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Abstract
Training open-weight foundation models for
harmful purposes could be prevented if optimiza-
tion was made arbitrarily slow. We find that loss
landscape conditioning, which controls the con-
vergence rate of Gradient Descent, can be mod-
ified using the spectral values of neural network
weight matrices alone resulting in an efficient
iterative algorithm (Spectral Deformation) that
can arbitrarily slow down training such that it be-
comes infeasible. We call this process “model
locking” and show across modalities that our lock
prevents key high-risk open weight misuse : (1)
unauthorized training (2) backdoor injection, and
(3) relearning attacks after unlearning. Training
locks present new possibilities for AI governance
which we illustrate with policy analysis drawing
on parallels from copyright protection technology
and anti-circumvention law.

1. Introduction
Misuse of open weight models is one of the most pressing
risks of AI (Chan et al., 2023; Bengio et al., 2025). Regard-
less of how safe these models are before release, they can
easily be trained for unsafe usage (Qi et al., 2023). Public
discourse on open weight governance, as exemplified by a
recent RAND brief (Nevo et al., 2024), consists of pro-open
interventions that are designed to facilitate the continued re-
lease of open weight models such as through user licensing
or enhanced liability legislation (Seger et al., 2023); or pro-
closed interventions that seek to prevent or throttle model
releases, for example, by regulating the release process of
open weight foundation models (Anderljung et al., 2023).

There is an emerging alternative to the closed v. open di-
chotomy – the construction of immunized (Rosati et al.,
2024b;a), self-destructing (Henderson et al., 2023), tamper-
resistant models (Tamirisa et al., 2025), or domain-
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Figure 1. Steps needed for optimizing a convex quadratic function
depend on κ = σmax(H)

σmin(H)
where H is it’s Hessian; maximum

learning rate that avoids divergence are used and σmin fixed at 1.

authorized models (c.f. Hong et al., 2025). Here, open
weights can be released but, by technical means, they can
only be trained towards safe and authorized ends.

Little work has been done outlining the policy and regulatory
promise of these approaches. Existing work also provides
no theoretical understanding of whether it is possible to
prevent training and how that might be achieved. To address
these two gaps, we present “model locking,” which prevents
models from being trained with any loss objective with-
out degrading utility. Our contributions are as follows: (1)
we provide a model locking method, spectral deformation
(SpecDef) with a theoretical analysis that explains how lock-
ing works; (2) we present new approaches to governance of
open models using inspiration from the enforcement of con-
tent scramble systems in DVDs for counterfeit prevention.
In contrast to Tamirisa et al. (2024) and Rosati et al. (2024a),
our method is grounded in a theoretical explanation of why
convergence can be slowed. Additional those methods only
lock a model to a particular data distribution while ours is a
global lock against any training.
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2. Theoretical Analysis
Conceptually, we define a “model lock” as a mechanism
that increases the number of necessary training steps t for
convergence beyond the budget T that a given “lock picker”
has. Under regularity assumptions such as strong convexity
and smoothness, Nesterov (2013) showed that the optimal
first-order (using gradient information) convergence rate is
on the order ofO(1/t2). Formally, the optimal convergence
rate (using Nesterov’s acceleration) for the convex smooth
function f and parameters θt and θ∗ = minθ f(θ), is given
by f(θ0) − f(θ∗) ≤ σmax||θ0 − θ∗||22(1 − η

√
κ)t where t

is train iterations (Bach, 2024) and the learning rate η is
set to 1/σmax. The condition number κ = σmax/σmin is
a function of the largest σmax(H) and smallest σmin(H)
singular values of the Hessian H , which is the Jacobian of
the gradient of a training loss function.

Fixing training iterations and varying κ yields convergence
on the order of O(

√
κ). By increasing the largest singular

value σmax or decreasing the smallest singular value σmin,
one can increase the training t steps needed for convergence
– resulting in a “model lock.” Observe that the the learning
rate η can only be at most 2/σmax and therefore by increas-
ing σmax, we can also control the maximum effectively
learning rate used which further slows convergence.

Looser assumptions (non-convexity, stochastic gradients)
result in slower convergence rates than the above thus, our
results below still hold for modern deep neural networks
(Bach, 2024). Figure 1 demonstrates this via control of
convergence (by varying σmax) on a simple quadratic (Mean
squared error) where the Hessian w.r.t the parameters Wi

is X⊤X for a Gaussian random input feature matrix X .
As the maximum singular value is increased, the learning
rate used must decrease otherwise GD results in divergence.
Despite our above analysis, controlling the Hessian spectral
values directly is intractable for foundation models so a
more efficient approach is needed.

