Supplementary Material to 'Locally diferentially private estimation of nonlinear functionals of discrete distributions'

Cristina Butucea CREST, ENSAE, IP Paris Palaiseau 91120 Cedex, France cristina.butucea@ensae.fr Yann Issartel CREST, ENSAE, IP Paris Palaiseau 91120 Cedex, France yann.issartel@ensae.fr

This Supplementary Material contains the proofs of the results in [1] and is consistent in notation with the main paper.

A Proofs of upper bounds

A.1 Plug-in estimator

Proof of 1st bound in Theorem 2.1. 1°. Bias: We have using the triangle inequality,

$$\left|\mathbb{E}\,\hat{F}_{\gamma} - F_{\gamma}\right| = \left|\mathbb{E}\,\hat{F}_{\gamma} - \sum_{k=1}^{K} p_{k}^{\gamma}\right| \le \sum_{k=1}^{K} \left|\mathbb{E}\,\hat{F}_{\gamma}(k) - p_{k}^{\gamma}\right| \quad .$$

Hence, it suffices to upper bound the k^{th} bias component $|\mathbb{E} \hat{F}_{\gamma}(k) - p_k^{\gamma}|$ for all $k \in [K]$ and $\gamma \neq 1$ (the case $\gamma = 1$ being trivial). We separate the analysis in two different ranges of values of p_k . Define $\mathcal{K}_{\geq \tau} = \{k \in [K] : p_k \geq \tau\}$, and $\mathcal{K}_{<\tau} = [K] \setminus \mathcal{K}_{\geq \tau}$. By Lemma B.5 we have

$$\sum_{k \in \mathcal{K}_{<\tau}} \left| \mathbb{E} \, \hat{F}_{\gamma}(k) - p_k^{\gamma} \right| \le C \frac{|\mathcal{K}_{<\tau}|}{(\alpha^2 n)^{\gamma/2}}$$

for a constant C depending only on γ . Lemma B.7 ensures that

$$\sum_{k \in \mathcal{K}_{\geq \tau}} \left| \mathbb{E} \, \hat{F}_{\gamma}(k) - p_k^{\gamma} \right| \le C' \left(\frac{|\mathcal{K}_{\geq \tau}|}{(\alpha^2 n)^{\gamma/2}} + \mathbb{1}_{\{\gamma \ge 2\}} \frac{\|p^{\geq \tau}\|_{\gamma-2}^{\gamma-2}}{\alpha^2 n} \right)$$

for a constant C' depending only on γ . Gathering the above inequalities, we have

$$\left|\mathbb{E}\,\hat{F}_{\gamma} - F_{\gamma}\right| \le (C + C') \left(\frac{K}{(\alpha^2 n)^{\gamma/2}} + \mathbb{1}_{\{\gamma \ge 2\}} \frac{\|p^{\ge \tau}\|_{\gamma-2}^{\gamma-2}}{\alpha^2 n}\right). \tag{14}$$

2°. Variance: By Lemma B.4, we have $\operatorname{Cov}(\hat{F}_{\gamma}(k), \hat{F}_{\gamma}(k')) \leq 0$ for any $k \neq k' \in [K]$. Hence

$$\operatorname{Var}\left(\sum_{k=1}^{K} \hat{F}_{\gamma}(k)\right) \leq \sum_{k=1}^{K} \operatorname{Var}\left(\hat{F}_{\gamma}(k)\right) \quad . \tag{15}$$

As in the proof of the bias bound above, we separate our analysis in two different ranges of values of p_k . For small p_k , we use Lemma B.5 to get

$$\sum_{k \in \mathcal{K}_{<\tau}} \operatorname{Var}\left(\hat{F}_{\gamma}(k)\right) \leq \widetilde{C} \frac{|\mathcal{K}_{<\tau}|}{(\alpha^2 n)^{\gamma}} ,$$

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

where \widetilde{C} is a constant depending only on γ . For large p_k , we deduce from Lemma B.8 that

$$\sum_{k \in \mathcal{K}_{\geq \tau}} \operatorname{Var}\left(\hat{F}_{\gamma}(k)\right) \leq \widetilde{C}' \left(\frac{|\mathcal{K}_{\geq \tau}|}{(\alpha^2 n)^{\gamma}} + \mathbb{1}_{\{\gamma \geq 1\}} \frac{\|p^{\geq \tau}\|_{2\gamma-2}^{2\gamma-2}}{\alpha^2 n}\right)$$

for a constant \widetilde{C}' depending only on γ . Then, plugging these bounds into (15), we have

$$\operatorname{Var}\left(\sum_{k=1}^{K} \hat{F}_{\gamma}(k)\right) \leq (\widetilde{C} + \widetilde{C}') \left(\frac{K}{(\alpha^{2}n)^{\gamma}} + \mathbb{1}_{\{\gamma \geq 1\}} \frac{\|p^{\geq \tau}\|_{2\gamma-2}^{2\gamma-2}}{\alpha^{2}n}\right) .$$
(16)

The proof of the of 1st bound in Theorem 2.1 is complete.

Proof of 2nd **bound in Theorem 2.1.** We only need to control the second and third terms of the 1st bound in Theorem 2.1. The squared root of the second term is bounded from above by

$$\frac{\sum_{k=1}^{K} p_k^{\gamma-2} \mathbb{1}_{\{p_k > \tau\}}}{\alpha^2 n} \le \sum_{k=1}^{K} \frac{p_k^{\gamma-1}}{\sqrt{\alpha^2 n}} \frac{p_k^{-1} \mathbb{1}_{\{p_k > \tau\}}}{\sqrt{\alpha^2 n}} \le \sum_{k=1}^{K} \frac{p_k^{\gamma-1} c^{-1}}{\sqrt{\alpha^2 n}} = \frac{\|p\|_{\gamma-1}^{\gamma-1} c^{-1}}{\sqrt{\alpha^2 n}}$$

Since $(p_k)_k$ are probabilities, we have $p_k^{\gamma-1} \leq p_k$ for $\gamma \geq 2$ and we can further bound the last display by $\|p\|_{\gamma-1}^{\gamma-1} \leq \sum_{k=1}^{K} p_k = 1$ for $\gamma \geq 2$. Hence, the second term is bounded by $\mathbb{1}_{\gamma \geq 2}(\alpha^2 n)^{-1}$.

Let us bound the third term. Since $\sum_k p_k = 1$, the number of the significant $p_k \ge \tau$ is necessarily smaller than $\tau^{-1} = c^{-1}\sqrt{\alpha^2 n}$, and thus smaller than $K_{\wedge \tau^{-1}} := K \wedge \sqrt{\alpha^2 n}$. Then, when $\gamma \in (1, 3/2)$, we use the concavity to have $\|p^{\ge \tau}\|_{2\gamma-2}^{2\gamma-2} \le K_{\wedge \tau^{-1}}^{3-2\gamma}$ for all $p \in \mathcal{P}_K$. When $\gamma \ge 3/2$ we have $\|p^{\ge \tau}\|_{2\gamma-2}^{2\gamma-2} \le 1$. Therefore, the third term is uniformly bounded over the class \mathcal{P}_K by

$$\mathbb{1}_{\{\gamma \ge 1\}} \frac{\|p^{\ge \tau}\|_{2\gamma-2}^{2\gamma-2}}{\alpha^2 n} \le \mathbb{1}_{\{\gamma \ge 1\}} \frac{1 \lor K_{\wedge \tau^{-1}}^{3-2\gamma}}{\alpha^2 n}$$

This concludes the proof of the 2^{nd} bound in Theorem 2.1.

A.2 Thresholded plug-in estimator (proof of Theorem 2.3)

<u>Case $\gamma \in (0, 1)$ </u>: Let us check the first bound of Theorem 2.3. We use the concavity of the power function p^{γ} to have $F_{\gamma} \leq K(\sum_{k=1}^{K} p_k/K)^{\gamma} = K^{1-\gamma}$. Then, the quadratic risk of the trivial estimator 0 is bounded by $K^{2(1-\gamma)}$. On the other hand, the quadratic risk of the plug-in \hat{F}_{γ} is bounded by $K^2/(\alpha^2 n)^{\gamma}$ (Theorem 2.1). Therefore, the quadratic risk of the thresholded estimator $\overline{F}_{\gamma} := \mathbb{1}_{K < \tau^{-1}} \hat{F}_{\gamma}$ satisfies the first bound of Theorem 2.3.

Case $\gamma > 1$: Recall that $\hat{\tau} \simeq \sqrt{\log(Kn)/(\alpha^2 n)}$. We will prove the next bound on the risk of \overline{F}_{γ} ,

$$\mathbb{E}\left[(\overline{F}_{\gamma} - F_{\gamma})^2\right] \lesssim_{\gamma} (K\hat{\tau}^{\gamma} \wedge \hat{\tau}^{\gamma-1})^2 + \frac{(K \wedge \hat{\tau}^{-1})^{3-2\gamma} \vee 1}{\alpha^2 n} \quad . \tag{17}$$

Before that, we check that (17) implies the second inequality of Theorem 2.3.

(i) Assume that $K \geq \hat{\tau}^{-1}$, then the RHS of (17) becomes

$$\hat{\tau}^{2(\gamma-1)} + \frac{\hat{\tau}^{2\gamma-3} \vee 1}{\alpha^2 n} \lesssim \frac{(\log(Kn))^{\gamma-1}}{(\alpha^2 n)^{\gamma-1}} + \frac{(\log(Kn))^{\gamma-(3/2)}}{(\alpha^2 n)^{\gamma-(1/2)}} + \frac{1}{\alpha^2 n} \lesssim \frac{(\log(Kn))^{\gamma-1}}{(\alpha^2 n)^{\gamma-1}} + \frac{1}{\alpha^2 n} \quad ,$$

where the last inequality follows from the bound

$$\frac{(\log(Kn))^{\gamma-(3/2)}}{(\alpha^2 n)^{\gamma-(1/2)}} \le \frac{(\log(Kn))^{\gamma-1}}{(\alpha^2 n)^{\gamma-1}} ,$$

which is equivalent to $\alpha^2 n \log(Kn) \ge 1$. Hence, (17) is upper bounded by the smallest term of the second inequality of Theorem 2.3.

