
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTS OF PROP ON GRAPH CLASSIFICATION

Methods. We first aggregate node features within K-hop neighbors without any trainable weights,
then pool aggregated node features into a global graph representation, i.e.,

HPROP =
1

N

X

i

Hi, H = Ã
K
X, (6)

where N is the number of nodes, Ã = D
0� 1

2A
0
D

0� 1
2 with A

0 = A+ I.

Datasets. For the graph classification task, we choose molecules datasets MUTAG (Debnath et al.,
1991) and NCI1 (Wale et al., 2008), bioinformatics datasets PROTEINS (Borgwardt et al., 2005),
and DD (Dobson & Doig, 2003), social networks IMDB-BINARY, IMDB-MULTI (Yanardag &
Vishwanathan, 2015), and COLLAB (Yanardag & Vishwanathan, 2015).

Baselines. We consider three categories of representative methods as baselines: 1) graph kernel
methods including GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK
(Yanardag & Vishwanathan, 2015), 2) traditional graph embedding methods including node2vec
(Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017),
3) contrastive learning methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020),
MVGRL (Hassani & Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021).

Settings. Following (You et al., 2020), we train the model in an unsupervised manner and feed the
learned representation into a downstream SVM classifier. To keep comparison fairness, we tune
hyperparameters in a unified combination, and keep the search space among methods as consistent as
possible. Details can be found in Appendix O.

Results. As shown in Table 9, although free of training, PROP surpasses most graph kernels
and traditional embeddings, and performs comparably with GCL methods. On average, the mean
performance gap between PROP and the best method across datasets is only 2.82%. The results
show the potential of PROP on the graph classification task. Notably, common graph classification
benchmarks often have less informative node features than node classification benchmarks, even
lacking node attribute description as seen in Table 24. This probably impedes the ability of PROP.
An optional choice is utilizing Laplacian positional embeddings or random-walk embeddings as
widely discussed in the literature of graph Transforms (Yun et al., 2019; Ying et al., 2021; Rampášek
et al., 2022). We leave deeper research on graph classification tasks for future work.

Table 9: Test accuracy (%) of graph classification benchmarks, comparing PROP and GSSL methods.
The compared results are from published papers, and � indicates that results are unavailable. We
report the performance gap between one method and the best method, averaged across datasets in the
Mean Gap. column. Red indicates the best method, while underlined represents the second-best.

PROTEINS MUTAG DD NCI1 IMDB-B IMDB-M COLLAB Mean Gap. #

Graph Kernel

GL � 81.66 ± 2.11 � � 65.87 ± 0.98 � � 7.60

WL 72.92 ± 0.56 80.72 ± 3.00 � 80.01 ± 0.50 72.30 ± 3.44 � � 2.88

DGK 73.30 ± 0.82 87.44 ± 2.72 � 80.31 ± 0.46 66.96 ± 0.56 � � 2.37

Traditional Graph Embedding

node2vec 57.49 ± 3.57 72.63 ± 10.20 � 54.89 ± 1.61 � � � 16.61

sub2vec 53.03 ± 5.55 61.05 ± 15.80 � 52.84 ± 1.47 55.26 ± 1.54 � � 19.79

graph2vec 73.30 ± 2.05 83.15 ± 9.25 � 73.22 ± 1.81 71.10 ± 0.54 � � 3.54

Graph Contrastive Learning

MVGRL � 75.40 ± 7.80 � � 63.60 ± 4.20 � � 11.87

InfoGraph 74.44 ± 0.31 89.01 ± 1.13 72.85 ± 1.78 76.20 ± 1.06 73.03 ± 0.87 48.66 ± 0.67 70.65 ± 1.13 2.07

GraphCL 74.39 ± 0.45 86.80 ± 1.34 78.62 ± 0.40 77.87 ± 0.41 71.14 ± 0.44 48.49 ± 0.63 71.36 ± 1.15 1.52

JOAOv2 74.07 ± 1.10 87.67 ± 0.79 77.40 ± 1.15 78.36 ± 0.53 70.83 ± 0.25 � 69.33 ± 0.34 1.78

ADGCL 73.81 ± 0.46 89.70 ± 1.03 75.10 ± 0.39 69.67 ± 0.51 72.33 ± 0.56 49.89 ± 0.66 73.32 ± 0.61 2.21

PROP 71.07 ± 0.30 87.44 ± 1.53 78.39 ± 0.37 75.24 ± 0.14 71.22 ± 0.28 47.11 ± 0.18 69.07 ± 0.05 2.82

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B GRAPH STRUCTURE AS SUPERVISED SIGNAL

The taxonomy of homophily and heterophily is widely used to tell whether the graph structure is
informative for training GCN-like models. Beyond the discussion on homophily and heterophily,
recent metrics characterizing graphs are proposed and show closer relationships with the GNN
performance (Mao et al., 2023; Luan et al., 2023; Platonov et al., 2023a). For example, Ma et al.
(2021) claim that the inter-class similarity on Squirrel is slightly higher than the intra-class similarity
for most classes, which substantiates the middling performance of GCN.

However, the performance of GCN-like models is an interplay between graph structure and node
features. Therefore, a bad GCN performance can not indicate the helplessness of graph structure,
or vice versa. For verification, we design experiments based on the mutual information of labels
and different graph elements. To escape from the entanglement of structure and node features, we
use MLP instead of GCN as the trainable model with node features X, adjacency matrix A, and the
concatenation of the two as inputs, respectively. The correspondence is as follows:

• I(Y;X): MLP with X as inputs.

• I(Y;A): MLP with A as inputs.

• I(Y;X;A): MLP with [X,A] as inputs, where [] denotes concatenation.

The results are shown in Table 10. It is surprising that for some heterophily datasets, MLP with
the graph structure as inputs gets satisfying performance. For example, for the Squirrel dataset
with a low homophily ratio of 0.22, MLP based on the graph structure achieves 73.58% accuracy.
Therefore, even presenting a low homophily ratio, the graph structure can still serve as a highly
qualified supervision signal for predicting labels.

Table 10: Test accuracy (%) of MLP with different input signals on node classification benchmarks.
H(G) denotes the edge homophily ratio introduced in Zhu et al. (2020a). Lower H(G) denotes graphs
with a high heterophily level. Bold indicates the best, while underlined represents the second-best
choice.

Cora CiteSeer PubMed Chameleon Squirrel Actor

H(G) 0.81 0.74 0.80 0.23 0.22 0.22

MLP(X) 73.64 70.72 85.75 49.34 35.06 36.51
MLP(A) 78.27 57.81 81.41 77.41 73.58 21.84
MLP([X,A]) 82.29 73.57 85.83 71.05 67.63 31.84

C TRIALS IN FEW-SHOT LEARNING

In Section 5, we observe that GCL has the potential to learn good propagation coefficients. It inspires
methods in the few-shot scenario, where a model is tasked with achieving effective generalization
from a minimal number of labeled examples per class.

In this study, we examine the N -shot case where N support examples are used for training. As
baselines, we evaluate the ChebNetII model trained with both supervised learning (SL) and contrastive
learning (CL). As shown in Table 11, SL exhibits low accuracy due to sparse labeling, while CL
performs relatively better, given access to all provided samples.