2.1. Control of Hessian Spectral Values

Let M be a N -layer deep Multi-Layer Per-
ception (MLP) with the following structure
ŷ = WN+1ϕ(WNϕ(WN−1...ϕ(W1x))) where ŷ is
the output prediction, Wi ∈ Rp×q are the weight matrices,
and ϕ is an activation function such as the rectified linear
unit (ReLU) ϕ(x) : x 7→ max(x, 0). Suppose a loss
function that depends on ŷ such as ℓ = f(ŷ, y), the Hessian
of this loss function ℓ w.r.t the weights W is the Jacobian of

the gradients of the loss w.r.t weights: H =
[

∂2ℓ
∂Wi∂Wj

]n
ij

.

Theorem 2.1 (MLP Hessian σmax lower bounded by weight
matrix spectrum). The maximum singular value of the Hes-
sian of the MLP σmax(H) is lower bounded by the largest
singular value σmax(Wi) of any weight matrix multiplied by

the factor σmin(A). That is σmax(H) ≥ σmax(Wi)σmin(A)
for any block of the Hessian with respect to weight matrices
Wi, with A product terms in that block and σmin(A) the
smallest singular value of that product.

A similar bound holds for a Transformer architecture with
multiple attention heads.

Theorem 2.2 (Lower bound for Hessian σmax of a Trans-
former). Consider a transformer architecture with L layers
and M heads per layer (Gao et al., 2024). Given a squared
error risk function, the maximum singular value of the Hes-
sian HT is bounded below by

σmax(HT ) ≥ max
l,j
{σmax(Wθ,l,j)σmin(Aθ,l,j),

σmax(Ww,l,j)σmin(Aw,l,j)} .

where Wθ,l,j ∈ {W (l,j)
Q ,W

(l,j)
K ,W

(l,j)
V ,W

(l,j)
O } are at-

tention weight matrices at layer l ∈ {1, . . . , L}, head
j ∈ {1, . . . ,M}; Ww,l,j ∈ {W (l,j)

1 ,W
(l,j)
2 } are MLP

weight matrices at layer l, head j ; and Aθ,l,j , Aw,l,j are
product terms arising from the residual connections and
layer interactions.

Full proofs are provided in Appendix A, including a tighter
bound in Theorem 2.1 when the matrix A is rank-deficient.
It follows from Theorems 2.1 and 2.2 that by controlling the
largest singular values of weight matrices, one can control
the convergence rate of gradient descent algorithms which
are inO(κ) i.e. since the strength of the lock is proportional
to σmax(H) it is also proportional to σmax(Wi).

We validate our claims numerically in Figure 2 using an
MLP, CNN, and Transformer (see Appendix B.1) We find
our bound holds in all cases (across three random seeds):
the number of training iterations can directly be controlled.

Algorithm 1 Spectral Deformation Algorithm (SpecDef)
1: Model parameters Wi where i is a layer index, Retain

loss ℓretain, η learning rate, k and α hyper parameters.
2: σm ← {}
3: for Wi ∈ W do
4: U, Diag(s),V← SV D(Wi)
5: σm ← σm ∪ topk(s)
6: end for
7: W ←W − η∇

[
α · ℓretain − (1− α) · 1n

∑
i σm[i]

]
Figure 2 directly modifies spectral values through scaled
reconstruction after SVD. Naive scaling could result in ru-
ining the original safe behaviours of the model. We can
maintain the original behaviour with a retain loss ℓretain
representing the original training loss. We then add the sum
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Figure 2. We validate Theorem 2.1 numerically on three architectures. Top: Number of training iterations for convergence is controlled
by largest singular value of the weights. Bottom: Our bound holds in all cases (ratio is always above 1) validated with the true σmax(H).

Model MNIST CIFAR KMNIST FASH
ResNet18 99% 80% 80% 74%

SpecDef 99% 10% 10% 10%

MRPC RTE QQP QNLI
DeBERTa 90% 69% 83% 85%

SpecDef 90% 52% 42% 45%
SmolLM2 85% 71% 71% 84%

SpecDef 84% 52% 20% 52%

Table 1. Locking prevents unauthorized training while maintain-
ing utility on the original task. Evaluated with accuracy – MRPC
and QQP with F1. Details provided in Appendix B.

of the top k singular values for each weight parameter ma-
trix. Remark A.3 explains why top k is used rather than the
maximum. This iterative algorithm (1) increases σmax(Wi)
while maintaining downstream utility.