(*ii*) Assume that $K \leq \hat{\tau}^{-1}$, then the RHS of (17) becomes

$$K^{2}\hat{\tau}^{2\gamma} + \frac{K^{3-2\gamma} \vee 1}{\alpha^{2}n} \lesssim \frac{K^{2} \left(\log(Kn)\right)^{\gamma}}{(\alpha^{2}n)^{\gamma}} + \frac{1 \vee K^{3-2\gamma}}{\alpha^{2}n}$$

which is the smallest term of the second inequality of Theorem 2.3. Hence, we have proved that the second inequality of Theorem 2.3 follows from (17).

Proof of (17). We have the deterministic bound

$$|\overline{F}_{\gamma} - F_{\gamma}| \le \overline{F}_{\gamma} + F_{\gamma} \le K(2^{\gamma} + 1)$$
.

Introduce the following event

$$A = \left\{ \exists k \in [K] : \left(\hat{z}_k^{(1)} < \hat{\tau} \text{ and } p_k \ge 3\hat{\tau}/2 \right) \text{ or } \left(\hat{z}_k^{(1)} \ge \hat{\tau} \text{ and } p_k < \hat{\tau}/2 \right) \right\}$$

and denote the complementary event by A^c . We have

$$\mathbb{E}\left[(\overline{F}_{\gamma} - F_{\gamma})^2\right] \le \mathbb{E}\left[\mathbb{1}_{A^c}(\overline{F}_{\gamma} - F_{\gamma})^2\right] + \mathbb{P}(A)\left(K(2^{\gamma} + 1)\right)^2 . \tag{18}$$

Let us bound the second term of the RHS of (18) by showing that $\mathbb{P}(A) \leq 6/(K^2n)$. By assumption in the theorem, we have $n \geq 2\log(K)$. This ensures that $n \geq \log(Kn^{1/3})$, which allows us to use Lemma B.3 which gives $\mathbb{P}\left(|\hat{z}_k^{(1)} - p_k| > \hat{\tau}/2\right) \leq 6/(K^3n)$. Hence, for $p_k \geq 3\hat{\tau}/2$, we have

$$\mathbb{P}\left(\hat{z}_k^{(1)} < \hat{\tau}\right) \le \frac{6}{K^3 n} \quad .$$

and for $p_k < \hat{\tau}/2$,

$$\mathbb{P}\left(\hat{z}_k^{(1)} \ge \hat{\tau}\right) \le \frac{6}{K^3 n}$$

We then use the union bound over $k \in [K]$ to get $\mathbb{P}(A) \leq 6/(K^2n)$. The second term of the RHS of (18) is therefore bounded by $6(2^{\gamma} + 1)^2/n$.

We now control the first term of the RHS of (18). For any real a > 0, we note $\mathcal{K}_{< a} = \{k \in [K] : p_k < a\}$ and $\hat{\mathcal{K}}_{< a} = \{k \in [K] : \hat{z}_k^{(1)} < a\}$, with their respective complementary sets $\mathcal{K}_{\geq a} = [K] \setminus \mathcal{K}_{< a}$ and $\hat{\mathcal{K}}_{\geq a} = [K] \setminus \hat{\mathcal{K}}_{< a}$. Splitting the sum over the k in $\hat{\mathcal{K}}_{<\hat{\tau}}$ and $\hat{\mathcal{K}}_{\geq\hat{\tau}}$ respectively, we get

$$\mathbb{1}_{A^c}(\overline{F}_{\gamma} - F_{\gamma})^2 \le 2\mathbb{1}_{A^c} \left(\|(p_k)_{k \in \hat{\mathcal{K}}_{<\hat{\tau}}}\|_{\gamma}^{\gamma} \right)^2 + 2\mathbb{1}_{A^c} \left(\sum_{k \in \hat{\mathcal{K}}_{\geq \hat{\tau}}} \overline{F}_{\gamma}(k) - F_{\gamma}(k) \right)^2 .$$

Since $\hat{\mathcal{K}}_{<\hat{\tau}} \subset \mathcal{K}_{<3\hat{\tau}/2}$ on the event A^c , we can bound the first term by

$$\mathbb{1}_{A^c} \| (p_k)_{k \in \hat{\mathcal{K}}_{<\hat{\tau}}} \|_{\gamma}^{\gamma} \le \| (p_k)_{k \in \mathcal{K}_{<3\hat{\tau}/2}} \|_{\gamma}^{\gamma} \le K (3\hat{\tau}/2)^{\gamma} \wedge (3\hat{\tau}/2)^{\gamma-1}$$

for any $\gamma > 1$ and $p \in \mathcal{P}_K$. For the second term, we will use the independence between the data samples $z^{(1)} := (z_1^{(1)}, \ldots, z_n^{(1)})$ and $z^{(2)} := (z_1^{(2)}, \ldots, z_n^{(2)})$. In particular, the set $\hat{\mathcal{K}}_{\geq \hat{\tau}}$ and the event A^c are deterministic conditionally to $z^{(1)}$, so that

$$\mathbb{E}\left[\mathbbm{1}_{A^c}\left(\sum_{k\in\hat{\mathcal{K}}_{\geq\hat{\tau}}}\overline{F}_{\gamma}(k)-F_{\gamma}(k)\right)^2\Big|z^{(1)}\right] = \mathbbm{1}_{A^c}\mathbb{E}\left[\left(\sum_{k\in\hat{\mathcal{K}}_{\geq\hat{\tau}}}\overline{F}_{\gamma}(k)-F_{\gamma}(k)\right)^2\Big|z^{(1)}\right] \\ \leq \mathbbm{1}_{A^c}C\left(\frac{|\hat{\mathcal{K}}_{\geq\hat{\tau}}|^2}{(\alpha^2n)^{\gamma}}+\frac{|\hat{\mathcal{K}}_{\geq\hat{\tau}}|^{3-2\gamma}\vee 1}{\alpha^2n}\right)$$

where the last line is similar to the 2nd bound in Theorem 2.1 with K replaced by $|\hat{\mathcal{K}}_{\geq \hat{\tau}}|$, and where C is some constant depending only on γ . We can further bound the last display by noting that $\hat{\mathcal{K}}_{\geq \hat{\tau}} \subset \mathcal{K}_{\geq \hat{\tau}/2}$ on the event A^c , and $|\mathcal{K}_{\geq \hat{\tau}/2}| \leq K \wedge (\hat{\tau}/2)^{-1}$. Going back to (18), we then have for all $p \in \mathcal{P}_K$,

$$\mathbb{E}\left[(\overline{F}_{\gamma} - F_{\gamma})^{2}\right] \lesssim_{\gamma} (K\hat{\tau}^{\gamma} \wedge \hat{\tau}^{\gamma-1})^{2} + \frac{(K \wedge \hat{\tau}^{-1})^{2}}{(\alpha^{2}n)^{\gamma}} + \frac{(K \wedge \hat{\tau}^{-1})^{3-2\gamma} \vee 1}{\alpha^{2}n} + \frac{1}{n} \\ \lesssim_{\gamma} (K\hat{\tau}^{\gamma} \wedge \hat{\tau}^{\gamma-1})^{2} + \frac{(K \wedge \hat{\tau}^{-1})^{3-2\gamma} \vee 1}{\alpha^{2}n} .$$

The proof of (17) is complete.

A.3 Interactive privacy mechanism

Proof of 1st **bound in Theorem 2.4.** 1°. *Bias:* We decompose the expected value of \widetilde{F}_{γ} :

$$\mathbb{E}\,\widetilde{F}_{\gamma} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\,\mathbb{E}\left[z_{i}^{(2)}|z^{(1)}, z^{(2)}\right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\,\mathbb{E}\left[\hat{F}_{\gamma-1}^{(1)}(x_{i}^{(2)})|z^{(1)}, x^{(2)}\right]$$
$$= \sum_{k=1}^{K} p_{k} \mathbb{E}\,\mathbb{E}\left[\hat{F}_{\gamma-1}^{(1)}(k)|z^{(1)}\right] = \sum_{k=1}^{K} p_{k} \mathbb{E}\left[\hat{F}_{\gamma-1}^{(1)}(k)\right]$$
(19)

so that, for any $\gamma > 1, \gamma \neq 2$ (the case $\gamma = 2$ being trivial), we have

$$\left| \mathbb{E} \, \widetilde{F}_{\gamma} - \sum_{k=1}^{K} p_{k}^{\gamma} \right| \leq \sum_{k=1}^{K} p_{k} \left| \mathbb{E} \, \widehat{F}_{\gamma-1}^{(1)}(k) - p_{k}^{\gamma-1} \right| \\ \leq C \left(\frac{1}{(\alpha^{2}n)^{(\gamma-1)/2}} + \mathbb{1}_{\{\gamma \geq 3\}} \frac{\|p^{\geq \tau}\|_{\gamma-2}^{\gamma-2}}{\alpha^{2}n} \right)$$
(20)

using Lemma B.5 and B.7 and $\sum_{k} p_{k} = 1$, where C is a constant depending only on γ .