Based on our findings, we first train the ChebNetII model using contrastive learning. We then fix the
propagation coefficients learned in GCL and focus on optimizing the transformation weights through
a supervised objective. We term the method as Fix-prop SL. As illustrated in Table 11, this approach
yields improvements on several benchmarks. For instance, Fix-prop SL enhances SL accuracy from
57.51% to 72.60% on Cora in the 5-shot case, and from 39.19% to 65.39% in the 3-shot case. The
results demonstrate the potential of integrating SL and CL from a decoupling perspective in few-shot
learning. However, the Fix-prop SL approach has minimal impact on the Squirrel and Chameleon
datasets. It is important to note that we keep hyperparameters consistent across all training methods
and benchmarks, leaving ample room for further exploration beyond this initial investigation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Test accuracy (%) of node classification benchmarks in the few-shot scenario. Bold
indicates the best, while underlined represents the second-best choice.

Training Cora CiteSeer PubMed Squirrel Chameleon

5 Shot

SL 57.51 ± 2.29 43.11 ± 3.75 59.62 ± 2.56 20.15 ± 0.30 22.09 ± 1.60
CL 66.88 ± 2.29 55.02 ± 4.64 63.20 ± 2.64 28.41 ± 0.87 36.92 ± 2.52

Fix-prop SL 72.60 ± 1.43 53.26 ± 4.03 67.66 ± 2.58 20.60 ± 0.90 23.30 ± 1.91

3 Shot

SL 39.19 ± 3.96 37.52 ± 2.25 55.89 ± 2.55 20.27 ± 0.55 21.40 ± 1.26
CL 64.46 ± 4.34 55.85 ± 5.15 59.88 ± 3.49 25.89 ± 1.54 36.12 ± 1.34

Fix-prop SL 65.39 ± 2.15 46.90 ± 3.40 61.46 ± 5.49 20.38 ± 0.69 27.85 ± 3.02

D EXTENSIVE EXPERIMENTS OF SECTION 5.1

In Section 5.1, we show that in the GRACE method, after replacing the trained transformation weights
with a random Gaussian matrix, the downstream performance does not deteriorate as expected. We
conclude that the transformation weights learned in GCL are not better than random.

To enhance the generalizability of our conclusion, we extended our experimental evaluations to
include additional GCL methods. The experimental settings are kept the same. Table 12 and Table
13 respectively show the results using the DGI and BGRL methods. For DGI, after replacing the
transformation weights W1 or W2 with a random Gaussian matrix, the performance is comparable
with before. Moreover, replacing both W1 and W2 raises the performance from 71.92% to 72.18%
on average. For BGRL, substituting the original transformation weights with random matrices brings
an increase of nearly 2% in average performance at best. Although we can not exhaustively try all
GCL methods, the results of the representative methods are able to verify that GCL fails to learn
effective transformation weights.

Table 12: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
(W1 and/or W2) learned in DGI with random weights. Red indicates the best method, while
underlined represents the second-best choice.

Method Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

DGI 83.10 ± 1.10 66.18 ± 1.30 82.47 ± 0.38 41.55 ± 0.78 61.75 ± 1.64 85.57 ± 2.95 74.00 ± 2.75 80.82 ± 1.97 71.93

Randomize W1 79.75 ± 0.80 65.59 ± 0.60 82.66 ± 0.39 38.65 ± 0.87 66.04 ± 0.85 85.41 ± 1.97 75.88 ± 3.75 80.82 ± 1.80 71.85

Randomize W2 83.61 ± 0.92 70.19 ± 0.97 82.56 ± 0.30 39.38 ± 1.09 60.20 ± 1.31 85.74 ± 3.11 73.38 ± 1.63 80.98 ± 1.97 72.01

Randomize both 80.99 ± 0.77 65.85 ± 0.60 82.89 ± 0.37 41.04 ± 0.94 68.21 ± 1.20 84.92 ± 3.11 72.75 ± 1.00 80.82 ± 1.97 72.18

Table 13: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
(W1 and/or W2) learned in BGRL with random weights. Red indicates the best method, while
underlined represents the second-best choice.

Method Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

BGRL 79.57 ± 0.90 68.88 ± 1.36 83.11 ± 0.40 32.92 ± 0.39 46.02 ± 1.90 85.74 ± 3.11 72.75 ± 2.00 80.49 ± 1.64 68.69

Randomize W1 81.02 ± 0.64 71.56 ± 1.30 83.11 ± 0.40 30.48 ± 0.70 46.26 ± 1.27 85.25 ± 1.97 85.63 ± 3.00 80.98 ± 1.97 70.54

Randomize W2 82.97 ± 1.05 70.22 ± 1.02 83.29 ± 0.38 32.42 ± 0.79 46.76 ± 1.29 85.41 ± 3.11 72.38 ± 2.00 80.49 ± 1.80 69.24

Randomize both 81.86 ± 0.61 71.05 ± 1.06 83.41 ± 0.41 30.99 ± 0.51 46.13 ± 1.36 85.57 ± 1.97 72.63 ± 1.50 80.98 ± 1.97 69.08

E EXPERIMENTS WITH A FIXED PUBLIC-SPLITTING.

In Section 4.2, we evaluate PROP and other graph self-supervised methods on the node classification
task with a random splitting. To avoid the conclusion working on one specific split setting, we here
evaluate the models on the public fixed splits following Zhu et al. (2021c); Zhang et al. (2021).
In practice, we use the public splitting introduced in Pei et al. (2020) for most datasets. There is
no available public splitting for Amazon-Photo and Amazon-Computers, so we randomly split the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

dataset into 1/1/8 as the train/validation/test set, differing from the splitting in Section 4.2. Other
experimental settings are kept the same. As shown in Table 14, on 6 in 10 benchmarks PROP
performs the best among baselines and exceeds the runner-up ProGCL by 4.23% on average. The
results verify the effectiveness of PROP in different data-splitting cases.

Table 14: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
benchmarks with the public splitting. Red indicates the best method, while underlined represents the
second-best choice.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Texas Wisconsin Cornell Mean

DeepWalk 80.87 ± 1.07 63.14 ± 1.05 81.55 ± 0.27 84.66 ± 0.40 89.59 ± 0.18 43.32 ± 0.79 60.81 ± 1.27 53.44 ± 5.09 43.63 ± 4.25 44.59 ± 2.95 64.56

Node2Vec 84.27 ± 0.70 66.04 ± 1.83 81.33 ± 0.36 83.92 ± 0.31 89.31 ± 0.20 38.41 ± 1.19 59.50 ± 2.30 60.81 ± 1.89 55.10 ± 3.73 60.54 ± 3.24 67.92

GAE 85.96 ± 1.03 72.78 ± 1.11 85.06 ± 0.49 75.29 ± 0.53 89.50 ± 0.26 35.56 ± 1.27 56.51 ± 1.62 62.43 ± 4.86 61.18 ± 3.53 60.27 ± 3.51 68.45