3. Task Authorization
The primary goal of a model lock is to prevent training of
an already fine-tuned model without degrading the model’s
performance on the original task. Table 1 illustrates this
in a vision and language setting. We lock a ResNet18
model pretrained on the MNIST task. Before locking
the model, it is easily finetuned for CIFAR10, KMNIST,
and FMNIST (FASH) image classification tasks. Lock-
ing effectively prevents (10% is random accuracy) fine-
tuning while maintaining original MNIST accuracy. For
encoder-only DeBERTa-v3-xsmall and decoder-only
SmolLM2-135m-Instruct we finetune for the MRPC
task and attempt to further finetune for other binary classifi-
cation tasks from the GLUE benchmark (Wang et al., 2018).
Locking results in no increase in the original task objective
over random performance.

4. Preventing Backdoor Injection
Aside from refusal training in LLMs, the primary way safety
guards are implemented for vision, speech, and language is
through either input- or output-based classifiers. The GPT4-
o system card (Hurst et al., 2024) relies on safety classifiers
for ensuring safety. Here we demonstrate how locking safety
classifiers can prevent corruption via injection of backdoors.

Meta’s Llama open weight release strategy has included
providing open safety tools such as LlamaGuard (Inan et al.,
2023) and PromptGuard (Chennabasappa et al., 2025). The
community can train these models and improve them. How-
ever, since these models are vulnerable to the injection
of backdoors, community improvements like Katanemo’s
“Arch-Guard” 1 built on PromptGuard could contain a back-
door trigger that was placed in a training dataset.

Table 2 demonstrates locking two sizes of PromptGuard2
(PG2) which is trained for jailbreak classification. We are
able to maintain performance on the Jailbreak prompt classi-
fication task while preventing the injection of triggers (ASR).
When the attack is attempted the model degenerates result-
ing in an unusable model. We evaluate using the jailbreak
classification dataset from Shen et al., 2024.

5. Robust Unlearning
One of the primary concerns about the utility of unlearning
is that current methods are vulnerable to simple relearning
attacks (Barez et al., 2025). We demonstrate class-based
unlearning of the ‘car’ label from a ResNet18 model trained
on CIFAR10 can be locked so as to prevent recovery of
model capability through relearning attacks in Table 3.

Experimental details for all settings in this section are pre-
sented in Appendix B. Future work will study the efficacy

1https://huggingface.co/katanemo/
Arch-Guard
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Pre-attack Post-attack
Model F1 ASR F1 ASR

PG2 (22m) 94.8% 9.3% 90.6% 88.3%
SpecDef 100.0% 0.0% 0.0% 100.0%*

PG2 (86m) 98.3% 1.5% 99.4% 100.0%
SpecDef 95.0% 0.0% 0.0% 100.0%*

Table 2. Results from locking safety guard models (PromptGaurd
2) vulnerable to backdoor injection. The asterix indicates the
backdoor attack wasn’t successful since it causes divergence.

of locking for large scale generative models for speech, text,
image, and video domains.

6. Implications for AI Governance
To analyze how training locks such as SpecDef might be
operationalized in governance, we compare our method with
technical copyright protection mechanisms.

6.1. Copyright Governance with Content Scramble

McPhie (2003) identified a common governance structure
in copy protection across a variety of mediums (e.g., DVD,
VHS) where a technical means of locking content is avail-
able: (1) adoption: content owners use the lock before
distribution, (2) protection a third party enforces lock in-
tegrity, and (3) legislation legislation protects lock circum-
vention. We illustrate this with the content scramble system
(CSS) which prevents copying of DVDs (Roemer, 2003).
Adoption: CSS was attractive to content producers since
they had commercial interest in preventing copying and
unauthorized distribution of DVDs. Commercial interest
drove the adoption of CSS for content owners selling DVDs,
forcing manufacturers to adopt CSS decoding technology.
For protection, a third-party consortium, the DVD Copy
Control Association (DVD CCA), was formed to license
CSS decoding technology to DVD player manufacturers.
Since DVD CCA had control of the CSS decoding IP, they
could litigate violators of that IP such as if the manufacturer
failed to implement region locking controls. On a technical
level, copy protection is relatively easy to circumvent due to
the critical vulnerability of having to decrypt and play the
content (Roemer, 2003). Therefore, the final piece of this dy-
namic is legislation, digital copyright legislation such as the
DMCA introduced anti-circumvention that made it illegal
to distribute information on copy protection circumvention
or perform it.

