
S1 Code and Data Reproducability

All code and data are released in https://github.com/mit-drl/deepdrone

S2 Compute Derivatives in the Proof of Proposition 1.

An LTC network has the following representation Hasani et al. (2021b):

dx(t)
dt

= −
[1
τ
+ f(x(t), t, θ)

]
� x(t) + f(x(t), t, θ)�A.

In 5, x(D×1)(t) is the hidden state of an LTC layer with D cells, τ (D×1) is the fixed internal time-
constant vector), A(D×1) is an output control bias vector, and � is the Hadamard product. A
simple DCM can be designed by a second-order approximation (bilinear) of a given system such as
dx/dt = F (x(t), I(t), θ), as follows Friston et al. (2003):

dx/dt = (A+ I(t)B)x(t) + CI(t)

A =
∂F

∂x(t)

∣∣∣
I=0

, B =
∂2F

∂x(t)∂I(t)
, C =

∂F

∂I(t)

∣∣∣
x=0

,

Interventions Coefficients. Let f be a Lipschitz-continuous activation function such as tanh, then
f(x(t), I(t), t, θ) = tanh(Wrx + W I + b). If we set x = 0, in Equation 5, then the external
intervention coefficients C in (7) for LTCs can be obtained by:

∂F

∂I

∣∣∣
x=0

=W (1− f2)�A

The corresponding internal intervention coefficients B of Eq. 7, for LTC networks can be computed
by the partial derivatives of the Eq. 5’s right hand-side (rhs) ∂2F

∂x(t)∂I(t) .

We first compute the partials ∂F
∂x(t) and ∂F

∂I(t) and then ∂2F
∂x(t)∂I(t)

∂F

∂x(t)
=− 1

τ
− tanh(Wrx +W I + b)

−Wr

(
1− tanh2(Wrx +W I + b)

)
x

+Wr

(
1− tanh2(Wrx +W I + b)

)
A

=− 1

τ
− tanh(Wrx +W I + b) +Wr

(
1− tanh2(Wrx +W I + b)

)
(A− x)

=− 1

τ
− f +Wr(1− f2)(A− x) (S1)

∂F

∂I(t)
=−W

(
1− tanh2(Wrx +W I + b)

)
x +W

(
1− tanh2(Wrx +W I + b)

)
A

=W
(
1− tanh2(Wrx +W I + b)

)
(A− x)

=W (1− f2)(A− x) (S2)

∂2F

∂x(t)∂I(t)
=

∂F

∂x(t)

(∂F

∂I(t)

)
=

− 2WWr tanh(Wrx +W I + b)
(
1− tanh2(Wrx +W I + b)

)
(A− x)

−W
(
1− tanh2(Wrx +W I + b)

)
=W (f2 − 1)�

[
2Wrf � (A− x) + 1

]
(S3)

17

https://github.com/mit-drl/deepdrone

This shows that by manipulating matrices W , Wr, and A one can control internal and external
interventions to an LTC system which gives the statement of the proposition.

S3 Experimental Setup.

In the following, we explain in detail the technical setup of our experiments for data collection and
task design.

The voxel occupancy cache is produced using simulated Lidar data available from the AirSim APIs
Madaan et al. (2020). During the control step, each point returned by the simulated Lidar is rounded
to the nearest voxel and then placed inside of an LRU cache with a maximum length of 100,000
entries. A voxel size of 1 meter is used, and the simulated Lidar has a maximum range of 45 meters.
This produces a voxel occupancy map of the local area around the drone, which is used for navigation.

Images from the drone’s frontal camera and the drone’s coordinate position are recorded at 20 Hz.
The drone’s yaw angle is controlled so that the frontal camera always faces the relevant target marker.

S3.1 Task Design Setting

Navigation to Static Target. In this task, the drone navigates to a target marker that is less than 25
meters away and visible to it. We place a red cube on a random unoccupied voxel in the environment
to function as the target marker. By constraining the target marker to appear in the drone’s viewing
frustum and to have an uninterrupted line of sight through the voxel occupancy cache, we minimize
occlusions.