VGAE 86.20 ± 0.76 73.26 ± 0.65 85.19 ± 0.43 72.17 ± 0.33 86.90 ± 0.38 42.38 ± 1.13 60.29 ± 1.05 63.78 ± 3.51 59.61 ± 2.75 60.54 ± 2.16 69.03

GRACE 84.10 ± 1.01 70.41 ± 0.92 84.79 ± 0.38 78.51 ± 0.44 87.80 ± 0.41 39.65 ± 0.87 55.83 ± 1.05 64.59 ± 4.59 58.82 ± 4.91 60.81 ± 2.16 68.53

DGI 87.20 ± 0.99 72.50 ± 1.49 82.55 ± 0.38 71.35 ± 0.57 80.43 ± 0.63 36.61 ± 1.05 52.02 ± 1.32 70.54 ± 2.97 63.53 ± 3.92 61.62 ± 2.16 67.84

MVGRL 83.44 ± 0.72 71.61 ± 0.73 82.48 ± 0.30 80.96 ± 0.67 86.87 ± 0.41 31.48 ± 0.83 58.77 ± 1.45 68.38 ± 2.98 62.94 ± 3.53 61.62 ± 2.16 68.86

CCA-SSG 87.71 ± 0.75 75.42 ± 0.80 85.55 ± 0.40 78.96 ± 0.33 90.91 ± 0.38 40.16 ± 0.74 54.98 ± 1.18 68.65 ± 3.78 64.12 ± 4.31 61.89 ± 2.43 70.84

BGRL 85.77 ± 0.89 72.66 ± 1.54 84.63 ± 0.49 74.43 ± 0.91 85.50 ± 0.59 37.20 ± 1.07 53.82 ± 1.67 67.03 ± 2.70 60.59 ± 3.14 60.81 ± 2.43 68.24

GCA 86.60 ± 0.79 74.71 ± 1.18 86.44 ± 0.34 75.63 ± 0.46 88.77 ± 0.54 41.33 ± 0.88 59.28 ± 1.54 69.46 ± 2.97 62.94 ± 2.75 61.89 ± 2.16 70.71

ProGCL 85.45 ± 0.85 73.61 ± 1.10 86.86 ± 0.41 81.64 ± 0.70 89.91 ± 0.31 50.23 ± 0.86 67.81 ± 1.47 69.46 ± 2.97 62.75 ± 2.75 61.35 ± 1.35 72.91

PROP 84.57 ± 0.82 74.55 ± 1.09 84.65 ± 0.24 84.78 ± 0.38 90.83 ± 0.34 57.20 ± 1.41 68.71 ± 1.18 71.35 ± 4.60 79.61 ± 3.14 75.14 ± 3.78 77.14

F FLIP EXPERIMENTS IN SECTION 5.2

In this flip experiment, we first train GRACE with ChebNetII as the encoder and save the learned
transformation weights WCL and propagation coefficients ✓CL. Then we train ChebNetII in the
supervised setting with the propagation coefficients fixed with ✓CL, or the transformation weights
fixed with WCL. As shown in Table.15, despite using the propagation coefficients learned by GCL,
the model still achieves satisfying performances compared to the original supervised model. However,
after replacing the transformation weights, the performance deteriorates largely. The results further
confirm our conclusion in Section 5.2

Table 15: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients
with optimal ✓CL (or the transformation weights with WCL), and learn the transformation weights
(or propagation coefficients) in the supervised setting. 1 denotes an all-one vector. Red indicates the
best, while underlined represents the second-best choice.

Method ✓ W Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

SL Learn Learn 88.39 ± 0.74 79.67 ± 0.72 87.11 ± 0.25 49.34 ± 1.09 69.52 ± 0.96 89.67 ± 2.13 91.25 ± 2.75 88.36 ± 3.11 80.41

CL ✓CL WCL 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61 72.09

Fix-transformation Learn WCL 76.62 ± 2.12 76.25 ± 0.64 83.32 ± 0.46 36.56 ± 0.61 52.41 ± 2.06 60.16 ± 6.39 75.25 ± 4.38 59.51 ± 5.08 65.01

Fix-propagation ✓CL Learn 87.06 ± 0.53 79.55 ± 0.74 85.76 ± 0.23 41.44 ± 1.06 64.44 ± 0.74 87.38 ± 2.95 90.63 ± 3.00 84.26 ± 2.62 77.57

All-one baseline 1 Learn 71.74 ± 3.22 75.92 ± 0.61 79.38 ± 0.47 33.27 ± 0.61 42.32 ± 0.90 55.41 ± 4.43 74.13 ± 4.13 60.82 ± 6.56 61.65

G AGGREGATION STEP IN PROP

In this section, we present the accuracies of PROP with different propagation steps. We find the best
step choice varies among datasets, but a shallow propagation is enough in most cases. As shown in
Figure 2, only one-step propagation performs best in datasets including Cora, CiteSeer, Chameleon,
Squirrel, Computers, and Photo. For Texas, Wisconsin, Cornell, Actor, and CS, the raw features, (i.e.,
zero propagation step) are enough. Moreover, when the performance achieves the best, raising the
propagation step will cause a degradation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 2: Accuracy (%) of PROP with different propagation steps. We mark the best step choice with
a red star. Experiments are conducted ten times and the shadow denotes the derivation.

H TRIALS ON LEARNING EFFECTIVE TRANSFORMATION WEIGHTS IN GCL

According to the analysis in Section 5.1, GCL learns uninformative weights that are excessively
smoothing. Here we try three ways to solve this problem: 1) enforcing the sparsity of weights with l1

normalization; 2) using whitening methods (Bell & Sejnowski, 1997; Kessy et al., 2018); 3) using
normalization methods (Huang et al., 2018; Hua et al., 2021; Guo et al., 2023a).

l1 regularization. As a typical technique, the l1 regularization encourages sparsity by driving some
weights to zero and retaining the most relevant features. In practice, we add a penalty proportional
to the sum of the absolute values of the encoder parameters to the contrastive loss, i.e., Ltotal =
LCL + �

P
i |wi|, where LCL is the contrastive loss, � is the regularization strength, and the wi

is the parameters of the encoder. We conduct experiments on ChebNetII with the l1 regularized
GRACE training objective, varying the regularization strength � in [1⇥ 10�4

, 1⇥ 10�5
, 1⇥ 10�6].

As shown in Table 16, the l1 regularization improves performance over the original GRACE on
the Squirrel, Chameleon, Texas, Wisconsin, and Cornell datasets, though it still lags behind PROP,
except on Wisconsin. However, for Cora, Citeseer, and PubMed, l1 regularization negatively impacts
performance.