2°. Variance: By the law of total variance we have

$$\operatorname{Var}\left(\widetilde{F}_{\gamma}\right) = \mathbb{E}\left[\operatorname{Var}\left(\widetilde{F}_{\gamma}|z^{(1)}\right)\right] + \operatorname{Var}\left(\mathbb{E}\left[\widetilde{F}_{\gamma}|z^{(1)}\right]\right) \quad .$$
(21)

We control the first term in the RHS of (21):

$$\operatorname{Var}\left(\widetilde{F}_{\gamma}|z^{(1)}\right) = \frac{1}{n}\operatorname{Var}\left(z_{1}^{(2)}|z^{(1)}\right) \leq \frac{1}{n} \mathbb{E}\left[\left(z_{1}^{(2)}\right)^{2}|z^{(1)}\right]$$
$$= \frac{2^{2\gamma-1}}{n}\left(\frac{e^{\alpha}+1}{e^{\alpha}-1}\right)^{2} \leq \frac{2^{2\gamma+1}}{\alpha^{2}n}$$

where we used $\left(\frac{e^{\alpha}+1}{e^{\alpha}-1}\right)^2 = \left(1 + \frac{1}{e^{\alpha}-1}\right)^2 \le \left(1 + \frac{1}{\alpha}\right)^2 \le \frac{4}{\alpha^2}$. For the second term in the RHS of (21), we have using (19)

$$\operatorname{Var}\left(\mathbb{E}\left[\widetilde{F}_{\gamma}|Z^{(1)}\right]\right) = \operatorname{Var}\left(\sum_{k=1}^{K} p_k \widehat{F}_{\gamma-1}^{(1)}(k)\right) \le \sum_{k=1}^{K} p_k^2 \operatorname{Var}\left(\widehat{F}_{\gamma-1}^{(1)}(k)\right)$$

where the inequality can be deduced from Lemma B.4. Then, by Lemma B.5 and B.8,

$$\sum_{k=1}^{K} p_k^2 \operatorname{Var}\left(\,\hat{F}_{\gamma-1}^{(1)}(k)\right) \le \widetilde{C}\left(\frac{\|p\|_2^2}{(\alpha^2 n)^{\gamma-1}} + \mathbbm{1}_{\{\gamma \ge 2\}} \frac{\|p^{\ge \tau}\|_{2\gamma-2}^{2\gamma-2}}{\alpha^2 n}\right)$$

for a constant \widetilde{C} depending only γ . The proof of the 1st bound in Theorem 2.4 is complete.

Proof of 2^{nd} **bound in Theorem 2.4.** The desired bound follows from the 1^{st} bound of Theorem 2.4 and the fact that $\mathbb{1}_{\{\gamma \geq 3\}} \|p^{\geq \tau}\|_{\gamma-2}^{\gamma-2} \leq 1$ and $\mathbb{1}_{\{\gamma \geq 2\}} \|p^{\geq \tau}\|_{2\gamma-2}^{2\gamma-2} \leq \|p\|_2^2 \leq 1$ for all $p \in \mathcal{P}_K$. \Box

B Main lemmas for upper bounds

We use the notations $\hat{x}_k = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i=k\}}$ and $\hat{w}_k = \frac{1}{n} \sum_{i=1}^n w_{ik}$, so that $\hat{z}_k = \hat{x}_k + \frac{\sigma}{\alpha} \hat{w}_k$. We consider $\alpha \in (0, \infty)$ in this Appendix B, unlike in the main section of the paper where we assumed that $\alpha \in (0, 1)$ and $\alpha^2 n \ge 1$.

B.1 Concentration of \hat{z}_k

We control the concentration of \hat{z}_k in the next lemma.

Lemma B.1. For any $\alpha \in (0, \infty)$ and any r > 0, we have

$$\mathbb{E}\left[|\hat{z}_{k} - p_{k}|^{r}\right] \leq \frac{C_{BL,r}}{((\alpha^{2} \wedge 1)n)^{r/2}} , \\ \mathbb{E}\left[|\hat{z}_{k}|^{r}\right] \leq \frac{2^{r}C_{BL,r}}{((\alpha^{2} \wedge 1)n)^{r/2}} + 2^{r}p_{k}^{r}$$

where $C_{BL,r}$ is a constant depending only on r. Besides,

$$\mathbb{P}(\hat{z}_k < \frac{p_k}{2}) \le 3 \exp\left[-\frac{n}{128} \left(\frac{(\alpha \wedge 1)p_k}{\sigma}\right)^2\right] .$$

Proof of Lemma B.1. By (35) in Lemma C.1 and (37) in Lemma C.2, we have for any r > 0,

$$\mathbb{E}\left[|\hat{z}_{k} - p_{k}|^{r}\right] \leq 2^{r} \mathbb{E}\left[|\hat{x}_{k} - p_{k}|^{r}\right] + 2^{r} \mathbb{E}\left[\left(\frac{\sigma|\hat{w}_{k}|}{\alpha}\right)^{r}\right] \leq \frac{2^{r}C_{B,r}}{n^{r/2}} + \frac{(2\sigma)^{r}C_{L,r}}{(\alpha^{2}n)^{r/2}} \\ \leq \frac{2^{r}\left(C_{B,r} + \sigma^{r}C_{L,r}\right)}{((\alpha^{2} \wedge 1)n)^{r/2}}$$

where $C_{B,r}$ and $C_{L,r}$ are constants that only depend on r. Then, denoting $C_{BL,r} = 2^r (C_{B,r} + \sigma^r C_{L,r})$, we have

$$\mathbb{E}\left[|\hat{z}_{k}|^{r}\right] = \mathbb{E}\left[|\hat{z}_{k} - p_{k} + p_{k}|^{r}\right] \leq 2^{r} \mathbb{E}\left[|\hat{z}_{k} - p_{k}|^{r}\right] + 2^{r} p_{k}^{r}$$
$$\leq \frac{2^{r} C_{BL,r}}{\left((\alpha^{2} \wedge 1)n\right)^{r/2}} + 2^{r} p_{k}^{r} .$$

Finally, by (32) in Lemma C.1 and (36) in Lemma C.2, we have

$$\mathbb{P}(\hat{z}_k < \frac{p_k}{2}) \le \mathbb{P}(\hat{x}_k < \frac{3p_k}{4}) + \mathbb{P}(\frac{\sigma\hat{w}_k}{\alpha} < -\frac{p_k}{4}) \le e^{-\left(\frac{1}{4}\right)^2 \frac{np_k}{2}} + e^{-\frac{n}{8}\left(\frac{\alpha p_k}{4\sigma}\right)^2} + e^{-\frac{n}{4}\left(\frac{\alpha p_k}{4\sigma}\right)} \le 3e^{-\frac{n}{128\sigma^2}\left((\alpha \wedge 1)p_k\right)^2} .$$

The proof of Lemma B.1 is complete.

Recall that $\hat{F}_{\gamma}(k) = (T_{[0,2]}[\hat{z}_k])^{\gamma}$. We bound the difference between the expectations of $T_{[0,2]}[\hat{z}_k]$ and \hat{z}_k in the next lemma.

Lemma B.2. We have for any $\alpha \in (0, \infty)$,

$$\mathbb{E}\left[T_{[0,2]}[\hat{z}_k]\right] - p_k \Big| \le \frac{2p_k^{-1}}{(\alpha^2 \wedge 1)n} \left(\sigma^2 C_{L,2} + \frac{16\gamma}{e}\right)$$

Proof of Lemma B.2. Recall that $\hat{z}_k = \hat{x}_k + \frac{\sigma}{\alpha}\hat{w}_k$, and define ϵ_k by $T_{[0,2]}[\hat{z}_k] = \hat{x}_k + \epsilon_k$. Then $\mathbb{E}\left[T_{[0,2]}[\hat{z}_k]\right] - p_k = \mathbb{E}\left[\epsilon_k\right]$ and it suffices to bound $|\mathbb{E}\left[\epsilon_k\right]|$. Introducing the event $A = \{|\frac{\sigma}{\alpha}\hat{w}_k| < \hat{x}_k\}$ and the complementary event A^c , we note first that $A \subseteq \{\hat{z}_k \in [0,2]\}$ and thus $\epsilon_k = \frac{\sigma}{\alpha}\hat{w}_k$ on A. We have

$$\begin{aligned} |\mathbb{E}[\epsilon_{k}]| &\leq |\mathbb{E}[\epsilon_{k}\mathbb{1}_{A}]| + |\mathbb{E}[\epsilon_{k}\mathbb{1}_{A^{c}}]| = |\mathbb{E}\left[\frac{\sigma}{\alpha}\hat{w}_{k}\mathbb{1}_{A}\right]| + |\mathbb{E}[\epsilon_{k}\mathbb{1}_{A^{c}}]| \\ &= |\mathbb{E}\mathbb{E}\left[\frac{\sigma}{\alpha}\hat{w}_{k}\mathbb{1}_{A}\Big|\hat{x}_{k}\right]| + |\mathbb{E}[\epsilon_{k}\mathbb{1}_{A^{c}}]| \\ &= |\mathbb{E}\left[\epsilon_{k}\mathbb{1}_{A^{c}}\right]| \end{aligned}$$

since \hat{w}_k is a centered and symmetric random variable that is independent of \hat{x}_k . Using the event $B = \{2p_k \ge \hat{x}_k \ge p_k/2\}$ and the complementary event B^c , we have

$$\begin{split} |\mathbb{E}\left[\epsilon_{k}\mathbb{1}_{A^{c}}\right]| &\leq \mathbb{E}\left[|\epsilon_{k}|\mathbb{1}_{A^{c}\cap B}\right]| + \mathbb{E}\left[|\epsilon_{k}|\mathbb{1}_{A^{c}\cap B^{c}}\right] \leq \mathbb{E}\left[|\epsilon_{k}|\mathbb{1}_{\left\{\frac{\sigma}{\alpha}|\hat{w}_{k}|\geq\frac{1}{2}p_{k}\right\}}\right] + 2\mathbb{E}\left[\mathbb{1}_{B^{c}}\right] \\ &\leq \mathbb{E}\left[\frac{\sigma}{\alpha}|\hat{w}_{k}|\mathbb{1}_{\left\{\frac{\sigma}{\alpha}|\hat{w}_{k}|\geq\frac{1}{2}p_{k}\right\}}\right] + 4e^{-\frac{1}{8}np_{k}} \\ &= 2p_{k}^{-1}\left(\mathbb{E}\left[\frac{p_{k}}{2}|\frac{\sigma}{\alpha}\hat{w}_{k}|\mathbb{1}_{\left\{\frac{\sigma}{\alpha}|\hat{w}_{k}|\geq\frac{1}{2}p_{k}\right\}}\right] + 2p_{k}e^{-\frac{1}{8}np_{k}}\right) \\ &\leq 2p_{k}^{-1}\left(\mathbb{E}\left[|\frac{\sigma}{\alpha}\hat{w}_{k}|^{2}\right] + 2p_{k}e^{-\frac{1}{8}np_{k}}\right) \end{split}$$

where we invoked (32-33) from Lemma C.1 in the second line. Then, by (37) from Lemma C.2,

$$|\mathbb{E}[\epsilon_k \mathbb{1}_{A^c}]| \le 2p_k^{-1} \left(\frac{\sigma^2 C_{L,2}}{\alpha^2 n} + 2p_k e^{-np_k/8}\right) \le 2p_k^{-1} \left(\frac{\sigma^2 C_{L,2}}{\alpha^2 n} + \frac{16\gamma}{en}\right)$$

where we used $xe^{-cnx} \leq \frac{\gamma}{cen}$ for any $x \in [0,1]$ and any c > 0. This concludes the proof of Lemma B.2.