Algorithm S1 Navigation Tasks
Input: set of occupied voxels, O
while x ∈ O do
x = RANDOMVOXEL()

end while
NAVIGATETOENDPOINT(x).

Algorithm S2 NAVIGATETOENDPOINT(x)
Input: endpoint, x ∈ R3

s = PLANPATH(x)
while ||DRONEPOSITION() - x || do

s = PLANNINGTHREAD(PLANPATH, x)
MOVETO(PURSUITPOINT(s))

end while

During data collection, we perform greedy path search over the unoccupied voxels, ignoring voxels
from which the target marker is occluded or outside the viewing frustum. When a path is found,
a cubic spline is interpolated between the voxel points. After this initial path is found, the control
algorithm begins. Re-planning continues in a separate thread, since as the drone moves and the
occupancy cache is updated, voxels in the initial path may be observed to be occupied.

The control algorithm used for data collection follows this spline with a pure pursuit algorithm, which
is tuned for the drone’s speed. If the planning thread returns a new spline, we update the control
thread by setting the look-ahead point to be the nearest point on the new spline to the drone’s position
and then advance as usual. If the target marker is ever observed to be on an occupied voxel or to be
unreachable, we abort the round of data collection and discard any recorded data.The control thread
runs at 20 Hz with the planning thread running while the control thread is suspended.

Chase Task. In this task, the drone follows a target marker along a smooth spline path that is 20
to 30 meters long. Using a generate and test method, we create a path for the drone to follow by
using a random walk with momentum to find knot points for fitting a spline. Only adjacent voxels
that are shown unoccupied in the voxel occupancy cache and which have not been previously visited

18

can be extended to during the random walk. If the path visits fewer than 20 voxels and cannot be
extended to any voxel, we abort and attempt a new random walk. Since the mean free path through
the environment is much larger than 30 meters, this is a relatively efficient way to generate paths, and
no more than 10 attempts were ever required to generate a valid path.

A spline is interpolated between the voxels on the path as in the Navigation to Static Target task.
During data collection, we follow this spline using a pure pursuit controller and placing a red cube on
the look-ahead point. When flying using a trained model, we place a red cube on the position a look
ahead point would be if we were using a pure pursuit controller. Unlike the Simple Navigation Task,
the path is not updated as new occupancies are observed. Instead, if a voxel in the path is observed to
be occupied, then we abort and discard this round of data collection.

Algorithm S3 Chase Task
Input: set of occupied voxels, O; number of steps in generated path, Np
p = [DRONEPOSITION()]
for i = 2; i < Np; i++ do

while x ∈ O do
x = RANDOMSTEPFROM(p[i− 1])

end while
p[i] = x

end for
s = CUBICSPLINE(p)
while PUSUITPOINT(s) do

MOVETO(PURSUITPOINT(s))
end while

Hiking Task. In this task, the drone follows multiple target markers, which are placed on the surface
of obstacles within the environment. Each of these target markers is at least 10 meters distance from
each other target marker, within 10 to 30 meters from the ground, and constrained such that each
successive target marker is in the half-space on the more distant side of the plane which the vector
between the drone’s starting position and the previous target marker is normal to. The target markers
are placed by exhaustively checking each occupied voxel until one is found satisfying the conditions
above. If no valid set of voxels are found, then we abort. During data collection, aborting for the
reason happened fewer than 1 in 10 times.

Between rounds of data collection, we move the drone to a random unoccupied position to prevent
similar selections of target markers and prevent being stuck in positions that had no possible set of
valid target markers. For data collection, once target markers are found, we place a red cube on each
target marker’s position and perform the Navigate to Static Target task to reach that marker. After
moving to this first target marker, we complete the subtask and perform the Navigate to Static Target
task again on the next marker until every marker has been reached.