Table 16: Test accuracy (%) of node classification benchmarks. We train ChebNetII using the l1

regularized GRACE objective. � denotes the regularization strength. Red indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11

�=0 (GRACE) 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

�=1e-4 53.71 ± 1.10 26.97 ± 0.50 81.20 ± 0.21 33.07 ± 0.89 48.60 ± 1.42 80.98 ± 2.30 70.00 ± 1.88 82.79 ± 2.46

�=1e-5 78.87 ± 1.17 73.29 ± 0.63 84.17 ± 0.23 37.46 ± 0.89 56.37 ± 1.01 56.56 ± 1.97 91.88 ± 2.25 81.80 ± 2.30

�=1e-6 77.75 ± 0.80 73.90 ± 0.74 84.16 ± 0.21 38.27 ± 1.02 56.91 ± 1.09 52.79 ± 4.76 86.88 ± 2.88 74.26 ± 7.38

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Whitening methods. Whitening methods are used to decorrelate and normalize data. By making
dimensions mutually independent, whitening methods implicitly solve the representation collapse
problem. Here we consider the typical Zero-phase Component Analysis (ZCA) whitening (Kessy
et al., 2018), which transforms the input data such that it has zero mean and identity covariance
matrix, while also preserving data structure as much as possible. It is computed by multiplying
the data by the inverse square root of its covariance matrix, i.e., x̂ = V⇤

� 1
2V

>x, where V is the
matrix of eigenvectors and ⇤ is the diagonal matrix of eigenvalues of the covariance matrix of x. We
conduct experiments under the GRACE framework with a ZCA whitening layer added to the encoder
ChebNetII. As shown in Table 17, the whitening improves performance over the original GRACE on
the PubMed and Chameleon datasets but drastically deteriorates most of the other datasets.

Table 17: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with the ZCA whitening. Red indicates the best, while underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11

GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE+ZCA 79.29 ± 1.71 47.29 ± 0.70 85.76 ± 0.29 36.72 ± 0.91 58.60 ± 1.07 43.77 ± 8.36 27.38 ± 3.63 38.52 ± 6.23

Normalization methods. For normalization methods, we consider the widely used Batch Nor-
malization (BN) (Ioffe, 2015), and the recently proposed Decorrelate ContraNorm (DCN) (Guo
et al., 2023a). Batch normalization scales and shifts the mini-batch of data to have a mean of zero
and a standard deviation of one, i.e., x̂ = (x � µB)/

p
�2

B + ✏, where µB and �2

B are the mean
and variance of the mini-batch B, and ✏ is a small constant for numerical stability. DCN scatters
representations in the embedding space and leads to a more uniform distribution. The formulation of
GCN is x̂ = x� s⇥x⇥ softmax(x>x), where s is the scale factor. We conduct experiments under
the GRACE framework with a BN or DCN layer added to the encoder ChebNetII. As shown in Table
18, BN and DCN both fail to bring substantial improvement over the original GRACE.

Table 18: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with BN or DCN normalization. s denotes the scale factor in DCN. Red indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11

GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE + BN 82.25 ± 1.00 72.78 ± 1.00 85.10 ± 0.24 39.56 ± 0.47 54.77 ± 0.74 76.07 ± 2.95 72.63 ± 4.75 75.90 ± 2.79

GRACE + DCN (s=0.5) 79.79 ± 0.99 73.86 ± 0.86 84.00 ± 0.37 38.17 ± 0.95 56.19 ± 1.03 71.15 ± 2.13 83.25 ± 2.50 71.64 ± 4.59

GRACE + DCN (s=1.0) 75.19 ± 1.08 74.91 ± 0.63 83.06 ± 0.22 38.28 ± 1.12 57.35 ± 0.98 74.26 ± 1.64 90.50 ± 1.50 76.72 ± 3.11

GRACE + DCN (s=5.0) 74.40 ± 1.15 74.46 ± 0.63 79.41 ± 0.35 38.01 ± 0.79 58.97 ± 1.33 72.95 ± 3.44 83.25 ± 2.75 73.44 ± 3.44

In summary, these techniques offer limited effectiveness for GCL when used with polynomial GNNs.
We think the possible reason is that the learning of transformation weights needs a high-quality
supervision signal. Although these methods help prevent representation collapse, they do not carry
extra information. Therefore, GCL still fails to learn good transformation weights.

I HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we conduct the hyperparameter sensitivity analysis comparing PROPGCL and the
corresponding backbone GCL methods. We vary the range of hyperparameters and evaluate the
downstream performance. Here, we choose two hyperparameters in the model architecture, the
hidden dimension and the propagation step. We consider the DGI backbone with the Chebyshev basis.
As shown in Figure 3 and Figure 4, the performance of DGI with ChebNetII is highly influenced by
disturbing hyperparameters. For example, on Cora, decreasing the hidden dimension from 256 to 128
causes nearly 40% accuracy degradation. In comparison, the performances of PROP-DGI show low
variance under different hyperparameter combinations, and a sharp decline is only observed when
using small neural networks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) PubMed (b) Cora (c) CiteSeer (d) Chameleon

(e) Squirrel (f) Texas (g) Cornell (h) Wisconsin

Figure 3: Hyperparameter sensitivity analysis on the hidden dimension and propagation step. Experi-
ments are conducted on DGI with ChebNetII as the encoder.

(a) PubMed (b) Cora (c) CiteSeer (d) Chameleon

(e) Squirrel (f) Texas (g) Cornell (h) Wisconsin

Figure 4: Hyperparameter sensitivity analysis on the hidden dimension and propagation step. Experi-
ments are conducted on PROP-DGI with the Chebyshev basis.

J DETAILS ABOUT POLYNOMIAL GNNS

In this section, we introduce polynomial GNNs from the spectral perspective. Developed from graph
signal processing, graph convolution means transforming the graph signals to the Fourier domain and
then back to the vertex domain after suitable filtering, i.e., H = Ug✓(⇤)U>

X, where g✓ is the filter,
U is the matrix of eigenvectors of graph Laplacian L, ⇤ is the diagonal matrix of eigenvalues. The
problem arises when the parameters in g✓(⇤) are entirely unconstrained, leading to a lack of spatial
localization in the convolution and a high time complexity due to eigenvalue decomposition.

These issues can be overcome with the use of a polynomial filter g✓(⇤) =
PK�1

k=0
✓k⇤

k, where the
parameter ✓ 2 RK is a vector of polynomial coefficients. Therefore, the graph convolution can be
reformulated as H = (

PK�1

k=0
✓kL

k)X. We call GNNs using the polynomial approximated filters as
polynomial GNNs. As one of the pioneer works, ChebNet (Defferrard et al., 2016) use Chebyshev
polynomial parametrization to localize filters as g✓(⇤) =

PK
k=0

✓kTk(⇤̃), where ⇤̃ = 2⇤/�max�I,
✓ is the Chebyshev coefficients, and Tk(⇤̃) is the Chebyshev polynomial of order k recursively
calculated by Tk(x) = 2xTk�1(x)� Tk�2(x) with T0(x) = 1 and T1(x) = x.

In section ??, we consider three popular polynomial GNN variants. GPRGNN (Chien et al., 2021)
uses the monomial basis functions evaluated at Â, i.e., g✓(⇤) =

PK�1

k=0
✓k(I � L̂)k with ✓ as

learnable coefficients. BernNet (He et al., 2021) uses the Bernstein polynomial approximation,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

i.e., g✓(⇤) =
PK�1

k=0
✓k

1

2k

�K
k

�
(2I � L)K�k

L
k with ✓ as learnable coefficients. ChebNetII (He

et al., 2022) enhances the original Chebyshev polynomial approximation by Chebyshev interpolation,
formulated as g✓(⇤) = 2

K+1

PK
k=0

PK
j=0

✓jTk(xj)Tk(L̂), where xj = cos((j + 1/2)⇡/(K + 1))
are the Chebyshev nodes of TK+1, and ✓ are learnable coefficients.