Lemma B.3. For any $\alpha \in (0, \infty)$, and integers K, n satisfying $n \geq \log(Kn^{1/3})$, we have

$$\mathbb{P}\left(|\hat{z}_k - p_k| > 96\sigma \sqrt{\frac{\log(Kn^{1/3})}{(\alpha^2 \wedge 1)n}}\right) \le \frac{6}{K^3n} \quad .$$

Proof of Lemma B.3. Denoting $\delta = c_1 \sigma \sqrt{\frac{\log(Kn^{1/3})}{(\alpha^2 \wedge 1)n}}$ with $c_1 \ge 1$ a numerical constant to be set later, we get from (34) in Lemma C.1 and (36) in Lemma C.2 that

$$\mathbb{P}(|\hat{z}_k - p_k| > \delta) \le \mathbb{P}(|\hat{x}_k - p_k| > \frac{\delta}{2}) + \mathbb{P}(\frac{\sigma|\hat{w}_k|}{\alpha} > \frac{\delta}{2}) \le 2\left(e^{-\frac{n\delta^2}{2}} + e^{-\frac{n(\alpha\delta/\sigma)^2}{32}} + e^{-\frac{n(\alpha\delta/\sigma)}{8}}\right) \le 6e^{-\frac{c_1\log(Kn^{1/3})}{32}}$$

which is upper bounded by $6/(K^3n)$ for $c_1 = 96$. Lemma B.3 is proved.

Lemma B.4. We have
$$\operatorname{Cov}(F_{\gamma}(k), F_{\gamma}(k')) \leq 0$$
 for any $k, k' \in [K], k \neq k'$, and any $\gamma > 0$.

Proof of Lemma B.4. We first state the definition of the negative association property.

Definition (See [5]) Random variables u_1, \ldots, u_K are said to be negatively associated (NA) if for every pair of disjoint subsets A_1, A_2 of $\{1, \ldots, K\}$, and any component-wise increasing functions f_1, f_2 ,

$$\operatorname{Cov}(f_1(u_i, i \in A_1), f_2(u_j, j \in A_2)) \le 0$$
 (22)

By corollary 5 of Jiao et al. [4], random variables that are drawn from a multinomial distribution, are NA. Hence, the random variables $\hat{X} = (\hat{x}_1, \dots, \hat{x}_K)$ are NA since $(\hat{x}_1, \dots, \hat{x}_K)$ follows a multinomial distribution $\sim \mathcal{M}(n; (p_k)_{k \in [K]})$. Besides, the $\hat{W} = (\hat{w}_k)_{k \in [K]}$ are NA, as any set of independent random variables are NA [5]. Then, we get that $(\hat{X}, \hat{W}) = (\hat{x}_1, \dots, \hat{x}_K, \hat{w}_1, \dots, \hat{w}_K)$ are NA since a standard closure property of NA is that the union of two independent sets of NA random variables is NA [5]. We can therefore use the definition (22) of NA random variables to have

$$\operatorname{Cov}(f_k(\hat{X}, \hat{W}), f_{k'}(\hat{X}, \hat{W})) \le 0 , \qquad \forall k, k' \in [K], k \neq k'$$

for $f_k[(\hat{x}_1, \dots, \hat{x}_K, \hat{w}_1, \dots, \hat{w}_K)] = [T_{[0,2]}(\hat{x}_k + \sigma \hat{w}_k/\alpha)]^{\gamma}$, which are component-wise increasing functions. The proof of Lemma B.4 is complete.

B.2 Bias and Variance on small values of p_k

Lemma B.5. Let $\gamma, \alpha \in (0, \infty)$ and $k \in [K]$ and c > 1 be any numerical constant. If $p_k \leq c/\sqrt{(\alpha^2 \wedge 1)n}$, then

$$\begin{split} \left| \mathbb{E} \, \hat{F}_{\gamma}(k) - p_{k}^{\gamma} \right| &\leq \frac{C}{((\alpha^{2} \wedge 1)n)^{\gamma/2}} \\ \operatorname{Var} \left(\hat{F}_{\gamma}(k) \right) &\leq \frac{C'}{((\alpha^{2} \wedge 1)n)^{\gamma}} \end{split},$$

where C, C' are constants depending only on γ and c.

Proof of Lemma B.5. Recall that $\hat{F}_{\gamma}(k) = (T_{[0,2]} [\hat{z}_k])^{\gamma}$. We have for any s = 1, 2,

$$\mathbb{E}\left[\left(\hat{F}_{\gamma}(k)\right)^{s}\right] = \mathbb{E}\left[\left(T_{[0,2]}\left[\hat{z}_{k}\right]\right)^{s\gamma}\right] \leq \mathbb{E}\left[\left|\hat{z}_{k}\right|^{s\gamma}\right] \leq \frac{2^{s\gamma}C_{BL,s\gamma}}{((\alpha^{2}\wedge1)n)^{s\gamma/2}} + 2^{s\gamma}p_{k}^{s\gamma}$$

using Lemma B.1. Then, we take s = 1 to obtain the first bound announced in the lemma:

$$\begin{aligned} \left| \mathbb{E} \left[\hat{F}_{\gamma}(k) \right] - p_k^{\gamma} \right| &\leq \mathbb{E} \left[\hat{F}_{\gamma}(k) \right] + p_k^{\gamma} \leq \frac{2^{\gamma} C_{BL,\gamma}}{((\alpha^2 \wedge 1)n)^{\gamma/2}} + (2^{\gamma} + 1) p_k^{\gamma} \\ &\leq \frac{2^{\gamma} C_{BL,\gamma} + (2^{\gamma} + 1) c^{\gamma}}{((\alpha^2 \wedge 1)n)^{\gamma/2}} \end{aligned}$$

since $p_k \leq c/\sqrt{(\alpha^2 \wedge 1)n}$. We finally take s = 2 to get the second bound of the lemma:

$$\operatorname{Var}\left(\hat{F}_{\gamma}(k)\right) \leq \mathbb{E}\left[\hat{F}_{\gamma}(k)^{2}\right] \leq \frac{2^{2\gamma}C_{BL,2\gamma} + 2^{2\gamma}c^{2\gamma}}{((\alpha^{2} \wedge 1)n)^{\gamma}} \ .$$

Lemma B.5 is proved.

B.3 Bias and Variance on large values of p_k

Lemma B.6. For any $\gamma, \alpha \in (0, \infty)$ and $k \in [K]$ with $p_k \in (0, 1]$, we have

where C is a constant depending only on γ .

The proof of Lemma B.6 is inspired by the variance bound [4, Lemma 28] as it is based on Taylor's formula with the second derivatives of x^{γ} and $x^{2\gamma}$. However, the result in [4] holds for $\gamma \in (0, 1)$ in the case of direct observations (no privacy), whereas Lemma B.6 holds for any $\gamma > 0$ in the case of sanitized observations (privacy). We postpone the (relatively long) proof to the end of section B.3.

Lemma B.7. Let $\gamma, \alpha \in (0, \infty)$ and $k \in [K]$ and c > 0 be any numerical constant. If $p_k \ge c/\sqrt{(\alpha^2 \wedge 1)n}$, then

$$\left|\mathbb{E}\left[\hat{F}_{\gamma}(k)^{s}\right] - p_{k}^{s\gamma}\right| \leq C\left(\frac{1}{((\alpha^{2} \wedge 1)n)^{s\gamma/2}} + \mathbb{1}_{\{s\gamma \geq 2\}} \frac{p_{k}^{s\gamma-2}}{(\alpha^{2} \wedge 1)n}\right), \quad \forall s = 1, 2,$$

where C is a constant depending only on γ and c.

Proof of Lemma B.7. We invoke Lemma B.6. We bound the first error term

$$p_k^{s\gamma} e^{-\frac{n}{128\sigma^2}((\alpha \wedge 1)p_k)^2} \le \left(\frac{64\sigma^2 s\gamma}{(\alpha^2 \wedge 1)en}\right)^{s\gamma/2}$$

where we used $x^{s\gamma}e^{-cnx^2} \leq \left(\frac{s\gamma}{2cen}\right)^{s\gamma/2}$ for $x \in [0, 1]$ and any c > 0. The third error term of Lemma B.6 satisfies, for $s\gamma \in (0, 2)$

$$\mathbb{1}_{\{s\gamma\in(0,2)\}}\frac{p_k^{s\gamma-2}}{(\alpha^2\wedge 1)n} \le \frac{\left(\frac{c}{\sqrt{(\alpha^2\wedge 1)n}}\right)^{s\gamma-2}}{(\alpha^2\wedge 1)n} \le \frac{c^{s\gamma-2}}{((\alpha^2\wedge 1)n)^{s\gamma/2}}$$
(23)

since $p_k \ge c/\sqrt{(\alpha^2 \wedge 1)n}$. The proof of Lemma B.7 is complete.

Lemma B.8. Under the assumptions of Lemma B.7, we have

$$\operatorname{Var}\left(\hat{F}_{\gamma}(k)\right) \leq C\left(\frac{1}{((\alpha^{2} \wedge 1)n)^{\gamma}} + \mathbb{1}_{\{\gamma \geq 1\}} \frac{p_{k}^{2\gamma-2}}{(\alpha^{2} \wedge 1)n}\right)$$

for a constant C depending only on γ (and c).

