
Stronger NAS with Weaker Predictors
Appendix

A Implementation details of baselines methods

For random search and regularized evolution[1] baseline, we use the public implementation from this
link1. For random search, we selection 100 random architectures at each iteration. For regularized
evolution, We set the initial population to 10, and the sample size each iteration to 3.

B Runtime comparsion of WeakNAS

We show the runtime comparison of WeakNAS and its BO variant in Table 1. We can see the BO
variant is much slower in training proxy models due the ensembling of multiple models. Moreover,
it’s also several magnitude slower when deriving new samples, due to the calculation of its Expected
Improvement (EI) acquisition function [2] being extremely costly.

Method Predictors Config Train proxy model (s/arch) Derive new samples (s/arch)

WeakNAS
MLP 4 layers @1000 hidden 8.59× 10−5 3.53× 10−5

Gradient Boosting Tree 1000 Trees 5.70× 10−4 5.54× 10−7

Random Forrest 1000 Forests 3.20× 10−3 1.77× 10−4

WeakNAS (BO Variant) 5 x MLPs EI acquisition 2.84× 10−4 1.32× 10−1

Table 1: Runtime Comparsion of WeakNAS

C Ablation on the architecture encoding

We compare the effect of using different architecture encodings in in Table 2. We found when
combined with CATE embedding [3], the performance of WeakNAS can be further improved,
compared to WeakNAS baseline with adjacency matrix encoding used in [4]. This also leads to
stronger performance than cate-DNGO-LS baseline in CATE [3], which demonstrates that CATE
embedding [3] is an orthogonal contribution to WeakNAS, and they are mutually compatible.

Methods #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

CATE (cate-DNGO-LS)[3] 150 94.10 - 0.22 12.3
WeakNAS + Adjacency matrix[4] 150 94.10 0.19 0.22 12.3
WeakNAS + CATE[3] 150 94.19 0.12 0.13 5.24

Table 2: Details on Ablation on meta-sampling methods on NAS-Bench-101

D Ablation on number of initial samples

We conduct a controlled experiment in varying the number of initial samples |M0| in Table 3. On
NAS-Bench-101, we vary |M0| from 10 to 200, and found a "warm start" with good initial samples is

1https://github.com/D-X-Y/AutoDL-Projects

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/D-X-Y/AutoDL-Projects

crucial for good performance. Too small number of |M0| might makes the predictor lose track of the
good performing regions. As shown in Table 3. We empirically found |M0|=100 can ensure highly
stable performance on NAS-Bench-101.

|M0| #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

10 1000 94.14 0.10 0.18 9.1
100 1000 94.25 0.04 0.07 1.7
200 1000 94.19 0.08 0.13 5.2

10 200 94.04 0.13 0.28 33.5
100 200 94.18 0.14 0.14 5.6
200 200 93.78 1.45 0.54 558.0

Optimal - 94.32 - 0.00 1.0

Table 3: Ablation on number of initial samples M0 on NAS-Bench-101

E More comparison on NAS-Bench-201

We conduct a controlled experiment on NAS-Bench-201 by varying number of samples. As shown in
Figure 1, our average performance over different number of samples is clearly better than Regularized
Evolution [1] in all three subsets, with better stability indicated by confidence intervals.

(a) CIFAR10 (b) CIFAR100 (c) ImageNet16-120
Figure 1: Comparison to SOTA on NAS-Bench-201 by varying number of samples. Solid lines and
shadow regions denote the mean and std, respectively.

F Comparison to BRP-NAS

Evaluation strategy: BRP-NAS[5] uses a unique setting that differs from other predictor-based
NAS, i.e., evaluating Top 40 predictions by the NAS predictor instead of Top 1 prediction, and the
later was commonly followed by others[6–9] and WeakNAS.