K CHARACTERIZATION OF LEARNED PROPAGATION COEFFICIENTS

In section 5.2, we find after replacing the transformation weights with supervised ones, the model
trained in GCL performs as well as in a supervised manner. To show that given the transformation
weights, GCL can learn effective propagation coefficients. We compare the propagation coefficients
learned by SL, GCL, and the fix-transformation GCL. As shown in Figure 5, compared with CL, the
propagation coefficients learned by fix-transformation GCL are closer to those in SL. Notably, the
best propagation coefficients for one dataset may not be unique. Therefore, differing from the SL
coefficients does not necessarily indicate poor quality, and the results can not prove that GCL learns
bad propagation coefficients. However, it demonstrates that GCL can learn effective propagation
coefficients fitting the given transformation weights.

(a) PubMed (b) Cora (c) CiteSeer

(d) Chameleon (e) Squirrel (f) Cornell

Figure 5: Propagation coefficients of the supervised learning (SL), the contrastive learning (CL), and
the fix-transformation contrastive learning (fix-trans CL) introduced in Section 5.2. We show the first
three propagation coefficients for the space limit.

L CHARACTERIZATION OF LEARNED TRANSFORMATION WEIGHTS

In Section 5.1, we demonstrated the transformation weights learned by GCL and SL on the Cora
dataset. Here, we extend these findings by presenting comprehensive results across various datasets.
As depicted in Figure 6, the weights learned by GCL exhibit a smoother heatmap compared to those
learned by SL. Furthermore, as shown in Figure 7, the weights learned by SL display diverse, data-
dependent distributions, while those learned by CL consistently follow a Gaussian-like distribution.
These results provide further evidence that GCL struggles to learn effective transformation weights.

M EFFICIENCY ANALYSIS

PROPGCL is more efficient than the original baselines in time and memory consumption as shown
in Table 19 and Table 20. Remarkably, PRO-GRACE saves 84.29% training time per epoch for the
original GRACE with Chebyshev basis on Coauthor CS. For memory consumption, PROP-GRACE
consumes over 99% less memory in the encoder for different benchmarks than the original baseline.
The boost of time and memory efficiency of PROPGCL is attributed to the exclusion of transformation
weights computation in self-supervised training.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) PubMed (b) Cora

(c) CiteSeer (d) Chameleon

(e) Squirrel (f) Cornell

Figure 6: Heatmap of the transformation weights learned by GCL and SL.

(a) PubMed (b) Cora (c) CiteSeer

(d) Chameleon (e) Squirrel (f) Cornell

Figure 7: Distribution of the transformation weights learned by GCL and SL.

N ANALYSIS ON BASIS POLYNOMIAL FUNCTIONS

Polynomial GNNs variants mainly differ in the polynomial basis function choices, e.g., the monomial
basis in GPRGNN (Chien et al., 2021), the Bernstein basis in BernNet (He et al., 2021), and the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 19: Comparison of training time per epoch in seconds between polynomial GNNs and its corre-
sponding -PROP version in the GRACE framework. Improvement refers to the percentage increase
in speed of the -PROP version compared to the baseline, i.e., (tGRACE � tPROP�GRACE)/tGRACE.
Experiments are all conducted on a single 24GB NVIDIA GeForce RTX 3090, except those denoted
with ⇤ on 48GB Nvidia A40 for out-of-memory.

Basis Method Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor

Chebyshev GRACE 0.1611 0.1939 0.2795 0.2872 0.4639 1.5111* 0.7004 0.2295 0.2872

PROP-GRACE 0.1409 0.1478 0.2650 0.2400 0.3626 0.2374* 0.2581 0.1450 0.2073

Improvement 12.54% 23.79% 5.18% 16.44% 21.84% 84.29% 63.15% 36.82% 27.83%

Bernstein GRACE 0.1515 0.2215 0.2513 0.4878 0.9293 6.7666* 1.8997 0.4079 0.2619

PROP-GRACE 0.1226 0.1178 0.2334 0.3832 0.6968 0.6038* 0.5175 0.1653 0.1789

Improvement 19.03% 46.79% 7.10% 21.45% 25.02% 91.08% 72.76% 59.47% 31.69%

Monomial GRACE 0.1114 0.1023 0.1217 0.1606 0.2340 1.2487* 0.3714 0.1524 0.1202

PROP-GRACE 0.1024 0.1224 0.1221 0.1428 0.1928 0.1927* 0.1650 0.1151 0.1109

Improvement 8.06% 16.42% 0.31% 11.12% 17.61% 84.57% 55.56% 24.46% 7.74%

Table 20: Comparison of memory consumption of encoder in KBs between PROPGCL and the
original baseline. We consider GRACE with the Chebyshev basis function here. Improvement.
refers to the percentage decrease in the memory consumption of the -PROP version compared to the
baseline. i.e., (mGRACE �mPROP�GRACE)/mGRACE.

Encoder Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor

GRACE 3894.04 8434.04 2028.04 2518.04 2562.04 2562.04 5206.04 5678.04 2892.04

PROP-GRACE 11.24 28.97 3.95 5.86 6.04 6.04 16.36 18.21 7.32

Improvement 99.71% 99.66% 99.81% 99.77% 99.76% 99.76% 99.69% 99.68% 99.75%

Chebyshev basis in ChebNetII (He et al., 2022). We introduce detailed basis function formulations in
Appendix J.

In this section, we compare different basis polynomial functions used in PROPGCL. Here we consider
the Chebyshev basis, Bernstein basis, and monomial basis. As shown in Table 21 and Table 22,
the performance of PROPGCL is relatively robust in the choice of basis functions. For homophily
benchmarks, PROP-GRACE with Chebyshev basis and the PROP-DGI with monomial basis achieve
the best, surpassing the second slightly by 0.05% on average. For heterophily benchmarks, the best
PROP-DGI with the Chebyshev basis achieves 73.71% on average, and the Bernstein basis ranks
second. In general, the Chebyshev basis is preferred in PROPGCL.

Table 21: Test accuracy (%) of homophily node classification benchmarks, comparing different basis
functions in PROPGCL. Red indicates the best method, while underlined represents the second-best.