Proof of Lemma B.8. We have, similarly to [4],

$$\operatorname{Var}\left(\hat{F}_{\gamma}(k)\right) = \mathbb{E}\left[\hat{F}_{\gamma}(k)^{2}\right] - \left(\mathbb{E}\,\hat{F}_{\gamma}(k)\right)^{2} = \mathbb{E}\left[\hat{F}_{\gamma}(k)^{2}\right] - p_{k}^{2\gamma} + p_{k}^{2\gamma} - \left(\mathbb{E}\,\hat{F}_{\gamma}(k)\right)^{2}$$

$$\leq \left|\mathbb{E}\left[\hat{F}_{\gamma}(k)^{2}\right] - p_{k}^{2\gamma}\right| + \left|p_{k}^{2\gamma} - \left(\mathbb{E}\,\hat{F}_{\gamma}(k) - p_{k}^{\gamma} + p_{k}^{\gamma}\right)^{2}\right|$$

$$\leq \left|\mathbb{E}\left[\hat{F}_{\gamma}(k)^{2}\right] - p_{k}^{2\gamma}\right| + \left|\mathbb{E}\,\hat{F}_{\gamma}(k) - p_{k}^{\gamma}\right|^{2} + 2p_{k}^{\gamma}\left|\mathbb{E}\,\hat{F}_{\gamma}(k) - p_{k}^{\gamma}\right| \quad . \tag{24}$$

Using Lemma B.7 to bound the two first terms of (24), and Lemma B.6 for the last term, we get

$$\operatorname{Var}\left(\hat{F}_{\gamma}(k)\right) \leq C\left(\frac{1}{((\alpha^{2} \wedge 1)n)^{\gamma}} + \mathbb{1}_{\{\gamma \geq 1\}} \frac{p_{k}^{2\gamma-2}}{(\alpha^{2} \wedge 1)n} + \frac{1}{((\alpha^{2} \wedge 1)n)^{\gamma}} + \mathbb{1}_{\{\gamma \geq 2\}} \frac{p_{k}^{2(\gamma-2)}}{((\alpha^{2} \wedge 1)n)^{2}} + 2p_{k}^{2\gamma} e^{-\frac{n}{128\sigma^{2}}((\alpha \wedge 1)p_{k})^{2}} + \frac{2p_{k}^{\gamma}\mathbb{1}_{\{\gamma \geq 2\}}}{((\alpha^{2} \wedge 1)n)^{\gamma/2}} + \frac{2p_{k}^{2\gamma-2}}{(\alpha^{2} \wedge 1)n}\right).$$
(25)

We bound the fifth term of (25):

$$2p_k^{2\gamma}e^{-\frac{n}{128\sigma^2}((\alpha\wedge 1)p_k)^2} \le 2\left(\frac{128\sigma^2\gamma}{(\alpha^2\wedge 1)en}\right)^{\gamma}$$

using $x^{2\gamma}e^{-c'nx^2} \leq \left(\frac{\gamma}{c'en}\right)^{\gamma}$ for any $x \in [0,1]$ and any c' > 0. Hence, the first, third and fifth terms of (25) are of the order of $((\alpha^2 \wedge 1)n)^{-\gamma}$ at most. We now bound the fourth term of (25) using $p_k \geq c/\sqrt{\alpha^2 \wedge 1}n$:

$$\frac{p_k^{2(\gamma-2)}}{((\alpha^2 \wedge 1)n)^2} = \frac{p_k^{2\gamma-2}p_k^{-2}}{((\alpha^2 \wedge 1)n)^2} \le \frac{p_k^{2\gamma-2}}{c^2(\alpha^2 \wedge 1)n}$$

and similarly the sixth term of (25):

$$\frac{2p_k^{\gamma}\mathbb{1}_{\{\gamma \ge 2\}}}{((\alpha^2 \wedge 1)n)^{1+(\gamma/2)-1}} \le \frac{2p_k^{\gamma}(p_k/c)^{\gamma-2}\mathbb{1}_{\{\gamma \ge 2\}}}{(\alpha^2 \wedge 1)n} = \frac{2p_k^{2\gamma-2}\mathbb{1}_{\{\gamma \ge 2\}}}{c^{\gamma-2}(\alpha^2 \wedge 1)n} \ .$$

Hence, we have the desired bound for the second, fourth and sixth terms of (25). Finally, for the last term of (25) we have

$$\frac{p_k^{2\gamma-2}}{(\alpha^2 \wedge 1)n} = \frac{p_k^{2\gamma-2} \mathbbm{1}_{\{\gamma \in (0,1)\}}}{(\alpha^2 \wedge 1)n} + \frac{p_k^{2\gamma-2} \mathbbm{1}_{\{\gamma \ge 1\}}}{(\alpha^2 \wedge 1)n} \le \frac{2c^{2\gamma-2}}{((\alpha^2 \wedge 1)n)^\gamma} + \frac{p_k^{2\gamma-2} \mathbbm{1}_{\{\gamma \ge 1\}}}{(\alpha^2 \wedge 1)n}$$

using (23) for s = 2. This concludes the proof of Lemma B.8.

Proof of Lemma B.6. Denoting $f_s(x) = x^{s\gamma}$ for s = 1, 2, and $Y = T_{[0,2]}[\hat{z}_k]$, we have by Taylor's formula,

$$f_s(Y) = f_s(p_k) + f'_s(p_k)(Y - p_k) + R(Y, p_k)$$
(26)

where the remainder is defined by

$$R(Y, p_k) = \int_{p_k}^{Y} (Y - w) f_s''(w) dw = \frac{1}{2} f_s''(w_Y) (Y - p_k)^2$$
(27)

where w_Y lies between Y and p_k . We get

$$|\mathbb{E}f_{s}(Y) - f_{s}(p_{k})| \leq |\mathbb{E}R(Y, p_{k})| + |\mathbb{E}f_{s}'(p_{k})(Y - p_{k})| \quad .$$
(28)

Thus, to prove the lemma, it suffices to bound the remainder $|\mathbb{E} R(Y, p_k)|$ and the first order term $|\mathbb{E} f'_s(p_k)(Y - p_k)|$. We control the latter using Lemma B.2,

$$|\mathbb{E}f'_s(p_k)(Y-p_k)| = s\gamma p_k^{s\gamma-1} |\mathbb{E}(Y-p_k)| \le \frac{2s\gamma p^{s\gamma-2}}{(\alpha^2 \wedge 1)n} \left(\sigma^2 C_{L,2} + \frac{16\gamma}{e}\right)$$

For the remainder, we use the decomposition

$$|\mathbb{E}R(Y, p_k)| \le \mathbb{E}[|R(Y, p_k)|\mathbb{1}(Y < p_k/2)] + \mathbb{E}[|R(Y, p_k)|\mathbb{1}(Y \ge p_k/2)]$$
(29)

and we bound separately the two terms of the RHS.

1°. First term in the RHS of (29).

$$\begin{split} \mathbb{E}\left[|R(Y,p_k)| \mathbb{1}(Y < p_k/2)\right] &\leq \sup_{y \leq p_k/2} |R(y,p_k)| \mathbb{E}\left[\mathbb{1}(Y < p_k/2)\right] \\ &= \sup_{y \leq p_k/2} |R(y,p_k)| \mathbb{E}\left[\mathbb{1}(\hat{z}_k < p_k/2)\right] \\ &\leq \sup_{y \leq p_k/2} |R(y,p_k)| \, 3 \, e^{-\frac{n}{128\sigma^2}((\alpha \wedge 1)p_k)^2} \end{split}$$

using Lemma B.1. We control $R(y, p_k)$ for any $y \in [0, p_k/2]$,

$$\begin{aligned} |R(y,p_k)| &\leq \int_y^{p_k} (w-y) |f_s''(w)| dw \leq \int_y^{p_k} (w-y) s\gamma |s\gamma - 1| w^{s\gamma - 2} dw \\ &\leq s\gamma |s\gamma - 1| \int_y^{p_k} w^{s\gamma - 1} dw \leq s\gamma |s\gamma - 1| \int_0^{p_k} w^{s\gamma - 1} dw = |s\gamma - 1| p_k^{s\gamma} \end{aligned}$$

We gather the last two displays to get

$$\mathbb{E}\left[|R(Y, p_k)| \mathbb{1}(Y < p_k/2)\right] \le |s\gamma - 1| p_k^{s\gamma} \, 3 \, e^{-\frac{n}{128\sigma^2} ((\alpha \wedge 1)p_k)^2}$$

2°. Second term in the RHS of (29). We separate our analysis in two different ranges of values of γ . 2°.1. Case $s\gamma \in (0, 2)$: Starting from (27) we have

$$\mathbb{E}\left[|R(Y,p_k)|\mathbb{1}(Y \ge p_k/2)\right] = \frac{s\gamma|s\gamma - 1|}{2} \mathbb{E}\left[w_Y^{s\gamma - 2}(Y - p_k)^2 \mathbb{1}(Y \ge p_k/2)\right]$$
(30)
$$\leq \frac{s\gamma|s\gamma - 1|}{2} \left(\frac{p_k}{2}\right)^{s\gamma - 2} \mathbb{E}\left[(Y - p_k)^2\right]$$
$$\leq s\gamma|s\gamma - 1|2^{1 - s\gamma} p_k^{s\gamma - 2} \frac{C_{BL,2}}{(\alpha^2 \land 1)n}$$

where we used $\mathbb{E}\left[(Y-p_k)^2\right] \leq \mathbb{E}\left[(\hat{z}_k-p_k)^2\right]$ and Lemma B.1.

