ 2 min on a single cpu), we conducted a quick hyperparameter search over β, layer sizes,
learning rates and latent sizes (see Table 3). We found robust results for various layer sizes, various
β below 1. and latent sizes above 9.

Table 3: LGG hyperparameter search. In bold are the selected hyperparameters.

Hyperparam. Values.
β [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
layers size [128, 256]
learning rate [0.01, 0.005, 0.001]
latent sizes [9, 18, 27]

D BASELINES AND ORACLE

The language-conditioned LB baseline is fully described in the main document.

5



D.1 EXPERT BUCKETS ORACLE

In the EXPERT BUCKETS oracle, the automatic bucket generation of DECSTR is replaced with an
expert-predefined set of buckets using a priori measures of similarity and difficulty. To define these
buckets, one needs prior knowledge of the set of unreachable configurations, which are ruled out.
The 5 predefined buckets contain all configurations characterized by:

• Bucket 1: a single close relation between a pair of objects and no above relations (4 configu-
rations).

• Bucket 2: 2 or 3 close relations and no above relations (4 configurations).
• Bucket 3: 1 stack of 2 blocks and a third block that is either away or close to the base, but is

not close to the top of the stack (12 configurations).
• Bucket 4: 1 stack of 2 blocks and the third block close to the stack, as well as pyramid

configurations (9 configurations).
• Bucket 5: stacks of 3 blocks (6 configurations).

These buckets are the only difference between the EXPERT BUCKETS baseline and DECSTR.

D.2 LGB-C BASELINE

The LGB-C baseline represent goals not as semantic configurations but as particular 3D targets po-
sitions for each block, as defined for example in Lanier et al. (2019) and Li et al. (2019). The goal
vector size is also 9 and contains the 3D target coordinates of the three blocks. This baselines also
implements decoupling and, thus, can be compared to DECSTR in the three phases. We keep as
many modules as possible common with DECSTR to minimize the amount of confounding factors
and reduce the under-fitting bias. The goal selection is taken from DECSTR, but converts semantic
configuration into specific randomly-sampled target coordinates for the blocks, see Figure 2. The
agent is not conditioned on its current semantic configuration nor its semantic goal configuration.
For this reason, we do not apply the symmetry bias. The binary reward is positive when the maxi-
mal distance between a block and its target position is below 5 cm, i.e. the size of a block (similar
to (Andrychowicz et al., 2017)). To make this baseline competitive, we integrate methods from a
state of the art block manipulation algorithm (Lanier et al., 2019). The agent receives positive re-
wards of 1, 2, 3 when the corresponding number of blocks are well placed. We also introduce the
multi-criteria HER from Lanier et al. (2019). Finally, we add an additional object-centered inductive
bias by only considering, for each Deep Sets module, the 3D target positions of the corresponding
pair.That is, for each object pair, we ignore the 3D positions of the remaining object, yielding to a
vector of size 6. Language grounding is based on a C-VAE similar to the one used by DECSTR. We
only replace the cross-entropy loss by a mean-squared loss due to the continuous nature of the target
goal coordinates. We use the exact same training and testing sets as with semantic goals.

Figure 2: The LGB-C baseline samples target positions for each block (example for a pyramid here).

6



E ADDITIONAL RESULTS

E.1 COMPARISON DECSTR - LGB-C IN SKILL LEARNING PHASE

Figure 3 presents the average success rate over the 35 valid configurations during the skill learning
phase for DECSTR and the LGB-C baseline. Because LGB-C cannot pursue semantic goals as such,
we randomly sample a specific instance of this semantic goal: target block coordinates that satisfy
the constraints expressed by it. Because LGB-C is not aware of the original semantic goal, we cannot
measure success as the ability to achieve it. Instead, success is defined as the achievement of the
corresponding specific goal: bringing blocks to their respective targets within an error margin of
5 cm each. In short, DECSTR targets semantic goals and is evaluated on its ability to reach them.
LGB-C targets specific goals and is evaluated on its ability to reach them. These two measures do
not match exactly. Indeed, LGB-C sometimes achieves its specific goal but, because of the error
margins, does not achieve the original semantic goal.

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

DECSTR LGB-C

Figure 3: Comparison DECSTR and LGB-C in the skill learning phase.

E.2 AUTOMATIC BUCKET GENERATION.