6.2. Parallels for Training Locks

Adoption is different for AI training locks since there isn’t
a commercial incentive to prevent counterfeit models. In-
stead, the incentive to adopt training locks would come from

public interest in mitigating the negative outcomes of AI
such as the creation of deep fakes. Private companies may
be incentivized to adopt training locks before release for
legal protection in cases where they might be found liable
for providing a tool that can be used to cause harm. For
protection, a similar IP-ownership structure could give a
third-party authority over how the locks are implemented,
such as through litigation on patent infringement or license
violation. Another way a third-party could govern is through
the establishment and maintenance of standards which are
mandated by government regulation. Finally, legislation can
build on the precedent of anti-circumvention law to mandate
that training locks are not circumvented and information
thereof is not distributed.

7. Locked Weights versus Closed Access
If a model is locked against fine-tuning, what distinguishes it
from closed access through an API only? Foremost, locked
open weight models can still be freely distributed for infer-
ence at the cost of the model user. This means that the user
does not have to pay the closed-access provider or deal with
various inference time limitations. For example language
model logits are used in calibrating uncertainty but they
are not typically provided in the API response in order to
prevent model distillation. Second, while we presented a
global model lock, future locks could construct distribution-
specific locks which would mean fine-tuning is possible for
specific distributions.

8. Limitations and Future Work
The fundamental criticism of copy protection (Roemer,
2003) centres on the dictum that “bits can always be copied,”
but it is far from clear that AI models can always be trained
given Section 2. Many negative impacts of copyright protec-
tion technology are based on the usage restrictions placed
on consumers (EFF, 2014), restrictions designed to protect
corporate interests. Digital locks for training do not prevent
usage and distribution of models, but a similar criticism
could be made: preventing training may stifle democratic,
scientific, and commercial development of Artificial Intelli-
gence. For example, this technology could be used to further
entrench the hegemony of companies that can train founda-
tion models. Training locks could result in rent extraction,
where citizens are forced to pay for training which would
otherwise be free to train without locks. Digital locks could
be used for anti-democratic practices such as enforcing cen-
sorship (DeepSeek, Yang, 2025).

While our early empirical results still require a systematic
study scaling up to more settings of concern (e.g., deep
fakes, voice cloning, LLM agents), let us suppose that we
were able to construct a lock that made the number of time
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Model Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

ResNet18 90.34 92.16 85.71 75.94 88.06 82.41 91.12 93.31 93.75 92.79
Unlearned 76.46 0.00 80.71 65.01 87.65 81.19 82.03 86.02 86.52 74.85
Relearning Attack 82.29 86.23 77.37 65.81 83.81 73.21 89.22 89.17 89.26 86.00

SpecDef 75.86 0.00 60.48 47.71 64.98 64.83 75.05 72.44 80.66 77.39
Relearning Attack 55.94 0.00 61.60 37.18 53.04 61.15 72.30 72.83 69.53 90.83

Table 3. Per-class accuracy on label unlearning. Our lock successfully prevents relearning attacks resulting in “robust” unlearning.

steps to train extremely expensive. In this case, digital locks
could still be circumvented through a variety of means, for
example the unlocked weights of the model could be leaked
or stolen, the model logits might be used to distill teachable
student models, and preconditioners could be computed that
undo the locks. Recent work has shown that attempts to
secure open weights are brittle and easy to overcome (?).
In addition, inference-time attacks, such as jailbreaks and
adversarial attacks, could still be successful (Rosati et al.,
2024a). This points to the need for a “swiss-cheese” model
of defence where digital locks need to be paired with other
defence methods.

To address this limitation from a governance perspective, we
again draw on copy protection. Roemer (2003) pointed out
that copy protection technologists positioned their defences
for a “napsterization” threat model to mitigate organized
counterfeit. Instead, copy protection, on a technical level, ac-
tually protected against a threat model of everyday consumer
counterfeit. Strongly motivated attackers could always (and
currently do for games and content protected under modern
digital rights management tools) circumvent defences. How-
ever, it is the legislative and regulatory apparatus of digital
locks that allowed the development of anti-circumvention
law that can be used to protect against the “napsterization”
threat model by litigating violators. Parallels could be made
with digital locks for training where their existence can in-
troduce new means for AI governance without themselves
having to be implemented perfectly.

9. Conclusion
The governance scenario outlined above is meant to illus-
trate the new policy possibilities enabled by the existence
of digital lock technology which results in breaking the di-
chotomy between open and closed source in discussions of
AI Safety. Despite its promise, digital lock technology for
AI training is far from mature.