2°.2. Case $s\gamma \ge 2$: A plug of $w_Y^{s\gamma-2} \le p_k^{s\gamma-2} + Y^{s\gamma-2}$ into (30) gives

$$\mathbb{E}\left[|R(Y,p_k)|\mathbb{1}(Y \ge p_k/2)\right] \le \frac{s\gamma(s\gamma-1)}{2} \mathbb{E}\left[(p_k^{s\gamma-2} + Y^{s\gamma-2})(Y - p_k)^2 \mathbb{1}(Y \ge p_k/2)\right].$$
(31)

We bound the first part of (31) as in (30),

$$\mathbb{E}\left[p_k^{s\gamma-2}(Y-p_k)^2\mathbb{1}(Y \ge p_k/2)\right] \le p_k^{s\gamma-2}\frac{C_{BL,2}}{((\alpha^2 \land 1)n)} .$$

For the second part of (31), we get from Cauchy-Schwarz that

$$\mathbb{E}\left[Y^{s\gamma-2}(Y-p_k)^2 \mathbb{1}(Y \ge 2p_k)\right] \le \mathbb{E}\left[Y^{2(s\gamma-2)}\right]^{1/2} \mathbb{E}\left[(Y-p_k)^4\right]^{1/2} \\ \le \left(\frac{2^{2(s\gamma-2)}C_{BL,2(s\gamma-2)}}{((\alpha^2 \land 1)n)^{s\gamma-2}} + 2^{2(s\gamma-2)}p_k^{2(s\gamma-2)}\right)^{1/2} \left(\frac{C_{BL,4}}{((\alpha^2 \land 1)n)^2}\right)^{1/2} \\ \le \left(\frac{2^{s\gamma-2}\sqrt{C_{BL,2(s\gamma-2)}}}{((\alpha^2 \land 1)n)^{(s\gamma-2)/2}} + 2^{s\gamma-2}p_k^{s\gamma-2}\right) \frac{\sqrt{C_{BL,4}}}{(\alpha^2 \land 1)n}$$

where in the second inequality we used $\mathbb{E}\left[Y^{2r}\right] \leq \mathbb{E}\left[\hat{z}_k^{2r}\right]$ and $\mathbb{E}\left[(Y-p_k)^{2r}\right] \leq \mathbb{E}\left[(\hat{z}_k-p_k)^{2r}\right]$ for any r > 0 and Lemma B.1; in the third inequality we used $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ for any a, b > 0. A plug of the last two displays into (31) concludes the case $s\gamma \geq 2$.

9

Going back to (29), we have bounded the remainder $\mathbb{E} R(Y, p_k)$. Lemma B.6 is proved.

C Auxiliary lemmas for upper bounds

Lemma C.1. Let $p \in (0,1]$, and $x_1, \ldots, x_n \overset{iid}{\sim} B(p)$ be independent Bernoulli random variables with parameter p. Then, the mean $\hat{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ satisfies, for any $\delta > 0$,

$$\mathbb{P}\left(\hat{x} \le (1-\delta)p\right) \le e^{-\frac{\delta^2 np}{2}} , \qquad (32)$$

$$\mathbb{P}\left(\hat{x} \ge (1+\delta)p\right) \le e^{-\frac{\delta^2 np}{2+\delta}} \quad , \tag{33}$$

and

$$\mathbb{P}(|\hat{x} - p| \ge \delta) \le 2e^{-2\delta^2 n} \quad . \tag{34}$$

We also have, for any r > 0,

$$\mathbb{E}\left[\left|\hat{x} - p\right|^{r}\right] \le \frac{C_{B,r}}{n^{r/2}} \tag{35}$$

where $C_{B,r}$ is a constant depending only on r.

Proof of Lemma C.1. The concentration inequalities (32-33) are one form of Chernoff bounds. The control (34) is Hoeffding's inequality applied to i.i.d Bernoulli random variables. Finally, for (35), see [8] or adapt the proof of Lemma C.2 below.

Lemma C.2. Let $w_1, \ldots, w_n \stackrel{iid}{\sim} L(1)$ be independent Laplace random variables with parameter 1. Denoting the mean by $\hat{w} = \frac{1}{n} \sum_{i=1}^{n} w_i$, we have

$$\mathbb{P}(\hat{w} > t) \vee \mathbb{P}(\hat{w} < -t) \le \exp\left[-\frac{n}{2}\left(\frac{t^2}{4} \wedge \frac{t}{2}\right)\right]$$
$$\le \exp\left[-\frac{n}{8}t^2\right] + \exp\left[-\frac{n}{4}t\right] \quad . \tag{36}$$

Besides, for any real r > 0, there exists a constant $C_{L,r} \ge 1$, depending only on r, such that

$$\mathbb{E}\left(\left|\hat{w}\right|^{r}\right) \leq \frac{C_{L,r}}{n^{r/2}} \quad . \tag{37}$$

Proof of Lemma C.2. A random variable x is said to be sub-exponential with parameter λ , denoted $x \sim \text{subE}(\lambda)$, if $\mathbb{E} x = 0$ and its moment generating function satisfies

$$\mathbb{E}[e^{sx}] \le e^{\lambda^2 s^2/2}, \quad \forall \, |s| < \frac{1}{\lambda}.$$

Let x_1, \ldots, x_n be independent random variables such that $x_i \sim \text{subE}(\lambda)$. Bernstein's inequality [8] entails that, for any t > 0, the mean $\hat{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ satisfies

$$\mathbb{P}(\hat{x} > t) \vee \mathbb{P}(\hat{x} < -t) \le \exp\left[-\frac{n}{2}\left(\frac{t^2}{\lambda^2} \wedge \frac{t}{\lambda}\right)\right]$$
(38)

Then, for any real r > 0 we have

$$\mathbb{E}\left|\hat{x}\right| = \int_{0}^{\infty} \mathbb{P}(|\hat{x}|^{r} > t)dt = \int_{0}^{\infty} \mathbb{P}(|\hat{x}| > t^{1/r})dt \le \int_{0}^{\infty} 2e^{-\frac{nt^{2/r}}{2\lambda^{2}}}dt + \int_{0}^{\infty} 2e^{-\frac{nt^{1/r}}{2\lambda}}dt$$

so that, using $u = \frac{nt^{2/r}}{2\lambda^2}$ and $v = \frac{nt^{1/r}}{2\lambda}$,

$$\mathbb{E} \left| \hat{x} \right| \leq \left(\frac{2\lambda^2}{n} \right)^{r/2} r \int_0^\infty e^{-u} u^{(r/2)-1} du + 2 \left(\frac{2\lambda}{n} \right)^r r \int_0^\infty e^{-v} v^{r-1} dv$$
$$= \left(\frac{2\lambda^2}{n} \right)^{r/2} r \Gamma(r/2) + 2 \left(\frac{2\lambda}{n} \right)^r r \Gamma(r)$$
$$\leq 2^{r+2} \lambda^r r \left[\Gamma(r/2) + \Gamma(r) \right] \frac{1}{n^{r/2}} . \tag{39}$$

Let $w \sim L(1)$ be a random variable of Laplace distribution with parameter 1. Observe that $\mathbb{P}(|w| > t) = e^{-t}$ for $t \ge 0$, and

$$\mathbb{E}[e^{sw}] \le e^{2s^2}, \quad \text{if } |s| < \frac{1}{2}$$

Hence, w is sub-exponential with parameter 2, i.e. $w \sim \text{subE}(2)$. We can take $\lambda = 2$ in (38-39) to conclude the proof of Lemma C.2, choosing $C_{L,r} = 2^{2r+2}r [\Gamma(r/2) + \Gamma(r)]$.

D Proofs of lower bounds

Proof of Proposition 2.2. Recall that $\hat{z}_k = \frac{1}{n} \sum_{i=1}^n z_{ik}$, where $z_{ik} = \mathbb{1}_{\{x_i=k\}} + \frac{\sigma}{\alpha} \cdot w_{ik}$, with $\mathbb{E} z_{ik} = p_k$ and $\operatorname{Var}(z_{ik}) = p_k(1-p_k) + \frac{2\sigma^2}{\alpha^2}$. Note that $\tilde{\tau} := \frac{\sigma}{\sqrt{\alpha^2 n}}$ lies in [0,2], and that $\operatorname{Var}(z_{ik}) \ge (\sqrt{n}\tilde{\tau})^2$. By the central limit theorem, $\sqrt{n} \frac{\hat{z}_k - p_k}{\sqrt{\operatorname{Var}(z_{ik})}}$ has an asymptotic standard normal distribution, so we have $\mathbb{P}(\sqrt{n} \frac{\hat{z}_k - p_k}{\sqrt{\operatorname{Var}(z_{ik})}} \ge 1) \ge c_1$ for some numerical constant $c_1 > 0$ and n large enough. We write $\hat{z}_k = \sqrt{n} \frac{\hat{z}_k - p_k}{\sqrt{\operatorname{Var}(z_{ik})}} \cdot \frac{\sqrt{\operatorname{Var}(z_{ik})}}{\sqrt{n}} + p_k \ge \frac{\sqrt{\operatorname{Var}(z_{ik})}}{\sqrt{n}}$ with probability larger than c_1 , thus leading to

$$\mathbb{E}\left[\left(T_{[0,2]}(\hat{z}_k)\right)^{\gamma}\right] - p_k^{\gamma} \ge c_1 \left(T_{[0,2]}\left(\frac{\sqrt{\operatorname{Var}(z_{ik})}}{\sqrt{n}}\right)\right)^{\gamma} - p_k^{\gamma} = c_1 \tilde{\tau}^{\gamma} - p_k^{\gamma} \ge \frac{c_1 \tilde{\tau}^{\gamma}}{2} \quad , \qquad \text{as} \quad n \to \infty$$

for all $p_k \leq \left(\frac{c_1}{2}\right)^{1/\gamma} \tilde{\tau}$. Denoting by $\mathcal{K}_{\leq (c_1/2)^{1/\gamma} \tilde{\tau}}$ the number of such p_k satisfying the latter inequality, we get

$$\sum_{k \in \mathcal{K}_{\leq (c_1/2)^{1/\gamma_{\tilde{\tau}}}}} \mathbb{E}\left[\left(T_{[0,2]}(\hat{z}_k)\right)^{\gamma}\right] - p_k^{\gamma} \geq \frac{c_1 \tilde{\tau}^{\gamma} |\mathcal{K}_{\leq (c_1/2)^{1/\gamma_{\tilde{\tau}}}}|}{2} , \quad \text{as} \quad n \to \infty .$$
 (40)

Hence, the lower bound announced in Proposition 2.2 holds in particular for any $p = (p_1, \ldots, p_K) \in \mathcal{P}_K$ such that $|\mathcal{K}_{\leq (c_1/2)^{1/\gamma}\tilde{\tau}}| = K$. However, this last equality entails that K satisfies the following restriction $K \gtrsim_{\gamma} (\tilde{\tau})^{-1} \gtrsim_{\gamma} \sqrt{\alpha^2 n}$ since $\sum_{k=0}^{K} p_k = 1$. We remove this restriction in the sequel. Let C > 0 be some constant that will be set later, and that only depends on γ . If $K \leq C \left(1 \vee (\alpha^2 n)^{\frac{\gamma}{2} - \frac{1}{2}}\right)$, then the lower bound of Proposition 2.2 follows directly from Theorem 2.6. We can therefore assume that

$$K \ge C\left(1 \lor (\alpha^2 n)^{\frac{\gamma}{2} - \frac{1}{2}}\right) \quad . \tag{41}$$