Figure 4 depicts the evolution of the content of buckets along training (epochs 1, 50 and 100). Each
pie chart corresponds to a reachable configuration and represents the distribution of configurations
into buckets across 10 different seeds. Blue, orange, green, yellow, purple represent buckets 1 to 5
respectively and grey are undiscovered configurations. At each moment, the discovered configura-
tions are equally spread over the 5 buckets. A given configuration may thus change bucket as new
configurations are discovered, so that the ones discovered earlier are assigned buckets with lower
indexes. Goals are organized by their bucket assignments in the Expert Buckets condition (from top
to bottom).

After the first epoch (left), DECSTR has discovered all configurations from the expert buckets 1 and
2, and some runs have discovered a few other configurations. After 50 epochs, more configurations
have been discovered but they are not always the same across runs. Finally, after 100 epochs, all
configurations are found. Buckets are then steady and can be compared to expert-defined buckets.
It seems that easier goals (top-most group) are discovered first and assigned in the first-easy buckets
(blue and orange). Hardest configurations (stacks of 3, bottom-most group) seem to be discovered
last and assigned the last-hardest bucket (purple). In between, different runs show different composi-
tions, which are not always aligned with expert-defined buckets. Goals from expert-defined buckets
3 and 4 (third and fourth group from the top) seem to be attributed different automatic buckets in
different runs. This means that they are discovered in different orders depending on the runs. In
summary, easier and harder goals from expert buckets 1 - 2 and 5 respectively seem to be well de-
tected by our automatic bucket generations. Goals in medium-level expected difficulty as defined by
expert buckets seem not to show any significant difference in difficulty for our agents.

E.3 DECSTR LEARNING TRAJECTORIES

Figure 5 shows the evolution of internal estimations of the competence C, the learning progress
LP and the associated sampling probabilities P. Note that these metrics are computed online by

7



Bucket 1

Expert Bucket 1

Expert Bucket 2

Expert Bucket 3

Expert Bucket 4

Expert Bucket 5

Bucket 2 Bucket 3

50 100

Bucket 4 Bucket 5 Not discovered

Automatic Buckets

1

Figure 4: Evolution of the content of buckets from automatic bucket generation: epoch 1 (2400 episodes, left),
50 (middle) and 100 (right). Each pie chart corresponds to one of the 35 valid configurations. It represents
the distribution of the bucket attributions of that configuration across 10 runs. Blue, orange, green, yellow,
purple represent automatically generated buckets 1 to 5 respectively (increasing order of difficulty) and grey
represents undiscovered configurations. Goals are organized according to their expert bucket attributions in the
Expert Buckets condition (top-bottom organization).

DECSTR, as it self-evaluates on random discovered configurations. Learning trajectories seem to be
uniform across different runs, and buckets are learned in increasing order. This confirms that the
time of discovery is a good proxy for goal difficulty. In that case, configurations discovered first
end up in the lower index buckets and are indeed learned first. Note that a failing automatic bucket
generation would assign goals to random buckets. This would result in uniform measures of learning
progress across different buckets, which would be equivalent to uniform goal sampling. As Main
Figure ?? shows, DECSTR performs much better than the random goals conditions. This proves that
our automatic bucket algorithm generates useful goal clustering.

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00
0.05
0.10LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00

0.05

0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

0.0

0.5

1.0

C

B1 B2 B3 B4 B5

0.00
0.05
0.10

LP

0 200 400 600 800 1000 1200 1400
Episodes (x103)

0.0

0.5

1.0

P

Figure 5: Learning trajectories of 6 DECSTR agents.

8



REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. arXiv
preprint arXiv:1707.01495, 2017.

Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mohamed Chetouani. CU-
RIOUS: Intrinsically motivated multi-task, multi-goal reinforcement learning. In International
Conference on Machine Learning (ICML), pp. 1331–1340, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

John B. Lanier, Stephen McAleer, and Pierre Baldi. Curiosity-driven multi-criteria hindsight experi-
ence replay. CoRR, abs/1906.03710, 2019. URL http://arxiv.org/abs/1906.03710.

Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. Towards practical multi-object manip-
ulation using relational reinforcement learning. arXiv preprint arXiv:1912.11032, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312–1320, 2015.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in neural information processing systems, pp.
3483–3491, 2015.

9

http://arxiv.org/abs/1906.03710

	lgb pseudo-code
	Semantic predicates and application to fetch manipulate
	the decstr algorithm
	intrinsically motivated goal-conditioned rl
	Language-conditioned goal generator

	Baselines and oracle
	Expert buckets oracle
	lgb-c baseline

	Additional results
	Comparison decstr - lgb-c in skill learning phase
	Automatic bucket generation.
	decstr learning trajectories