Method Basis Cora CiteSeer PubMed Photo Computers CS Mean

PROP-GRACE

Chebyshev 87.42 ± 0.95 81.56 ± 0.83 86.19 ± 0.35 93.32 ± 0.31 88.12 ± 0.23 95.95 ± 0.14 88.76
Bernstein 87.52 ± 1.20 81.69 ± 0.86 85.90 ± 0.25 93.42 ± 0.24 87.77 ± 0.22 95.97 ± 0.13 88.71
monomial 87.34 ± 1.13 81.86 ± 0.79 86.41 ± 0.23 93.19 ± 0.26 86.85 ± 0.34 95.91 ± 0.15 88.59

PROP-DGI

Chebyshev 86.19 ± 1.05 80.78 ± 0.65 85.14 ± 0.22 92.78 ± 0.37 89.81 ± 0.20 95.82 ± 0.18 88.42
Bernstein 86.49 ± 0.99 80.93 ± 0.72 85.80 ± 0.40 93.53 ± 0.26 89.77 ± 0.25 95.46 ± 0.16 88.66
monomial 86.86 ± 1.02 81.69 ± 0.86 86.56 ± 0.33 93.72 ± 0.25 88.18 ± 0.34 95.57 ± 0.14 88.76

O EXPERIMENTAL DETAILS

O.1 BENCHMARKS

Node classification benchmarks. 1) Citation Networks (Sen et al., 2008; Namata et al., 2012). Cora,
CiteSeer, and PubMed are three popular citation graph datasets. In these graphs, nodes represent

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 22: Test accuracy (%) of heterophily node classification benchmarks, comparing different basis
functions in PROPGCL. Red indicates the best method, while underlined represents the second-best.

Method Basis Squirrel Chameleon Actor Texas Wisconsin Cornell Mean

PROP-GRACE

Chebyshev 55.09 ± 0.81 71.73 ± 1.18 39.35 ± 0.81 89.84 ± 1.81 88.50 ± 3.63 86.72 ± 2.46 71.87
Bernstein 48.51 ± 0.85 70.02 ± 0.88 39.33 ± 0.81 90.16 ± 1.31 89.00 ± 3.25 88.52 ± 2.95 70.92
monomial 51.96 ± 0.69 69.28 ± 1.05 39.52 ± 0.89 84.43 ± 2.62 84.13 ± 4.50 88.20 ± 2.79 69.59

PROP-DGI

Chebyshev 60.53 ± 0.66 74.11 ± 0.96 39.53 ± 0.84 91.80 ± 2.30 88.88 ± 2.50 87.38 ± 2.62 73.71
Bernstein 53.08 ± 0.83 71.20 ± 0.81 39.48 ± 0.77 92.46 ± 1.48 91.63 ± 3.00 87.38 ± 2.63 72.54
monomial 56.65 ± 0.77 72.12 ± 0.72 37.80 ± 0.57 93.11 ± 1.80 83.63 ± 5.88 81.97 ± 2.95 70.88

papers and edges correspond to the citation relationship between two papers. Nodes are classified
according to academic topics. 2) Amazon Co-purchase Networks (Shchur et al., 2018). Photo and
Computers are collected by crawling Amazon websites. Goods are represented as nodes and the
co-purchase relationships are denoted as edges. Node features are the bag-of-words representation
of product reviews. Each node is labeled with the category of goods. 3) Wikipedia Networks
(Rozemberczki et al., 2021). Squirrel and Chameleon are collected from the English Wikipedia,
representing page-page networks on specific topics. Nodes represent articles and edges are mutual
links between them. 4) WebKB Networks (Pei et al., 2020). In Texas, Wisconsin, and Cornell datasets,
nodes represent web pages and edges represent hyperlinks between them. Node features are the bag-
of-words representation of web pages. 5) Actor Networks Pei et al. (2020). Each node corresponds to
an actor, and the edge between two nodes denotes co-occurrence on the same Wikipedia page. Node
features correspond to some keywords on the Wikipedia pages. Statistics of datasets are shown in
Table 23.

Table 23: Statistics of node classification benchmarks. H(G) denotes the edge homophily ratio
introduced in Zhu et al. (2020a).

Homo / Hetero Category Dataset # Nodes # Edges # Features # Classes H(G)

Homophily
Citation

Cora 2,708 5,278 1,433 7 0.81
CiteSeer 3,327 4,552 3,703 6 0.74
PubMed 19,717 44,338 500 3 0.80

Co-purchase Photo 7,650 119,081 745 8 0.83
Computers 13,752 245,861 767 10 0.78

Heterophily

Wikipedia Chameleon 2,277 36,101 2,325 6 0.23
Squirrel 5,201 217,073 2,089 4 0.22

WebKB
Texas 183 279 1703 5 0.11

Wisconsin 251 466 1703 5 0.21
Cornell 183 277 1703 5 0.30

Film-actor Actor 7,600 30,019 932 5 0.22

Graph Classification benchmarks. 1) Molecules. MUTAG (Debnath et al., 1991) is a dataset of
nitroaromatic compounds and the goal is to predict their mutagenicity on Salmonella Typhimurium.
NCI1 (Wale et al., 2008) is a dataset of chemical molecules that are annotated based on their activity
against non-small cell lung cancer and ovarian cancer cell lines. 2) Bioinformatics. PROTEINS
(Borgwardt et al., 2005) is a dataset of proteins that are classified as enzymes or non-enzymes.
Nodes represent the amino acids and two nodes are connected by an edge if they are less than 6
Angstroms apart. DD (Dobson & Doig, 2003) consists of protein structures with nodes corresponding
to amino acids and edges indicating that two amino acids are within a certain number of angstroms. 3)
Social Networks. IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015) are movie
collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
IMDB. In each graph, nodes represent actors/actresses; corresponding nodes are connected if they
appear in the same movie. COLLAB (Yanardag & Vishwanathan, 2015) is derived from three public
collaboration datasets representing scientific collaborations between authors. For all benchmarks, we
use collections from TUDataset (Morris et al., 2020). Statistics of datasets are shown in Table 24.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 24: Statistics of graph classification benchmarks. We report average numbers of nodes, edges,
and features across graphs in graph classification datasets.

Category Dataset #Graphs # Nodes # Edges # Features # Classes

Moleculars
MUTAG 188 17.9 39.6 7 2

NCI1 4110 29.87 32.30 37 2

Proteins
PROTEINS 1113 39.1 145.6 0 2

DD 1178 284.32 715.66 89 2

Social Networks

IMDB-BINARY 1000 19.8 193.1 0 2
IMDB-MULTI 1500 13.0 131.9 0 3

COLLAB 5000 74.49 2457.78 0 3

O.2 BASELINES

We categorize baselines for the node classification task into 1) traditional graph embedding al-
gorithms DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016); 2) graph
autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016); 3) graph contrastive
methods GRACE (Zhu et al., 2020b), DGI (Velickovic et al., 2019), GCA (Zhu et al., 2021c), MV-
GRL (Hassani & Khasahmadi, 2020), ProGCL (Xia et al., 2022); 4) graph non-contrastive methods
CCA-SSG (Zhang et al., 2021) and BGRL (Thakoor et al., 2022), 5) heterophily baselines compared
in Section 6.2, PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al., 2023), DSSL (Xiao et al., 2022).The design details are as follows.

1) Traditional graph embeddings.

• DeepWalk (Perozzi et al., 2014). DeepWalk leverages truncated random walks to capture
local network structures. The algorithm treats the random walks as sequences of nodes, akin
to sentences in language models. It learns latent representations by applying skip-gram to
maximize the co-occurrence probabilities of nodes appearing in these random walks.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing breadth-first sampling (BFS) and depth-first sampling (DFS). This allows
Node2Vec to capture both homophily and structural equivalence, making the learned node
embeddings more expressive.