Our workshop paper provides promising early theoretical
and empirical results but they need to be extended with sys-
tematic evaluation (e.g. Figure 3) of common risk scenarios
of large scale generative models as well as full ablations
over first order optimizations that might be used (e.g. Fig-
ure 4). On the advice of Tramer et al. (2020), it is necessary

to develop a robust framework of adaptive attacks on train-
ing locks, we evaluated preconditioning in Appendix C as
an early start to properly assess these models. Further the-
oretical development such as understanding the impact of
spectral deformation on generalization, adversarial robust-
ness, and general downstream utility remains important.
Finally, it isn’t clear yet how to predict how many more
training steps will be needed as a result of SpecDef.
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A. Mathematical Details
In this section we provide a proof of Theorem 2.1 in the text. For this proof we state two lemmas. The first is a well known
result from (Horn & Johnson, 1991).

Lemma A.1 (Matrix product σmax lower bounds). For a product of matrices, we have the following lower bounds for the
maximum singular values:

σmax(WiWj) ≥ σmax(Wi)σmin(Wj)

The second is an inequality needed to lower bound the maximum singular values of a block matrix.

Lemma A.2. Given a block matrix

M =

[
A B
C D

]
,

we have
σmax(M) ≥ max {σmax(A), σmax(B), σmax(C), σmax(D)}

Proof. Recall that the largest singular value is equal to the spectral norm of a matrix defined by:

σmax(X) = max
||v||=1

||Xv|| = ||X||2.

We will show that for each block E, there exists the following inequality:

||M ||2 ≥ ||Mv̂|| ≥ ||Ev||

where ||M ||2 = σmax(M) and ||Ev|| = σmax(E), v ∈ Rn is the vector in the spectral norm as above and v̂ is an embedded
vector such that Mv̂ contains Ev. To illustrate this consider the block A for which we have the embedded vector

v̂ =

[
v
0

]
.

Since:

Mv̂ =

[
A B
C D

] [
v
0

]
=

[
Av
Cv

]
,

this applies for all blocks.

Now observe that for each block we have the norm || · ||2 such that ||Mv̂||2 = ||Ev||2 + ||E′v||2 where E′ is the opposite
block matrix as we saw with C in the example with block A.

By this norm we have by that ||Mv̂||2 ≥ ||Ev||2 and taking the square root we can show that we have the first part of the
inequality we wanted to show above: ||Mv̂|| ≥ ||Ev|| = σmax(E). What remains is to show that σmax(M) is greater or
equal to this.

By definition of the spectral norm,
σmax(M) = max

||u||=1
||Mu||.

Since the embedding vector has a zero vector, we will always have:

σmax(M) ≥ ||Mv̂|| ≥ σmax(E)

.

Finally, observe that considering the inequality for each block we have

σmax(M) ≥ max {σmax(A), σmax(B), σmax(C), σmax(D)}

which is what we set out to show.
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A.1. Proof of Theorem 2.1

Proof. By Lemma 1, it is sufficient to show just one block of the Hessian of a loss function depends on products of individual
weight matrices. Recall that for a two-layer MLP composed of ReLU activations (Dz = diag(1z>0); z = W1x with Mean
Squared Error we have the following Hessian block:

∂2L
∂2W1

= DzW
⊤
2 W2Dz ⊗ xx⊤

Since this is clearly a product of the weight matrix W2, we simply apply Lemma 1 to show the following lower bound:

σmax(DzW
⊤
2 W2Dz ⊗ xx⊤)

= σmax(Dz(W
⊤
2 W2Dz))σmax(xx

⊤) (Kronecker σi Identity)

≥ σmax((W
⊤
2 W2Dz)

⊤)σmin(Dz)σmax(xx
⊤) (Lem 2; Transpose)

≥ σmax(W
⊤
2 )σmin(W2Dz)σmin(Dz)σmax(xx

⊤) (Lem 2; Transpose)

The Hessian is composed of more product terms from weight matrices as layers are added. This includes adding convolution
(CX) and attention layers (QK)⊤V which is sufficient to show that our bound holds.

Remark A.3 (Tight bounds under rank deficiency). Under activation functions like RELU we have rank deficiency
(σmin = 0). Resulting in a vacuous lower bound. We also draw on the following result from Bhatia (2013):

k∑
i=1

σi(WiWj) ≥
k∑

i=1

σi(Wi)σn−i+1(Wj),

where the singular values are ordered from largest to smallest in the index i.

We guarantee that as long as we have k sufficiently large singular values for rank N − k matrices then we have a non-zero
lower bound. This is why we use the top k singular values in Agorithm 1.