Algorithm S4 PLANPATH(x)
Input: endpoint, x ∈ R3

k = GREEDYSEARCH(DRONEPOSITION, x, O)
s = CUBICSPLINE(k)
return s

Algorithm S5 Hiking Task
B = GETBLAZES()
for bi in B do

NAVIGATETOENDPOINT(bi).
end for

19

Algorithm S6 GetBlazes
for i = 1 to NB do

for v in SORTEDBYDISTANCE(O) do
if ¬(Zmin < v[3] < Zmax) then

continue
end if
if ¬(∀b ∈ B, ||v − b|| > Dmin) then

continue
end if
p = DRONEPOSITION()
if (v − p) · (B[−1]− p) > ||B[−1]− p||2 then

continue
end if
B[i] = v
break

end for
end for

S3.2 Network Architectures

We used the same convolutional head for all RNNs for ensuring a fair comparison.

Table S1: Network size comparison

Model Conv layers Param RNN neurons
CT-GRU 16,168 32

ODE-RNN 16,168 32
LSTM 16,168 32
NCP 16,168 32

Table S2: Convolutional head

Layer Filters Kernel size Strides

1 16 5 3
2 32 3 2
3 64 2 2
4 8 2 2

S3.3 Training Pipeline and Parameters

Before training, the recorded images and odometry data are loaded from file. From each training
run, we select a continuous sequence of 65 records, discarding the run if less than 65 records are
available. For the ith image for i ∈ [1, 64], we compute the drone’s displacement vector between
frames pi+1− pi and normalize it to produce a unit direction vector. This vector, as well as the image
and gps direction vectors, are written to file.

20

Table S3: Models’ training hyperparameters

Variable Value Comment
Input resolution 256-by-256 Pixels
Input channels 3 8-bit RGB color space
Learning rate 5 · 10−4 ODE-RNN, LSTM, CT-GRU
Learning-rate 5 · 10−4 NCP (RNN compartment)
Learning-rate 5 · 10−4 NCP (convolutional head)

β1 0.9 Parameter of Adam
β2 0.999 Parameter of Adam

Minibatch-size 8
Training sequences length 64 time-steps

Max. number of training epochs 30 Validation set determines actual epochs

21

Input NCP ODE-RNN LSTM CT-GRU

Ti
m

e
Target

What the drone sees

- Red cubic target is fixed.
- Drone learns to navigate
to target by visual inputs
only

Tim
e

What the drone attends to

Figure S1: Causal navigation from raw visual inputs. Given a sequence of raw RGB inputs (left)
a drone is trained to navigate towards the red-cube target. We visualize the instantaneous saliency
maps (right) for each model. This paper investigates the ability of neural circuit policies Lechner et al.
(2020a) (a specific representation of CT neural networks) to learn causal relationships (i.e., attend
specifically to the target red-cube) directly from data while other models fail to do so. ODE-RNNs
Rubanova et al. (2019b), LSTM Hochreiter and Schmidhuber (1997) and CT- Gated Recurrent Units
Mozer et al. (2017). Saliency maps are computed by the visual backprop algorithm Bojarski et al.
(2016).

22

NCP ODE-RNN LSTM CT-GRU

Ti
m
e

𝑡!

𝑡"

tim
e

Target

What the drone sees

What the drone attends to

- Red cubic target is fixed.
- Drone learns to navigate
to target by visual inputs
only

Figure S2: Navigation to a static target in closed-loop environments. NCPs are the only models that
can capture the causal structure of the tasks directly from visual data.

23

NCP ODE-RNN LSTM CT-GRU

Ti
m
e

What the drone sees

What the drone attends to

- Red cubic target moves in
the environment.

- Drone learns to follow the
target by visual inputs only

Figure S3: Chasing a moving target in closed-loop environments. NCPs are the only models that can
capture the causal structure of the tasks directly from visual data.

24

	Introduction
	Related Works
	Problem Setup
	Causal Structures
	Differential Equations Can form Causal Structures
	Continuous-time Neural Networks

	Results
	Causal Modeling with Continuous-time Networks
	Training LTCs via Gradient Descent Yields Causal Models

	Experiments
	Discussions, Scope and Conclusions
	Code and Data Reproducability
	Compute Derivatives in the Proof of Proposition 1.
	Experimental Setup.
	Task Design Setting
	Network Architectures
	Training Pipeline and Parameters