Let $p = (p_1, \ldots, p_K) \in \mathcal{P}_K$ such that $p_j \leq \left(\frac{c_1}{2}\right)^{1/\gamma} \tilde{\tau}$ for all $j \in [K-1]$, and $p_K \in [0,1]$ so that $\sum_{k=1}^K p_k = 1$. By Lemma B.5 and B.7, the bias of estimation of p_K is bounded by

$$\left|\mathbb{E}\left[\left(T_{[0,2]}(\hat{z}_K)\right)^{\gamma}\right] - p_K^{\gamma}\right| \le C' \left(\frac{1}{(\alpha^2 n)^{\gamma/2}} + \mathbb{1}_{\{\gamma \ge 2\}} \frac{1}{\alpha^2 n}\right) ,$$

where C' is a constant depending only on γ . Combining with (40), we get

$$\begin{split} \sum_{k=1}^{K} \mathbb{E} \left(T_{[0,2]}(\hat{z}_{k}) \right)^{\gamma} - p_{k}^{\gamma} &\geq \frac{c_{1} \tilde{\tau}^{\gamma} (K-1)}{2} - \frac{C'}{(\alpha^{2} n)^{\gamma/2}} - \mathbb{1}_{\{\gamma \geq 2\}} \frac{C'}{\alpha^{2} n} \\ &\geq \frac{c_{1} K}{4(\alpha^{2} n)^{\gamma/2}} - \frac{C'}{(\alpha^{2} n)^{\gamma/2}} - \mathbb{1}_{\{\gamma \geq 2\}} \frac{C'}{\alpha^{2} n} \ . \end{split}$$

Hence, it suffices to choose a large enough constant C in (41) to have

$$\sum_{k=1}^{K} \mathbb{E} \left(T_{[0,2]}(\hat{z}_k) \right)^{\gamma} - p_k^{\gamma} \ge \frac{C'' K}{(\alpha^2 n)^{\gamma/2}}$$

for some constant C'' depending only on γ . We have proved the desired lower bound under the assumption (41). The proof of Proposition 2.2 is complete.

Proof of Theorem 2.6. Fix $\gamma > 0, \gamma \neq 1$. Let $\tilde{\tau} := \frac{\tilde{C}}{\sqrt{\alpha^2 n}}$ for a constant $\tilde{C} \in (0, 1)$ that will be set later, and which only depends on γ . Let us start with the case K = 2. Define two probability vectors $p = (p_1, p_2) = (1 - \tilde{\tau}, \tilde{\tau})$ and $q = (q_1, q_2) = (1 - \tilde{\tau}/2, \tilde{\tau}/2)$. Then for a small enough constant \tilde{C} , we have

$$\Delta := |F_{\gamma}(p) - F_{\gamma}(q)| = |(1 - \tilde{\tau})^{\gamma} - (1 - \tilde{\tau}/2)^{\gamma} + \tilde{\tau}^{\gamma} - (\tilde{\tau}/2)^{\gamma}|$$
$$= \left| -\frac{\gamma \tilde{\tau}}{2} + O(\tilde{\tau}^2) + \tilde{\tau}^{\gamma}(1 - \frac{1}{2\gamma}) \right|$$

where we used $(1 - x)^{\gamma} = 1 - \gamma x + O(x^2)$ for any real $x \in (0, \tilde{C})$. If $\gamma \in (0, 1)$, we can choose \tilde{C} small enough to have

$$\Delta = \tilde{\tau}^{\gamma} \left| -\frac{\gamma \tilde{\tau}^{1-\gamma}}{2} + O(\tilde{\tau}^{2-\gamma}) + (1-\frac{1}{2\gamma}) \right| \ge C \tilde{\tau}^{\gamma}$$

for some constant C depending only on γ . Similarly, if $\gamma > 1$, we have

$$\Delta = \tilde{\tau} \left| -\frac{\gamma}{2} + O(\tilde{\tau}) + \tilde{\tau}^{\gamma-1} (1 - \frac{1}{2^{\gamma}}) \right| \ge C \tilde{\tau} .$$

For any α -LDP mechanism Q, denote by Qp and Qq the measures corresponding to the channel Q applied to the probability vectors p and q. Corollary 3 of [3] ensures that the Kullback-Leibler divergence between Qp and Qq is bounded by

$$D_{kl}(Qp, Qq) \le 4(e^{\alpha} - 1)^2 n \left(d_{TV}(p, q)\right)^2$$

i.e. by n times the square of the total variation distance between p and q, up to a constant depending on α . Then we have

$$D_{kl}(Qp, Qq) \le 4(e^{\alpha} - 1)^2 n \left(\sum_{k=1}^2 |p_k - q_k|\right)^2 \le 4(e^{\alpha} - 1)^2 n \tilde{\tau}^2 \le 36\tilde{C}^2$$
(42)

where the last inequality follows from $e^x - 1 \le 3x$ for any $x \in [0, 1]$.

For any vector $\theta = (\theta_1, \theta_2), \theta_i \ge 0$, we denote the functional at θ by $F_{\gamma}(\theta) = \sum_{k=1}^{2} \theta_k^{\gamma}$. We use a standard lower bound method based on two hypotheses, see e.g. Theorem 2.1 and 2.2 in [7], to get for any estimator \hat{F} ,

$$\sup_{\theta \in \{p,q\}} \mathbb{P}_{\theta} \left(|\hat{F} - F_{\gamma}(\theta)| \ge \frac{\Delta}{2} \right) \ge \frac{1 - \sqrt{D_{kl}(Qp, Qq)/2}}{2}$$

Then we deduce from (42) that

$$\sup_{\theta \in \{p,q\}} \mathbb{P}_{\theta} \left(|\hat{F} - F_{\gamma}(\theta)| \geq \frac{\Delta}{2} \right) \geq \frac{1 - 3\sqrt{2}\tilde{C}}{2} \geq \frac{1}{4} \ ,$$

choosing $\tilde{C} \leq 1/(6\sqrt{2})$. We have proved the desired lower bound in the case K = 2.

We can actually prove the same lower bound for any integer $K \ge 2$, with the following slight modification in the proof written above. Choose p_k , q_k , $k \ge 3$ such that $p_k = q_k$ and $p_k \le \tilde{C}/(4Kn)$. Then change the p_1 and q_1 above accordingly (to have probability vectors). This affects neither the order of the separation Δ , nor the bound on the KL-divergence between the measures Qp and Qq. This concludes the proof of Theorem 2.6.

Proof of Theorem 2.7. If K < 4, then the lower bounds are a direct consequence of Theorem 2.6. We assume therefore that $K \ge 4$. For the ease of exposition, we also assume that K is even (the case of an odd K being similar). Let \tilde{K} be a positive even integer in [K]. Let $p = (p_1, \ldots, p_K)$ be any probability vector such that two consecutive coordinates are equal $p_{2k-1} = p_{2k}$ for $k \in [\tilde{K}/2]$, and the remaining coordinates satisfy $p_k = p_{k'}$ for all $k, k' \ge \tilde{K} + 1$. Similarly, let $\delta = (\delta_1, \ldots, \delta_K)$ be a vector of perturbations such that, two consecutive perturbations are equal $\delta_{2k-1} = \delta_{2k}, k \in [\tilde{K}/2]$,

and the others are equal to zero: $\delta_k = 0$, $\forall k \ge \tilde{K} + 1$. Each perturbation is smaller than (half of) the corresponding probability: $0 \le \delta_k \le p_k/2$, $k \in [\tilde{K}]$. Given any $k \in [K/2]$ and any vector $q = (q_1, \ldots, q_K)$, define the operator $T_k(q) = (0, \ldots, 0, q_{2k-1}, -q_{2k}, 0, \ldots, 0)$. We are now ready to introduce the following collection of vectors $p^{(\nu)}$, $\nu \in \mathcal{V}\{-1, 1\}^{\tilde{K}/2}$:

$$p^{(\nu)} = p + \sum_{k=1}^{\tilde{K}/2} \nu_k T_k(\delta)$$

= $(p_1, p_2, p_3, p_4, \dots, p_{K-1}, p_K) + (\nu_1 \delta_1, -\nu_1 \delta_2, \dots, \nu_{\tilde{K}/2} \delta_{\tilde{K}-1}, -\nu_{\tilde{K}/2} \delta_{\tilde{K}}, 0, \dots, 0)$
= $(p_2, p_2, p_4, p_4, \dots, p_{\tilde{K}}, p_{\tilde{K}}, p_K, \dots, p_K) + (\nu_1 \delta_2, -\nu_1 \delta_2, \dots, \nu_{\tilde{K}/2} \delta_{\tilde{K}}, -\nu_{\tilde{K}/2} \delta_{\tilde{K}}, 0, \dots, 0)$

Observe that each $p^{(\nu)}$, $\nu \in \mathcal{V}\{-1,1\}^{\bar{K}/2}$, is a vector of probability. We bound from below the difference between $F_{\gamma}(p^{(\nu)})$ and $F_{\gamma}(p)$ in the next lemma, whose proof is postponed at the end of the section.

Lemma D.1. For any $\gamma \in (0, 2)$, $\gamma \neq 1$, and any $\nu \in \mathcal{V}\{-1, 1\}^{\tilde{K}/2}$, we have

$$|F_{\gamma}(p^{(\nu)}) - F_{\gamma}(p)| \ge C \sum_{k=1}^{\tilde{K}/2} p_{2k}^{\gamma-2} \delta_{2k}^2 =: R$$

for a constant C > 0 depending only on γ .