A.2. Proof of Theorem 2.2

We start with a formal definition of a transformer architecture with multiple attention heads following the framework of
Gao et al. (2024). We assume a Transformer model composed of L sequential transformer layer, with M heads per layer.
For input sequence H ∈ RD×(N+1) consisting of N + 1 tokens each with dimension D, the Transformer processes data
through alternating self-attention and feedforward layers that comprise one layer.

Self-Attention Layer: Each residual self-attention layer is represented by

Attnθ1,...,θM (Z, η) = Z + ηM−1
M∑
j=1

f(Z, θj) (1)

Feed-Forward Layer: Each residual feed-forward neural network layer is defined by

MLPw1,...,wM
(Z, η) = Z + ηM−1

M∑
j=1

h(Z,wj) (2)

where η = ∆t/2 with ∆t = 1/L is the residual step size.

Encoder Functions: The self-attention encoder f : RD×(N+1) → RD×(N+1) follows the dot-product attention mechanism:

f(Z, θ) = WOWV ZσA

[
(WKZ)TWQZ

]
(3)

where WV ,WK ,WQ ∈ Rs×D, WO ∈ RD×s, θ = vec[WQ,WK ,WV ,WO], and σA is column-wise softmax.

The feed-forward encoder h : RD×(N+1) → RD×(N+1) is defined as:

h(Z,w) = W2σM (W1Z) (4)

9
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where w = vec[W1,W2] and σM is component-wise activation (e.g., ReLU).

Layer Composition: The Transformer network with L layers follows:

TΘ(H, t+∆t/2) = Attnθt,1,...,θt,M (TΘ(H, t),∆t/2) (5)

TΘ(H, t+∆t) = MLPwt,1,...,wt,M
(TΘ(H, t+∆t/2),∆t/2) (6)

for t = 0,∆t, . . . , (L − 1)∆t with TΘ(H, 0) = H , with Θ = {θt,j , wt,j}t,j denoting all parameters in the Transformer
model.

Finally, we define the squared error loss function

L =
1

2

(
Read[TΘ(H, 1)]− y(H)

)2
,

where Read[·] is a read-out function that extracts the next token prediction probabilities (Guo et al., 2023; Gao et al., 2024).

We are now in a position to prove Theorem 2.2.

Proof. The Hessian with respect to all parameters Θ = {θl,j , wl,j}l,j can be written as

HT =

[
Hθθ Hθw

Hwθ Hww

]
,

where Hθθ and Hww contain second derivatives with respect to attention and MLP parameters respectively, while Hθw, Hwθ

contain cross-derivatives.

Given these blocks, by Lemma A.2 we have

σmax(HT ) ≥ max{σmax(Hθθ), σmax(Hww), σmax(Hθw), σmax(Hwθ)}. (7)

We now obtain upper bounds for maximum eigenvalues of the first two blocks.

For attention parameters at layer l, head j, consider the second derivative:

∂2L
∂θ2l,j

=
∂

∂θl,j

[
∂L

∂TΘ(H, 1)

∂TΘ(H, 1)

∂θl,j

]

The derivative ∂TΘ(H,1)
∂θl,j

involves the product

∂TΘ(H, 1)

∂θl,j
=

L∏
k=l+1

∂TΘ(H, k∆t)

∂TΘ(H, (k − 1)∆t)
· η

2M

∂f(TΘ(H, l∆t), θl,j)

∂θl,j
.

Combining (5) and (6) we have TΘ(H, (k + 1)∆t) = TΘ(H, k∆t) + η
2M

∑
j f(·) +

η
2M

∑
j h(·), so that

Ak :=
∂TΘ(H, (k + 1)∆t)

∂TΘ(H, k∆t)
= I +

η

2M

M∑
j=1

∂f(TΘ(H, k∆t), θk,j)

∂TΘ(H, k∆t)

+
η

2M

M∑
j=1

∂h(TΘ(H, k∆t+ η/2), wk,j)

∂TΘ(H, k∆t)
.

Thus, elements of the Hessian block Hθθ have the structure

∂2L
∂θ2l,j

=

(
∂L

∂TΘ(H, 1)

) L∏
k=l+1

Ak ·
η2

4M2

∂2f(TΘ(H, l∆t), θl,j)

∂θ2l,j
+ first-order terms. (8)
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From equation (8), each diagonal element of Hθθ can be written as a product involving the attention weight matrices. Recall
that self-attention f(Z, θ) = WOWV ZσA[(WKZ)TWQZ] with θ = vec[WQ,WK ,WV ,WO] and Z := TΘ(H, l∆t).
Hence, for the WQ block:

∂2L
∂W 2

Q

= PQ ·WQ · SQ,

where

• PQ =
(

∂L
∂TΘ(H,1)

)∏L
k=l+1 Ak

η2

4M2WOWV Z contains the backpropagation terms,

• WQ represents the WQ contribution from ∂2σA

∂W 2
Q

,

• SQ = ZT ⊗ Z contains the remaining activation terms.

