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A EXPERIMENTS OF PROP ON GRAPH CLASSIFICATION

Datasets. For the graph classification task, we choose molecules datasets MUTAG (Debnath et al.,
1991) and NCI1 (Wale et al., 2008), bioinformatics datasets PROTEINS (Borgwardt et al., 2005),
and DD (Dobson & Doig, 2003), social networks IMDB-BINARY, IMDB-MULTI (Yanardag &
Vishwanathan, 2015), and COLLAB (Yanardag & Vishwanathan, 2015).

Baselines. We consider three categories of representative methods as baselines: 1) graph kernel
methods including GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK
(Yanardag & Vishwanathan, 2015), 2) traditional graph embedding methods including node2vec
(Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017),
3) contrastive learning methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020),
MVGRL (Hassani & Khasahmadi, 2020), JOAOvV2 (You et al., 2021), ADGCL (Suresh et al., 2021).

Settings. Following (You et al., 2020), we train the model in an unsupervised manner and feed the
learned representation into a downstream SVM classifier. To keep comparison fairness, we tune
hyperparameters in a unified combination, and keep the search space among methods as consistent as
possible. Details can be found in Appendix O.

Results. As shown in Table 9, although free of training, PROP surpasses most graph kernels
and traditional embeddings, and performs comparably with GCL methods. On average, the mean
performance gap between PROP and the best method across datasets is only 2.82%. The results
show the of PROP on the graph classification task. Notably, common graph classification
benchmarks often have less informative node features than node classification benchmarks, even
lacking node attribute description as seen in Table 24. This probably impedes the ability of PROP.
An optional choice is utilizing Laplacian positional embeddings or random-walk embeddings as
widely discussed in the literature of graph Transforms (Yun et al., 2019; Ying et al., 2021; Rampasek
etal., 2022).

Table 9: Test accuracy (%) of graph classification benchmarks, comparing PROP and GSSL methods.
The compared results are from published papers, and — indicates that results are unavailable. We
report the performance gap between one method and the best method, averaged across datasets in the
Mean Gap. column. Red indicates the best method, while underlined represents the second-best.

PROTEINS MUTAG DD NCI1 IMDB-B IMDB-M COLLAB Mean Gap. |
Graph Kernel
GL - 81.66 £ 2.11 - - 65.87 = 0.98 - - 7.60
WL 7292 +0.56  80.72 £+ 3.00 - 80.01 £ 0.50 72.30 + 3.44 - - 2.88
DGK 7330+0.82 8744 +2.72 - 80.31 + 046 66.96 + 0.56 - - 2.37
Traditional Graph Embedding
node2vec  57.49 +3.57 72.63 £ 10.20 — 54.89 + 1.61 — — - 16.61
sub2vec  53.03 £5.55 61.05 £ 15.80 - 52.84 £ 147 5526+ 1.54 - - 19.79
graph2vec  73.30 £2.05 83.15+9.25 - 7322+ 1.81 71.10 £ 0.54 - - 3.54

Graph Contrastive Learning

MVGRL — 75.40 & 7.80 — - 63.60 = 4.20 — - 11.87
InfoGraph  74.44 £ 0.31 89.01 £1.13 7285+1.78 7620+1.06 73.03+0.87 48.66+0.67 70.65+1.13 2.07
GraphCL 7439 £0.45 86.80 £1.34 78.62+£0.40 77.87+041 71.14+£044 48494+0.63 71.36+£1.15 1.52
JOAOV2 7407 +1.10 87.67+0.79 7740+ 1.15 7836+0.53 70.83+0.25 — 69.33 + 0.34 1.78
ADGCL 7381 +0.46 89.70 £1.03 75104039 69.67 £0.51 7233 +0.56 49.89 +0.66 73.32+ 0.61 221

PROP 71.07+030 87444153 78394037 7524+0.14 71.224+028 47.11+£0.18 69.07 & 0.05 2.82
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B GRAPH STRUCTURE AS SUPERVISED SIGNAL

The taxonomy of homophily and heterophily is widely used to tell whether the graph structure is
informative for training GCN-like models. Beyond the discussion on homophily and heterophily,
recent metrics characterizing graphs are proposed and show closer relationships with the GNN
performance (Mao et al., 2023; Luan et al., 2023; Platonov et al., 2023a). For example, Ma et al.
(2021) claim that the inter-class similarity on Squirrel is slightly higher than the intra-class similarity
for most classes, which substantiates the middling performance of GCN.

