
Under review as a conference paper at ICLR 2024

A ADDITIONAL EXPERIMENTS

A.1 DETAILED BREAKDOWN OF DOWNSTREAM TASKS RESULTS

Figure 4: [1/2] Detailed breakdown of the results obtained in the 17 fine-tuning downstream tasks
for the three environments HalfCheetah, Hopper and Walker2d.

15



Under review as a conference paper at ICLR 2024

Figure 5: [2/2] Detailed breakdown of the results obtained in the 17 fine-tuning downstream tasks
for the three environments HalfCheetah, Hopper and Walker2d.

B IMPLEMENTATION DETAILS

In the sequence tokenization phase, we do not use return conditioning but since the representation
models are pre-trained on multiple environments and tasks, we use environment conditioning, i.e.,
during training, an environment token is appended at the beginning of the sequences in each batch,
providing the model with additional contextual information. In practice, the length of the last two
modalities (state and action concatenated) varies across different environments. Therefore, the max-
imum portion of masked tokens at the end of the sequence differs depending on the environment.
For instance, in the Hopper environment with 3 actions and 11 observation tokens, the maximum
portion of masked tokens is 14, while in HalfCheetah with 6 actions and 18 observation tokens,
it is 24. Additionally, as we maintain a fixed-size context window of 128, the sequences’ starting
points will have varying truncations for different environments, ensuring a non-truncated state at the
end of the window. Another design choice is the embedding aggregation, i.e., how to come from a
context_window x embedding_dimension tensor to a 1 x embedding_dimension tensor. We decided
to use a Conv1d with a kernel size of 1.

Computational Cost. A significant advantage of the component-level sequencing approach is its
reduced input dimension, allowing cheaper computational costs. By capturing the components of
states and actions at different time steps, the input space expands linearly rather than quadratically
mitigating the challenges associated with the curse of dimensionality. To illustrate this, consider a
simple example of a 2-dimensional state space with a discretization size of 9. With a component-
level granularity, the input size becomes 2× 9 = 18. In contrast, a state-level granularity results in
an input size of 9× 9 = 81. The former exhibits linear growth within the observation space, while
the latter demonstrates quadratic growth. Moreover, while it effectively multiplies the length of the
input sequence by the average number of components in a state, this drawback is absorbed by the

16



Under review as a conference paper at ICLR 2024

increased context window of transformer models. Lastly, for an equal number of trajectories, the
number of tokens is also trivially larger than that with a state- and action-level granularity.

C ADDITIONAL DETAILS ON MASKING PATTERNS

In this section, we provide further details on the masking patterns and schedule used in the
SMART (Sun et al., 2023) and MTM (Wu et al., 2023) baselines. In C-GPT or C-BERT, we
focused on reducing the technicalities to their minimum: a simple masking pattern, i.e., GPT-like or
BERT-like, and no masking schedule.

In SMART, the objective involves three components: Forward Dynamics Prediction, Inverse Dy-
namics Prediction, and Random Masked Hindsight Control. The masking schedule involves two
masking sizes, k and k′, which determine the number of masked actions and observations during
pre-training. The masking schedule for actions (k) is designed to gradually increase the difficulty of
the random masked hindsight control task. It starts with k = 1, ensuring the model initially predicts
masked actions based on a single observed action. As training progresses, the value of k is increased
in a curriculum fashion. The masking schedule for observations (k′) ensures that the model learns
to predict masked actions based on a revealed subsequence of observations and actions, rather than
relying solely on local dynamics. Similar to the action masking schedule, k′ starts at 1 and gradu-
ally increases during training. SMART’s paper suggests that the masking schedule is essential for
effective pre-training in control environments. By gradually increasing the masking difficulty, the
model is exposed to a range of training scenarios, starting with simple local dynamics and gradually
transitioning to complex long-term dependencies.

In MTM, the masking pattern is implemented by requiring at least one token in the masked sequence
to be autoregressive, which means it must be predicted based solely on previous tokens, and all
future tokens are masked. In addition, MTM uses a modality-specific encoder to elevate the raw
trajectory inputs to a common representation space for the tokens. Finally, MTM is trained with a
range (between 0.0 and 0.6) of randomly sampled masking ratios.

D EXPERIMENTAL DETAILS AND HYPERPARAMETERS

In this section, we provide more details about the experiments, including hyperparameter config-
uration and details of each environment (e.g., version). For all experiments with C-GPT and the
baselines, we run 64 rollouts with different random seeds and report the mean and 95% confidence
interval (CI) across them.

D.1 FAIR COMPARISON

To ensure a fair comparison between the representation models using an MLP or a transformer
architecture, we made sure to have a comparable number of parameters. Both models consist of a
minimum of three layers with a size of 256 for the baseline, while C-GPT uses a single layer with
a size of 512 for the policy. Consequently, the maximum number of parameters comprised in the
parameter-efficient fine-tuned versions (using (IA)3) of PASTA methods is around 140k, which is
comparable to that of the RL policies trained from raw observations.

In addition, we choose to fine-tune the MLP baselines to achieve the best performance in each
environment. In contrast, we use the same set of hyperparameters for all domains involving PASTA
models. This approach ensures a fair comparison between the two methods, with PASTA at a slight
disadvantage. However, it also holds the promise of potentially achieving even better performance
with the PASTA methods.

Finally, when comparing different pre-training methods, we save 10 checkpoints during the course
of training and evaluate them all on the Imitation Learning task. For each method we select the one
with highest performance and use it as initialization for all the other downstream tasks.

17



Under review as a conference paper at ICLR 2024

Figure 6: Continuous Control Downstream Tasks.