By Lemma A.2,
σmax(PQ ·WQ · SQ) ≥ σmax(WQ)σmin(PQ)σmin(SQ).

Since ∂2σA

∂W 2
Q

involves WQ directly through the softmax second derivative, we have σmax(WQ) ≥ Cσσmax(WQ) for some
constant Cσ > 0 depending on the softmax structure.

Therefore

σmax

(
∂2L
∂W 2

Q

)
≥ σmax(WQ)σmin(Aθ,Q), (9)

where Aθ,Q = PQ · SQ contains all product terms except WQ.

A similar result holds for the WK block. For WV and WO, which appear linearly in f(Z, θ) = WOWV ZσA[·], their pure
second derivatives vanish:

∂2f

∂W 2
V

= 0,
∂2f

∂W 2
O

= 0.

However, the mixed derivatives do contain these weight matrices.

∂2f

∂WV ∂WQ
=

∂

∂WV

[
WOWV Z

∂σA

∂WQ
[(WKZ)TWQZ]

]
= WOZ

∂σA

∂WQ
[(WKZ)TWQZ].

The corresponding Hessian entry is

∂2L
∂WV ∂WQ

=

(
∂L

∂TΘ(H, 1)

) L∏
k=l+1

Ak
η2

4M2
WOZ

∂σA

∂WQ
,

giving the bound, for constant CV > 0,

σmax

(
∂2L

∂WV ∂WQ

)
≥ CV σmax(WV )∥Z∥

∥∥∥∥ ∂σA

∂WQ

∥∥∥∥ . (10)

Repeating (9) for WK and (10) for WO respectively, then applying Lemma A.2, we get

σmax(Hθθ) ≥ max
l,j
{σmax(Wθ,l,j), σmin(Aθ,l,j)} . (11)

For the MLP block Hww, following identical reasoning for feedforward layers

σmax(Hww) ≥ max
l,j
{σmax(Ww,l,j)σmin(Aw,l,j)} . (12)

Combining (11) and (12), then applying (7) concludes our proof.
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Remark A.4. We note that tightness of the bound in Theorem 2.2 depends on the constants in Aθ,l,j and Aw,l,j , which
depend on the following factors

• The residual connection strength η = 1
2L ,

• The head averaging factor 1
M ,

• The activation function properties (softmax for attention, ReLU/GELU for MLP),
• The layer depth and position within the network.

B. Experimental Details
B.1. Figure 2

Figure 2 is trained using Gaussian random input data (0 mean, unit covariance) (sample size 64) with a dimension of 4 and
Guassian random targets. The MLP is a four layer mlp with hidden dimension of size 8 using ReLU activations. The CNN
consists of a two layer CNN with kernel size 3 and padding of 1, there is a two layer MLP on top with a hidden dimension
of 8 the MLP uses Tanh activations. The transformer is an encoder only single transformer block using a sequence length
of two and embedding dimension of 4. The hidden dimension of the MLPs are also 8. All models use Xavier uniform
initialization. A mean squared error loss is used for all model. We use Adam with a learning rate of 0.001 for iteration plots.

B.2. Table 1

For the image classification experiments we train a ResNet18 model which is not pretrained. We use 10 epochs on the
MNIST train set to construct the original model we would like to lock. We use AdaDelta to train the model using a learning
rate of 1 and linear step learning rate scheduler γ = 0.7. We use this exact same set up to lock the model using the MNIST
train set as the retain loss.

For CIFAR, KMNIST, and FASH (FMNIST), we perform the downstream training with Adam with weight decay with a
learning rate of 0.1 for 10 epochs, we also evaluated with AdaDelta and SGD (with momentum) but choose to highlight Adam
since it has a preconditioning effect (see Appendix C). We chose these data sets since they were all 10 label classification
tasks. A batch size of 32 is used. α is set to 0.5 in our spectral deformation algorithm. A top k of 1 is used for these
experiments.