We will show that it is hard to know if the data come from p or a uniform mixture of the $p^{(\nu)}, \nu \in \mathcal{V}$. We do so by using Theorem A.1 of [6], with the notations of [6]. For any fixed α -LDP interactive mechanism Q, we write $Q^n := (Qp)^n \in \operatorname{conv} \left(Q\mathcal{P}^{(n)}_{\leq F_{\gamma}(p)}\right)$ and $\overline{Q}^n := 2^{-\bar{K}/2} \sum_{\nu \in \mathcal{V}} (Qp^{(\nu)})^n \in \operatorname{conv} \left(Q\mathcal{P}^{(n)}_{\geq F_{\gamma}(p)+R}\right)$. With the notations of [6] and standard relations between probability metrics, we have that the upper affinity satisfies

$$\eta_A^{(n)}(Q,R) \ge \pi(Q^n,\overline{Q}^n) = 1 - d_{TV}(Q^n,\overline{Q}^n) \ge 1 - \sqrt{D_{kl}(Q^n,\overline{Q}^n)/2} \quad .$$
(43)

We can bound the KL-divergence $D_{kl}(Q^n, \overline{Q}^n)$ as in the proof of Theorem 4.2 in [2], and have

$$D_{kl}(Q^n, \overline{Q}^n) \le \frac{n(e^{2\alpha} - e^{-2\alpha})^2}{4} \|\delta\|_2^2 .$$

Hence, it suffices to choose a δ satisfying the condition

$$\|\delta\|_2^2 \le \frac{2}{n(e^{2\alpha} - e^{-2\alpha})^2} \quad , \tag{44}$$

to have $\eta_A^{(n)}(Q, R) \ge \frac{1}{2}$. Denoting $\Delta_A^{(n)}(Q, \eta) := \sup\{\Delta \ge 0 : \eta_A^{(n)}(Q, \Delta) > \eta\}$ as in [6], we will get for any $\eta \in (0, 1/2)$,

$$\Delta_A^{(n)}(Q,\eta) \ge R$$

where R is defined in Lemma D.1 above. It will then follow from Theorem A.1 of [6] that

$$\inf_{Q} \inf_{\hat{F}} \sup_{p \in \mathcal{P}} \mathbb{E} \left[(\hat{F} - F_{\gamma}(p))^{2} \right] \geq \left(\frac{R}{2} \right)^{2} \frac{\eta}{2} ,$$

for any $\eta \in (0, 1/2)$. Taking $\eta = 1/4$ we will have

$$\inf_{Q} \inf_{\hat{F}} \sup_{p \in \mathcal{P}} \mathbb{E} \left[(\hat{F} - F_{\gamma}(p))^2 \right] \geq \frac{C^2}{32} \left(\sum_{k=1}^{\tilde{K}/2} p_{2k}^{\gamma-2} \delta_{2k}^2 \right)^2 \ .$$

To choose a δ fulfilling (44), we consider two cases according to the values of K.

1°. In the case where $K < n(e^{2\alpha} - e^{-2\alpha})^2$, we choose $\tilde{K} = K$, and take $\delta_k = (4\sqrt{Kn}(e^{2\alpha} - e^{-2\alpha}))^{-1}$, $k \in [K]$. We take $p_k = 2\delta_k$, $k \in [K-2]$, and the remaining p_{K-1} , $p_K \ge 2\delta_k$ so that p is a vector of probability (i.e. $\sum_k p_k = 1$). This gives

$$\inf_{Q} \inf_{\hat{F}} \sup_{p \in \mathcal{P}} \mathbb{E} \left[(\hat{F} - F_{\gamma}(p))^2 \right] \ge \frac{C^2}{32} \left(\frac{2^{\gamma - 2} \left[(K/2) - 1 \right]}{(4\sqrt{Kn}(e^{2\alpha} - e^{-2\alpha}))^{\gamma}} \right)^2 \ge \frac{C^2 2^{-2\gamma}}{8192} \frac{K^{2-\gamma}}{((e^{2\alpha} - e^{-2\alpha})^2 n)^{\gamma}}$$

where we used $(K/2) - 1 \ge K/4$ with $K \ge 4$. This corresponds to the right term of both lower bounds announced in Theorem 2.7.

2°. In the case where $K \ge n(e^{2\alpha} - e^{-2\alpha})^2$, we separate our analysis in two ranges of values of γ . If $\gamma \in (0, 1)$, we take $\tilde{K} = K$, and $\delta_k = (2K)^{-1}$ and $p_k = 2\delta_k$ for all $k \in [K]$. This leads to

$$\inf_{Q} \inf_{\hat{F}} \sup_{p \in \mathcal{P}} \mathbb{E} \left[(\hat{F} - F_{\gamma}(p))^2 \right] \ge \frac{C^2}{32} \left(\frac{2^{\gamma - 2}(K/2)}{(2K)^{\gamma}} \right)^2 \ge \frac{C^2}{2048} K^{2(1 - \gamma)}$$

which matches the first term of the lower bound for $\gamma \in (0, 1)$ in the theorem.

If $\gamma \in (1,2)$, let \tilde{K} be the smallest even integer satisfying $\tilde{K} \ge n(e^{2\alpha} - e^{-2\alpha})^2$ and $\tilde{K} \ge 4$. We set $\delta_k = (8\sqrt{\tilde{K}n}(e^{2\alpha} - e^{-2\alpha}))^{-1}$ for $k \in [\tilde{K}]$. We choose $p_k = 2\delta_k$ for $k \in [\tilde{K} - 2]$, and $p_k \ge 2\delta_k$ for $k \ge \tilde{K} - 1$ such that p is a vector of probability. Then

$$\begin{split} \inf_{Q} \inf_{\hat{F}} \sup_{p \in \mathcal{P}} \mathbb{E} \left[(\hat{F} - F_{\gamma}(p))^{2} \right] \geq \frac{C^{2}}{32} \left(\frac{2^{\gamma - 2} \left[(\tilde{K}/2) - 1 \right]}{(8\sqrt{\tilde{K}n}(e^{2\alpha} - e^{-2\alpha}))^{\gamma}} \right)^{2} \\ \geq \frac{C^{2}4^{-2\gamma}}{8192} \frac{\tilde{K}^{2-\gamma}}{((e^{2\alpha} - e^{-2\alpha})^{2}n)^{\gamma}} \\ \geq \frac{C^{2}4^{-2\gamma}}{8192} ((e^{2\alpha} - e^{-2\alpha})^{2}n)^{2(1-\gamma)} \end{split},$$

which corresponds to the first term of the lower bound for $\gamma \in (1, 2)$ in the theorem. The proof of Theorem 2.7 is complete.

Proof of Lemma D.1. We have

$$F_{\gamma}(p^{(\nu)}) - F_{\gamma}(p) = \sum_{k=1}^{K/2} \left[(p_{2k} + \nu_k \delta_{2k})^{\gamma} + (p_{2k} - \nu_k \delta_{2k})^{\gamma} - 2p_{2k}^{\gamma} \right]$$
(45)

Denoting $f(x) = x^{\gamma}$ and using Taylor's formula, we have for any real Y > 0,

$$f(Y) = f(p_{2k}) + f'(p_{2k})(Y - p_{2k}) + f''(w_Y)\frac{(Y - p_{2k})^2}{2}$$

where w_Y lies between Y and p_{2k} . We take $Y = p_{2k} + \nu_k \delta_{2k}$ and $\widetilde{Y} = p_{2k} - \nu_k \delta_{2k}$ to get

$$f(Y) + f(\widetilde{Y}) - 2p_{2k}^{\gamma} = f''(w_Y) \frac{(Y - p_{2k})^2}{2} + f''(w_{\widetilde{Y}}) \frac{(Y - p_{2k})^2}{2}$$
$$= \gamma(\gamma - 1)(w_Y^{\gamma - 2} + w_{\widetilde{Y}}^{\gamma - 2}) \frac{\delta_{2k}^2}{2}$$
(46)

Since $w_Y \vee w_{\widetilde{Y}} \leq p_{2k} + \delta_{2k}$ with $0 \leq \delta_{2k} \leq p_{2k}/2$, and $\gamma \in (0,2)$, we have

$$v_Y^{\gamma-2} \wedge w_{\widetilde{Y}}^{\gamma-2} \ge (p_{2k} + \delta_{2k})^{\gamma-2} \ge (2p_{2k})^{\gamma-2}$$
.

Hence, for $\gamma \in (1,2)$,

$$f(Y) + f(\widetilde{Y}) - 2p_{2k}^{\gamma} \ge \gamma(\gamma - 1)(2p_{2k})^{\gamma - 2}\delta_{2k}^2$$

which leads to the desired lower bound of (45). For $\gamma \in (0, 1)$, we deduce from (46) that all terms of the sum (45) are non-positive and satisfy

$$f(Y) + f(\tilde{Y}) - 2p_{2k}^{\gamma} \le \gamma(\gamma - 1)(2p_{2k})^{\gamma - 2}\delta_{2k}^2$$
.

So, the absolute value of the sum (45) can be lower bounded as announced in the lemma.

References

- [1] Butucea, C. and Issartel, Y. (2021) Locally differentially private estimation of nonlinear functionals of discrete distributions. *NeurIPS*, 34.
- [2] Butucea, C. and Rohde, A. and Steinberger, L. (2020) Interactive versus non-interactive locally, differentially private estimation: Two elbows for the quadratic functional. *arXiv:2003.04773*
- [3] Duchi, J. C., Jordan, M. I. and Wainwright, M. J. (2018) Minimax optimal procedures for locally private estimation. *Journal of the American Statistical Association*, **113**(521):182–201.
- [4] Jiao, J., Venkat, K., Han, Y. and Weissman, T. (2017) Maximum Likelihood Estimation of Functionals of Discrete Distributions. *Institute of Electrical and Electronics Engineers (IEEE)*, 63(10):6774--6798.
- [5] Joag-Dev, K., Proschan, F. (1983) Negative association of random variables with applications. *The Annals of Statistics*, vol 11, no. 1. pages 286-295.
- [6] Rohde, A. and Steinberger, L. (2020) Geometrizing rates of convergence under local differential privacy constraints, *Annals of Statistics*, **48**(5):2646–2670.
- [7] Tsybakov, A. B. (2009) Introduction to Nonparametric Estimation, Springer series in statistics.
- [8] Wainwright, M. J. (2019) *High-dimensional statistics*, Cambridge Series in Statistical and Probabilistic Mathematics, **48**, Cambridge University Press, Cambridge