D.2 ENVIRONMENT DETAILS

For all experiments, we use the 0.0.15 version of Brax (Freeman et al., 2021a). Each environment
in Brax, illustrated in Figure 6, provides a realistic physics simulation, enabling agents to interact
with objects and the environment in a physically plausible manner. The tasks studied in this paper
feature (i) a HalfCheetah robot (Wawrzyński, 2009) with 9 links and 8 joints. The objective is to
apply torques on the joints to make the cheetah run forward as fast as possible. The action space for
the agents consists of a 6-element vector representing torques applied between the different links;
(ii) a Hopper robot (Erez et al., 2011) which is a two-dimensional one-legged figure consisting of
four main body parts: the torso, thigh, leg, and foot. The objective is to make hops in the forward
direction by applying torques on the hinges connecting the body parts. The action space for the agent
is a 3-element vector representing the torques applied to the thigh, leg, and foot joints; (iii) a Walker
robot (Erez et al., 2011) which is a two-dimensional two-legged figure comprising a single torso at
the top, two thighs below the torso, two legs below the thighs, and two feet attached to the legs. The
objective is to coordinate the movements of both sets of feet, legs, and thighs to achieve forward
motion in the right direction. The action space for the agent is a 6-element vector representing the
torques applied to the thigh, leg, foot, left thigh, left leg, and left foot joints.

D.3 DATASET DETAILS

In this section, we provide further detail on the collection of the datasets. We trained 10
SAC (Haarnoja et al., 2018) agents for a total of 5 million timesteps in each environment. From
each, we select the 20% latest trajectories of size 1000, resulting in a combined total of 30 million
transitions. With each environment comprising different observation and action sizes, the overall
multi-domain dataset is composed of 510 million tokens. We also have one dataset for each domain.

Next, we give the hyperparameters of the SAC agents used to collect the pre-training trajectories.
These are given in Table 3.

Table 3: Hyperparameters used in SAC.

Hyperparameter Value

Adam stepsize 3 ·10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 0.005
Target update interval 1
Gradient steps per timestep 1
Training steps 20,000

We also provide a concrete example of the state and action components with their corresponding
properties for the simplest robot structure, Hopper. The number of components for each property

18



Under review as a conference paper at ICLR 2024

is given in parentheses. In this case, the action space consists of torques applied to the rotors (3),
while the observation space includes the following components: z-coordinate of the top (1), angle
(4), velocity (2), and angular velocity (4).

D.4 DOWNSTREAM TASKS DETAILS

In this section, we provide the hyperparameters used in the training of the imitation learning algo-
rithm Behavioural Cloning (BC) (Table 4) and the offline RL algorithm TD3-BC (Table 5).

Table 4: Hyperparameters used in the BC downstream task.

Parameter Value
Horizon T 1000
Batch Size 1024
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize 3 ·10−4

Training steps 8,000

Table 5: Hyperparameters used in the TD3-BC downstream task.

Parameter Value
Horizon T 1000
Batch Size 1024
Discount γ 0.99
Non-Linearity GELU (Hendrycks & Gimpel, 2016)
Nb. hidden layers 1
Nb. hidden units per layer 512
Adam stepsize (actor) 1 ·10−4

Adam stepsize (critic) 3 ·10−4

Target update rate 5 ·10−3

Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2
Conservatism coefficient α 2.5
Training steps 90,000

Then, we give additional details about the sensor failures downstream tasks. In Table 6, 7 and 8
we include the correspondence between each sensor number and its associated name in all environ-
ments. In the 11 downstream tasks, we switch off each one of these sensors.

Finally, in the dynamics change downstream tasks, we vary the gravity coefficient (after training
with a coefficient of 1) by multiplying it with the following constant values: 0.1, 0.25, 4, and 10.

19



Under review as a conference paper at ICLR 2024

Table 6: Sensor name / Sensor number in Halfcheetah.

Sensor name Sensor number

z-coordinate of the center of mass 1
w-orientation of the front tip 2
y-orientation of the front tip 3
angle of the back thigh rotor 4
angle of the back shin rotor 5
angle of the back foot rotor 6
velocity of the tip along the y-axis 7
angular velocity of front tip 8
angular velocity of second rotor 9
x-coordinate of the front tip 10
y-coordinate of the front tip 11

Table 7: Sensor name / Sensor number in Hopper.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
velocity of the x-coordinate of the top 6
velocity of the z-coordinate (height) of the top 7
angular velocity of the angle of the top 8
angular velocity of the thigh hinge 9
angular velocity of the leg hinge 10
angular velocity of the foot hinge 11

Table 8: Sensor name / Sensor number in Walker2d.

Sensor name Sensor number

z-coordinate of the top (height of hopper) 1
angle of the top 2
angle of the thigh joint 3
angle of the leg joint 4
angle of the foot joint 5
angle of the left thigh joint 6
angle of the left leg joint 7
angle of the left foot joint 8
velocity of the x-coordinate of the top 9
velocity of the z-coordinate (height) of the top 10
angular velocity of the angle of the top 11

D.5 HYPERPARAMETERS

In Table 9, we show the hyperparameter configuration for C-GPT across all experiments.

20



Under review as a conference paper at ICLR 2024

Table 9: Hyperparameters and configuration details for C-GPT across all experiments.

Hyperparameter Value

Transformer Layers 10
Transformer Heads 8
Noising Ratio 0.15
Masking Probability 0.8
Random Token Probability 0.1
Non-Linearity GELU
Learning Rate 3e−4
Num Epochs 3
Batch Size 4096
Num Quantization Tokens 1024
Embedding Dimension 256

21