For the text classification tasks, we use the binary classification tasks from the GLUE benchmark (Wang et al., 2018). We
use Adam with weight decay of 0.01 with a linear scheduler with no warm up using a learning rate of 5×−10−5. We use
Huggingface evaluation tools which reports accuracy for each task except for QQP and MRPC which uses F1 scores which
we use in the table. We train for 3 epochs and limit the train sets to at most 5k samples. We use the validation splits of the
dataset as the test splits are not available. A training batch size of 8 is used. We report scores that are an average of three
seeds randomly shuffling the dataset each time. Our spectral deformation is applied for 10 epochs with MRPC task loss and
a kl divergence with an original model as retain loss. α is set to 0.99. A top k of 2 is used for these experiments. We use
both encoder-only DeBERTa-v3-xsmall and decoder-only smol2-135m-instruct for our models, a linear layer is
added as the final layer for the classification task.

In order to further validate the robustness of our lock to varying learning rates, we vary the learning rate from 1×−10−3 to
1×−10−8. For all learning rates (Figure 3, our locked model does not converge after 3 epochs on the recognizing textual
entailment (rte) task. Notice that there is only really a very small window in which DeBERTa-v3-xsmall can learn
(between 1×−10−3 and 1×−10−6).

B.3. Table 2

The prompt guard backdoor injection experiments use a backdoor of the unicode characters for pentagram snowman
pentagram that is prefixed before the prompt. When these are present the label is set to “safe.” We add these to the dataset of
2176 jailbreaks found in the wild from Shen et al. (2024) which are labeled as “unsafe” and balance the dataset using 2000
benign prompts from OpenOrca. (Mukherjee et al., 2023). We split this into a dataset with 80/20 for train and test. We inject
the backdoor using Adam with weight decay (0.01) with a learning rate of 1e-4 and a batch size of 8 for 1 epoch. We use
spectral deformation for three epochs using an α = 0.9 and using kl divergence with original prompt guard 2 model as well
as the jailbreak classification train set we constructed above (without the backdoor). We use both the 22 million and 86
million variants of prompt guard 2.
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Figure 3. Our lock is effective across varying learning rates.

B.4. Table 3

For the unlearning setting, we use the pretrained resnet18 model weights on cifar10 from the NeurIPs 2023 machine
unlearning competition.2 We use the unlearning baseline from that task that simply continues to train the model on CIFAR10
without any data for the car label and report the per class accuracy. The relearning attack uses stochastic gradient decent for
1 epoch with a learning rate of 0.1. Our spectral deformation algorithm uses a retain loss of the cifar10 classification task
with all car labels removed with α = 0.5. We perform spectral deformation for 10 epoch using Adam as an optimizer and a
per epoch step learning rate scheduler with γ = 0.7.

C. Preconditioning Adaptive Attack Experiments
What kind of adaptive attacks can be constructed for our locking mechanism? If an attacker knew the model was defended
with a spectral deformation that “ill conditions” the loss landscape then the attacker could attempt preconditioning.

Preconditioning techniques like Martens & Grosse (2015) are used to counter the effects of an ill conditioned loss landscape.
In the extreme case, finding the inverse hessian H−1 allows us to produce a condition number that is 1 since H−1H = I .
Except for the smallest neural networks, computing the inverse hessian is infeasible. Instead, preconditioning techniques
typically use approximation to improve the condition number of the loss landscape. Examples of these are Kronecker
Factorization (Kron) (Martens & Grosse, 2020), Diagonal (or Cross Diagonal) Preconditioning (XMat) (Pooladzandi &
Li, 2024), and Adam (AdamW is Adam with weight decay) (Kingma & Ba, 2017). Due to the computational demands of
these methods, we only evaluate these on a four layer MLP on top of a two layer CNN using the same setting from Table 1
where we train the model for 10 epochs on MNIST, run 10 epochs of SpecDef, and then attempt to train on CIFAR 10 for
10 epochs. We select the the largest learning rate that allowed training with a baseline unlocked model which was 0.1 for
SGD and AdamW, 0.001 for Kron and 0.01 for XMat. We use the implementations of Kronecker Factorization (Kron) and
Cross Diagonal Approximate Precondition (XMat) from the preconditioned stochastic gradient descent (PSGD) library
(Pooladzandi & Li, 2024). The preliminary results in Figure C shows that in our method is also able to prevent unlocking
using approximate preconditioners showing that it might be the case that full preconditioning is necessary to undo the lock
mechanism. We evaluated two other second order methods LBFGs and Natural Gradients but neither was effective likely
due to the poor conditioning of the Jacobians of the weights w.r.t the outputs which also would be poorly conditioned by our
technique. Further experiments are needed on large scale models and analysis on how our method interacts mathematically
with various preconditions is our future work.

2https://unlearning-challenge.github.io/
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Figure 4. Spectral deformation doesn’t degrade locked MNIST classifier performance (99% → 99%) and prevents training on an
unauthorized task across various preconditioning methods.
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