2) Graph autoencoders.

• GAE (Kipf & Welling, 2016). GAE involves an encoder-decoder architecture, where the
encoder is a GCN that transforms node features into latent embeddings by aggregating
information from neighboring nodes. The embeddings are then used by the decoder, which
typically applies a simple inner product operation to reconstruct the graph structure, such as
predicting edges between nodes.

• VGAE (Kipf & Welling, 2016). VGAE extends GAE by introducing a probabilistic frame-
work using a variational autoencoder (VAE) setup. It models latent variables with Gaussian
distributions, enabling the generation of node embeddings that capture uncertainty. This
design improves the model’s ability to capture complex structures in graphs, especially in
tasks like link prediction.

3) Graph contrastive methods.

The mode of GCL has three mainstreams: local-to-local, global-to-global, and global-to-local (Zhu
et al., 2021b). A classic example of local-to-local is GRACE (Zhu et al., 2020b), which generates
two graph views by augmentations and the same nodes in augmented views are positive while all
the other node pairs are negative. Global-to-global mode is often used with multiple graphs in
the graph classification task, with GraphCL (You et al., 2020) as an early but influential trial. For
the global-to-local perspective, positive pairs are taken as the global representation and nodes of
augmented views, and negative pairs are the global representation and nodes of corrupted views. DGI
(Velickovic et al., 2019) is a typical example.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• GRACE (Zhu et al., 2020b). GRACE generates two graph views by corruption and learns
node representations by maximizing the agreement of node representations in these two
views. To provide diverse node contexts for the contrastive objective, GRACE proposes a
hybrid scheme for generating graph views on both structure and attribute levels.

• GCA (Zhu et al., 2021c). GCA proposes adaptive augmentation that incorporates various
priors for topological and semantic aspects of the graph. On the topology level, GCA designs
augmentation schemes based on node centrality measures, while on the node attribute level,
GCA corrupts node features by adding more noise to unimportant node features.

• DGI (Velickovic et al., 2019). DGI relies on maximizing mutual information between
patch representations and corresponding high-level summaries of graphs—both derived
using established graph convolutional network architectures. The learned patch representa-
tions summarize subgraphs centered around nodes of interest, and can thus be reused for
downstream node-wise learning tasks.

• MVGRL (Hassani & Khasahmadi, 2020). MVGRL introduces a self-supervised approach
for learning node and graph-level representations by contrasting structural views of graphs.
MVGRL shows that contrasting multi-scale encodings does not improve performance, and
the best performance is achieved by contrasting encodings from first-order neighbors and
graph diffusion.

• ProGCL (Xia et al., 2022). ProGCL observes limited benefits when adopting existing
hard negative mining techniques of other domains in graph contrastive learning. ProGCL
proposes an effective method to estimate the probability of a negative being true and devises
two schemes to boost the performance of GCL.

4) Non-contrastive methods.

• CCA-SSG (Zhang et al., 2021). CCA-SSG optimizes a novel feature-level objective
that aligns features across different graph augmentations. It uses decorrelation to prevent
degenerate solutions, allowing the model to learn invariant node representations. The model
avoids a mutual information estimator or negative samples, which simplifies training and
reduces computational complexity.

• BGRL (Thakoor et al., 2022). BGRL avoids the use of negative samples by predicting
different augmentations of the input graph. BGRL relies on a bootstrapping mechanism,
where one branch predicts the output of another branch that is not updated by gradient de-
scent. This method eliminates the complexity of contrastive learning and negative sampling,
making it more scalable.

5) Heterophily baselines.

• PolyGCL (Chen et al., 2024). PolyGCL integrates spectral polynomial filters into graph
contrastive learning, enabling it to handle both homophilic and heterophilic graphs. The
method generates different spectral views using polynomials and incorporates high-pass
information into the contrastive objective.

• HGRL (Chen et al., 2022). HGRL introduces self-supervised learning for heterophilic
graphs by capturing distant neighbors and preserving original node features. It achieves
this through carefully designed pretext tasks optimized via high-order mutual information,
avoiding reliance on labels.

• GraphACL (Xiao et al., 2024). GraphACL focuses on an asymmetric view of neighboring
nodes. The algorithm captures both one-hop local neighborhood information and two-hop
monophily similarity, crucial for modeling heterophilic structures.

• SP-GCL (Wang et al., 2023). SP-GCL introduces a single-pass graph contrastive learning
method without augmentations. It theoretically guarantees performance across both ho-
mophilic and heterophilic graphs by studying the concentration property of features obtained
through neighborhood propagation.

• DSSL (Xiao et al., 2022). DSSL decouples neighborhood semantics in self-supervised
learning for node representation. It introduces a latent variable model that decouples node
and link generation, making it flexible to different graph structures. The method utilizes
variational inference for scalable optimization, improving downstream performance without
relying on homophily assumptions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

We categorize the baselines in the graph classification task into 1) graph kernel methods including
GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag & Vishwanathan,
2015), 2) traditional graph embedding methods including node2vec (Grover & Leskovec, 2016),
sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017), 3) contrastive learning
methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), MVGRL (Hassani &
Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021) as introduced in recent
works. The design details are as follows.

1) Graph kernel methods.

• Graphlet Kernel (GL) (Shervashidze et al., 2009). GL works by counting the number
of small subgraphs (known as graphlets) of a fixed size that appear in each graph. The
comparison of these counts across graphs allows the kernel to capture the local topological
structures of the graphs, making it useful for tasks such as graph classification.

• Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al., 2011). WL extends the
concept of graph kernels by applying the Weisfeiler-Lehman test of isomorphism on graphs.
It involves iteratively relabeling the nodes of the graphs based on the labels of their neighbors
and then using these relabelings to define a kernel, typically counting matching sub-trees.

• Deep Graph Kernel (DGK) (Yanardag & Vishwanathan, 2015). DGK combines deep
learning techniques with graph kernels. It first learns a low-dimensional representation
of the graphs through unsupervised learning (often using a form of graph embedding or
autoencoders), then applies traditional kernel methods to these representations.

2) Traditional graph embeddings.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing BFS and DFS. This allows Node2Vec to capture both homophily and structural
equivalence, making the learned node embeddings more expressive.

• Sub2Vec (Adhikari et al., 2018). Inspired by the word2vec model, sub2vec learns vector
representations for subgraphs in a graph. It treats each subgraph as a "word" and the
entire graph as a "document" to learn embeddings that capture the structural and contextual
properties of subgraphs.

• Graph2Vec (Narayanan et al., 2017). Similar to sub2vec, graph2vec is designed to learn
embeddings for entire graphs. By treating each graph as a "document" and graph sub-
structures as "words," graph2vec employs a document embedding approach to learn a
fixed-size vector representation for each graph.

3) Graph contrastive methods.

• GraphCL (You et al., 2020). GraphCL designs four types of graph augmentations to
incorporate various priors and learns graph-level representations by maximizing the global
representations of two views for a graph.

• InfoGraph (Sun et al., 2020). InfoGraph maximizes the mutual information between the
graph-level representation and the representations of substructures of different scales (e.g.,
nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the
data that are shared across different scales of substructures.