Sampling strategy: WeakNAS uses a different sampling strategy than that of BRP-NAS, given a
sample budget of M , BRP-NAS picks both samples from Top-K and (M − K) random models
from the entire search space, while our WeakNAS only picks M random models in Top-N , thus is a
more “greedy” strategy. BRP-NAS controls the exploitation and exploration trade-off by adjusting
α = (M −K)/M , however they did not have any ablation discussing the exploitation and exploration
trade-off and only empirically choose α = 0.5 as the default ratio. Our WeakNAS instead controls the
exploitation and exploration trade-off by adjusting N/M ratio, and we did a comprehensive analysis
on the exploitation and exploration trade-off on both NAS-Bench and MobileNet Search Space on
ImageNet in Section ??.

NAS predictor: BRP-NAS uses a stronger GCN-based binary relation predictors which utilizes extra
topological prior, on the other hand, our framework generalizes to all choices of predictors, including
MLP, Regression Tree and Random Forest, thus is not picky on the choice of predictors.

To fairly compare with BRP-NAS, we follow the exact same setting for our WeakNAS predictor,
e.g., incorporating the same graph convolutional network (GCN) based predictor and using Top-
40 evaluation. As shown in Table 4, at 100 training samples, WeakNAS can achieve comparable
performance to BRP-NAS [5].

2

Method #Train #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

BRP-NAS [5] 100 140 94.22 - 0.10 3.0

WeakNAS 100 140 94.23 0.09 0.09 2.3
Optimal - - 94.32 - 0.00 1.0

Table 4: Comparison to BRP-NAS on NAS-Bench-101.

G Comparsion of meta-sampling methods in WeakNAS

We also show that local search algorithm (hill climbing) or Semi-NAS [9] can be used as a meta
sampling method in WeakNAS, which could further boost the performance of WeakNAS, here are
the implementation details.

Local Search Given a network architecture embedding s in NAS-Bench-101 Search Space, we first
define a nearest neighbour function N(s) as architecture that differ from s by a edge or a operation.
At each iteration, we random sample a initial sample si from TopN predictions TopN (P̃ k) and sample
all of its nearest neighbour architecture in N(v0). We then let the new si+1 = arg maxs∈N(si) f(s).
We repeat the process iteratively until we reach a local maximum such that ∀v ∈ N(s), f(s) > f(v)
or the sampling budget M of the iteration is reached.

Semi-NAS At the sampling stage of each iteration in WeakNAS, we further use Semi-NAS as a
meta-sampling methods. Given a meta search space of 1000 architectures and a sample budget of
100 queries each iteration. We following the setting in Semi-NAS, using the same 4-layer MLP NAS
predictor in WeakNAS and uses pseudo labels as noisy labels to augment the training set, therefore
we are able to leverage “unlabeled samples" (e.g., architectures with accuracy generated by the
predictors) to update the predictor. We set the initial sample to be 10, and sample 10 more samples
each iteration. Note that at the start of k-th WeakNAS iteration, we inherent the weight of Semi-NAS
predictor from the previous (k-1)-th WeakNAS iteration.

Sampling (M from TopN) M N #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

WeakNAS 100 1000 1000 94.25 0.04 0.07 1.7

Local Search - - 1000 94.24 0.03 0.08 1.9
Semi-NAS - - 1000 94.26 0.02 0.06 1.6

Table 5: Ablation on meta-sampling methods on NAS-Bench-101

H Details of Implementation on Open Domain Search Space

We extend WeakNAS to open domain settings by (a) Construct the evaluation pool X̄ by uniform
sampling the whole search space X (b) Apply WeakNAS in the evaluation space X̄ to find the best
performer. (c) Train the best performer architecture from scratch.

For instance, when working with MobileNet search space that includes ≈ 1018 architectures, we
uniformly sample 10K models as an evaluation pool, and further apply WeakNAS with a sample
budget of 800 or 1000. When working with NASNet search space that includes ≈ 1021 architectures,
we uniformly sample 100K models as an evaluation pool, and further apply WeakNAS with a sample
budget of 800.

In the following part, we take MobileNet open domain search space as a example, however we follow
a similar procedure for NASNet search space.

(a) Construct the evaluation pool X̄ from the search space X We uniformly sample an evaluation
pool to handle the extremely large MobileNet search space (|X| ≈ 1018), since its not doable
to predict the performance of all architectures in X . We use uniform sampling due to a recent
study [10] reveal that human-designed NAS search spaces usually contain a fair proportion of
good models compared to random design spaces, for example, in Figure 9 of [10], it shows that
in NASNet/Amoeba/PNAS/ENAS/DARTS search spaces, Top 5% of models only have a <1%
performance gap to the global optima. In practice, the uniform sampling strategy has been widely

3

verified as effective in other works of predictor-based NAS such as [11–13], For example, [11]
[12][13] set to be 112K, 15K, 20K in a search space of 1018 networks. In our case, we set |X̄| = 10K.

(b) Apply WeakNAS in the evaluation space X̄ We then further apply WeakNAS in the evaluation
pool X̄ . This is because even with the evaluation pool |X̄| = 10K, it still takes days to evaluate
all those models on ImageNet (in a weight-sharing SuperNet setting). Since the evaluation pool
X̄ was uniformly sampled from NAS search space X , it preserves the highly-structured nature of
X . As a result, we can leverage WeakNAS to navigate through the highly-structured search space.
WeakNAS build a iterative process, where it searches for some top-performing cluster at the initial
search iteration and then “zoom-in” the cluster to find the top performers within the same cluster (as
shown in Figure ??). At k− th iteration, WeakNAS balance the exploration and exploitation trade-off
by sampling 100 models from the Top 1000 predictions of the predictor f̃k, it use the promising
samples to further improve performance of the predictor in the next iteration f̃k+1. We leverage
WeakNAS to further decrease the number of queries to find the optimal in X̄ by 10 times, the search
cost has dropped from 25 GPU hours (evaluate all 10K samples in random evaluation pool) to 2.5
GPU hours (use WeakNAS in 10K random evaluation pool), while still achieving a solid performance
of 81.3% on ImageNet (MobileNet Search Space).

(c) Train the best performer architecture from scratch. We follow a similar setting in LaNAS[8],
where we use Random Erase and RandAug, a drop out rate of 0.3 and a drop path rate of 0.0, we also
use exponential moving average (EMA) with a decay rate of 0.9999. During training and evaluation,
we set the image size to be 236x236 (In NASNet search space, we set the image size to be 224x224).
We train for 300 epochs with warm-up of 3 epochs, we use a batch size of 1024 and RMSprop as the
optimizer. We use a cosine decay learning rate scheduler with a starting learning rate of 1e-02 and a
terminal learning rate of 1e-05.

I Ablation on exploitation-exploration trade-off in Mobilenet Search space
on ImageNet

For the ablation on open-domain search space, we follow the same setting in the Section H, however
due to the prohibitive cost of training model from scratch in Section H (c), we directly use accuracy
derived from supernet.

WeakNAS uniformly samples M samples from TopN predictions at each iteration, thus we can adjust
N/M ratio to balance the exploitation-exploration trade-off. In Table 6, we set the total number
of queries at 100, fix M at 10 and while adjusting N from 10 (more exploitation) to 1000 (more
exploration), and use optimal in the 10K evaluation pool to measure the ranking and test regret.
We found WeakNAS is quite robust within the range where N/M = 2.5 - 10, achieving the best
performance at the sweet spot of N/M = 5. However, its performance drops significantly (by rank),
while doing either too much exploitation (N/M <2.5) or too much exploration (N/M >25).