• ADGCL (Suresh et al., 2021). ADGCL proposes a novel principle, adversarial GCL, which
enables GNNs to avoid capturing redundant information during training by optimizing
adversarial graph augmentation strategies used in GCL.

• JOAO (You et al., 2021). JOAO proposes a unified bi-level optimization framework to
automatically, adaptively, and dynamically select data augmentations when performing
GraphCL on specific graph data. JOAO is instantiated as min-max optimization.

O.3 SETTINGS

For the node classification task, following Zhu et al. (2020b); Velickovic et al. (2019); Hassani &
Khasahmadi (2020), we use linear evaluation protocol, where the model is trained in an unsupervised
manner and feeds the learned representation into a linear logistic regression classifier. In the evaluation

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

procedure, we randomly split each dataset with a training ratio of 0.8 and a test ratio of 0.1, and
hyperparameters are fixed the same way for all the experiments. Each experiment is repeated ten
times with mean and standard derivation of accuracy score.

For the graph classification task, we use Adam SGD optimizer with the learning rate selected
in {10�3

, 10�4
, 10�5

} and the number of epochs in {20, 100}. For PROP, we only search the
propagation step K in the range of [0, 1, 2, 3, 5, 10]. Following Sun et al. (2020); You et al. (2020),
we feed the generated graph embeddings into a linear Support Vector Machine (SVM) classifier,
and the parameters of the downstream classifier are independently tuned by cross-validation. The
C parameter is tuned in {10�3

, 10�2
, · · · , 102, 103}. We report the mean 10-fold cross-validation

accuracy with standard deviation. All experiments are conducted on a single 24GB NVIDIA GeForce
RTX 3090.

O.4 HYPERPARAMETER

For all methods, we train the linear classifier for 2000 epochs with a learning rate of 0.01 and no
weight decay. For hyperparameters of the model architecture and the unsupervised training procedure,
we maintain consistency in the hyperparameter search space across methods as much as possible.

Specifically, for GRACE, we search the temperature ⌧ in [0.1, 0.5, 1.0], the projector hidden
dimension in [128, 256, 512], the learning rate in [0.01, 0.001], fix the patience as 50, and all
augmentation rates as 0.2. For DGI, we search the learning rate in [0.01, 0.001], the early-stopping
patience in [50, 100], and the hidden dimension in [128, 256, 512]. For CCA-SSG, we search the
training epochs in [20, 50, 100], � in [1e-3, 5e-4], the hidden dimension in [128, 256, 512], and fix
all augmentation ratios as 0.2. For GCA, we search the temperature ⌧ in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the drop scheme in [pr, degree, evc], and fix the early-stopping
patience as 50, the learning rate as 0.01, and all augmentation ratios as 0.2. For BGRL, we search the
predictor hidden dimension in [128, 256, 512], the learning rate in [1e-4, 1e-5], the weight decay in [0,
1e-5], fix the learning rate warmup epochs as 1000, the momentum moving as 0.99. For DeepWalk,
we search the vector dimension in [128, 256, 512], the context window size in [5, 10], the walk
number in [10 20], and the walk length in [40, 80]. For Node2Vec, we search the vector dimension in
[128, 256, 512], the walk number in [10 20], the probability p in [0.5, 1.0], q in [0.5, 1.0], and fix the
context window size as 10, and the walk length as 80. For MVGRL, we search the learning rate in
[0.01, 0.001], the early stopping patience in [50, 100], and the hidden dimension in [128, 256, 512].
For GAE and VGAE, we search the learning rate in [0.01, 0.001], the early stopping patience in [50,
100], and the hidden dimension in [128, 256, 512]. For the heterophily baselines in 6.2, we use the
optimal hyperparameter combinations provided in the original papers.

P PROOF OF THEOREMS

Q PROOF OF THEOREM 4.1

Here we present the proof of Theorem 4.1.

Proof. The gradient update of the Dirichlet energy objective (Equation 2) gives the following update
rule of node features H,

H� ↵
@L(H)

@H
= H� 2↵L̂H = ((1� 2↵)I+ 2↵Â)H, (7)

where the ↵ is the step size. When we choose the learning rate ↵ = 0.5, we recover the propagation
operation in Equation 1, i.e., Hnew = ÂH.

For convergence analysis, we have

L(H(K)) = (ÂK
H

(0))>L̂(ÂK
H

(0))

= H
(0)

>
Â

K
L̂Â

K
H

(0)

= H
(0)

>
(Â2K

� Â
2K+1)H(0)

.

(8)

As is known, the range of eigenvalue of L̂ is [0, 2], therefore, the eigenvalues of Â belong to [�1, 1].
The eigenvalue of L̂ equals 2 if and only if the graph is bipartite. So for non-bipartite graphs, which

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

is often the case for complex graphs in real world, we have the eigenvalues of Â belong to (�1, 1].
Then when K goes towards infinity, we have limK!+1 L(H(K)) = 0, which ends the proof.

R PROOF OF THEOREM 4.2

Here we present the proof of Theorem 4.2.

Proof. A key step is to notice that the alignment objective Equation 3 is closely relevant to the
Dirichlet energy when f(xi) = Hi, 8 i 2 [N] :

Lalign(f) = �

X

i,j

Aij [H
>
i Hj]/(

X

i,j

Aij) = H
>
AH/(

X

i,j

Aij) = H
>(I�L)H/(

X

i,j

Aij). (9)

It is easy to see that graph convolution converges to identical vectors, known as oversmoothing.
Therefore, we have 8 i, j, (H1)i = (H1)j . Therefore,

lim
k!1

Lalign(fk) = H
>
1AH1/(

X

i,j

Aij) = (
X

i,j

Aij)/(
X

i,j

Aij) = �1,

which concludes the proof.

30

	Introduction
	Related Works
	Background
	Graph Contrastive Learning Pipelines
	Graph Convolutional Neural Networks

	Uniform Propagation is A Strong Baseline for Unsupervised Learning
	Propagation: A Non-parametric Learning Approach on Graph
	Benchmark Propagation among Unsupervised BurntOrangeNode Classification Baselines

	Dissecting the Limitations of GNNs in GCL
	Feature transformation is ineffective in GCL
	Learning Propagation is Promising in GCL

	PROPGCL: Simple Graph Contrastive Learning that Only Learns Propagation
	PROPGCL
	Experimental Results

	BurntOrangeEfficiency Analysis
	Conclusion
	Limitations
	Experiments of PROP on Graph Classification
	Graph structure as supervised signal
	Trials in few-shot learning
	Extensive experiments of Section 5.1
	Experiments with a fixed public-splitting.
	Flip experiments in Section 5.2
	Aggregation Step in PROP
	Trials on Learning Effective Transformation Weights in GCL
	Hyperparameter sensitivity analysis
	Details about polynomial GNNs
	Characterization of learned propagation coefficients
	Characterization of learned transformation weights
	Efficiency analysis
	Analysis on Basis polynomial functions
	Experimental Details
	Benchmarks
	Baselines
	Settings
	Hyperparameter

	Proof of Theorems
	Proof of Theorem 4.1
	Proof of Theorem 4.2