Sampling methods M TopN #Queries SuperNet Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

Uniform - - 100 79.0609 0.0690 0.1671 94.58

Iterative

10 10 100 79.1552 0.0553 0.0728 20.69
10 25 100 79.1936 0.0289 0.0344 4.68
10 50 100 79.2005 0.0300 0.0275 4.05
10 100 100 79.1954 0.0300 0.0326 4.63
10 250 100 79.1755 0.0416 0.0525 10.58
10 500 100 79.1710 0.0388 0.0570 10.80
10 1000 100 79.1480 0.0459 0.0800 19.70
10 2500 100 79.1274 0.0597 0.1006 33.64

Table 6: Ablation on exploitation-exploration trade-off over 100 runs on MobleNet Search Space
over ImageNet

J Founded Architecture on Open Domain Search

We show the best architecture founded by WeakNAS with 800/1000 queries in Table 7.

4

Id Block Kernel #Out Channel Expand Ratio
WeakNAS @ 593 MFLOPs, #Queries=800

0 Conv 3 24 -
1 IRB 3 24 1
2 IRB 3 32 4
3 IRB 5 32 6
4 IRB 7 48 4
5 IRB 5 48 3
6 IRB 7 48 4
7 IRB 3 48 6
8 IRB 3 96 4
9 IRB 7 96 6

10 IRB 5 96 6
11 IRB 7 96 3
12 IRB 3 136 6
13 IRB 3 136 6
14 IRB 5 136 6
15 IRB 5 136 3
16 IRB 7 192 6
17 IRB 5 192 6
18 IRB 3 192 4
19 IRB 5 192 3
20 Conv 1 192 -
21 Conv 1 1152 -
22 FC - 1536 -

Id Block Kernel #Out Channel Expand Ratio
WeakNAS @ 560 MFLOPs, #Queries=1000

0 Conv 3 24 -
1 IRB 3 24 1
2 IRB 5 32 3
3 IRB 3 32 3
4 IRB 3 32 4
5 IRB 3 32 3
6 IRB 5 48 4
7 IRB 5 48 6
8 IRB 5 48 4
9 IRB 7 96 4

10 IRB 5 96 6
11 IRB 7 96 6
12 IRB 3 136 6
13 IRB 5 136 6
14 IRB 5 136 6
15 IRB 7 192 6
16 IRB 5 192 6
17 IRB 3 192 6
18 IRB 5 192 3
19 Conv 1 192 -
20 Conv 1 1152 -
21 FC - 1536 -

Table 7: Neural architecture found by WeakNAS on ImageNet using MobileNet search space, i.e.
results in main paper Table 6

References
[1] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image

classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[2] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

[3] Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture
encoding with transformers. arXiv preprint arXiv:2102.07108, 2021.

[4] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In International Conference
on Machine Learning, pages 7105–7114, 2019.

[5] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing
Systems, 33, 2020.

[6] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimiza-
tion. In Advances in neural information processing systems, pages 7816–7827, 2018.

[7] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. Advances in Neural
Information Processing Systems, 33, 2020.

[8] Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and Yuandong Tian. Sample-efficient
neural architecture search by learning actions for monte carlo tree search. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[9] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised
neural architecture search. arXiv preprint arXiv:2002.10389, 2020.

[10] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Design-
ing network design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10428–10436, 2020.

5

[11] Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. arXiv preprint arXiv:1912.00848, 2019.

[12] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Accuracy prediction
with non-neural model for neural architecture search. arXiv preprint arXiv:2007.04785, 2020.

[13] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen,
Yuandong Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search using
neural acquisition function. arXiv preprint arXiv:2006.02049, 2020.

6

	Implementation details of baselines methods
	Runtime comparsion of WeakNAS
	Ablation on the architecture encoding
	Ablation on number of initial samples
	More comparison on NAS-Bench-201
	Comparison to BRP-NAS
	Comparsion of meta-sampling methods in WeakNAS
	Details of Implementation on Open Domain Search Space
	Ablation on exploitation-exploration trade-off in Mobilenet Search space on ImageNet
	Founded Architecture on Open Domain Search