However, the performance of GCN-like models is an interplay between graph structure and node
features. Therefore, a bad GCN performance can not indicate the helplessness of graph structure,
or vice versa. For verification, we design experiments based on the mutual information of labels
and different graph elements. To escape from the entanglement of structure and node features, we
use MLP instead of GCN as the trainable model with node features X, adjacency matrix A, and the
concatenation of the two as inputs, respectively. The correspondence is as follows:

* I(Y;X): MLP with X as inputs.
* I(Y;A): MLP with A as inputs.
* I(Y;X;A): MLP with [X, A] as inputs, where [] denotes concatenation.

The results are shown in Table 10. It is surprising that for some heterophily datasets, MLP with
the graph structure as inputs gets satisfying performance. For example, for the Squirrel dataset
with a low homophily ratio of 0.22, MLP based on the graph structure achieves 73.58% accuracy.
Therefore, even presenting a low homophily ratio, the graph structure can still serve as a highly
qualified supervision signal for predicting labels.

Table 10: Test accuracy (%) of MLP with different input signals on node classification benchmarks.
H(G) denotes the edge homophily ratio introduced in Zhu et al. (2020a). Lower #(G) denotes graphs
with a high heterophily level. Bold indicates the best, while underlined represents the second-best
choice.

Cora CiteSeer PubMed Chameleon Squirrel Actor

H(G) 0.81 0.74 0.80 0.23 0.22 0.22
MLP(X) 73.64  70.72 85.75 49.34 3506  36.51
MLP(A) 7827  57.81 81.41 77.41 73.58 21.84
MLP(X,A]) 8229 73.57 85.83 71.05 67.63 31.84

C TRIALS IN FEW-SHOT LEARNING

In Section 5, we observe that GCL has the potential to learn good propagation coefficients. It inspires
methods in the few-shot scenario, where a model is tasked with achieving effective generalization
from a minimal number of labeled examples per class.

In this study, we examine the N-shot case where N support examples are used for training. As
baselines, we evaluate the ChebNetIl model trained with both supervised learning (SL) and contrastive
learning (CL). As shown in Table 11, SL exhibits low accuracy due to sparse labeling, while CL.
performs relatively better, given access to all provided samples.

Based on our findings, we first train the ChebNetIl model using contrastive learning. We then fix the
propagation coefficients learned in GCL and focus on optimizing the transformation weights through
a supervised objective. We term the method as Fix-prop SL. As illustrated in Table 11, this approach
yields improvements on several benchmarks. For instance, Fix-prop SL enhances SL accuracy from
57.51% to 72.60% on Cora in the 5-shot case, and from 39.19% to 65.39% in the 3-shot case. The
results demonstrate the potential of integrating SL and CL from a decoupling perspective in few-shot
learning. However, the Fix-prop SL approach has minimal impact on the Squirrel and Chameleon
datasets. It is important to note that we keep hyperparameters consistent across all training methods
and benchmarks, leaving ample room for further exploration beyond this initial investigation.
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Table 11: Test accuracy (%) of node classification benchmarks in the few-shot scenario. Bold
indicates the best, while underlined represents the second-best choice.

Training Cora CiteSeer PubMed Squirrel Chameleon

SL 57.51£229 4311+£375 59.624+256 20.15+£0.30 22.09 £ 1.60

5 Shot CL 66.88 +2.29 55.02+4.64 63.20+2.64 28.41+0.87 36.92+2.52
Fix-prop SL  72.60 £1.43 5326 +£4.03 67.66 +2.58 20.60+0.90 23.30+ 1.91

SL 39.19£3.96 37524225 55894255 2027+0.55 21.40+£1.26

3 Shot CL 64.46 =434 5585+5.15 59.88+349 25.89+1.54 36.12+1.34

Fix-prop SL  65.39 £2.15 46.90+3.40 61.46+=5.49 20.38+4+0.69 27.85+3.02

D EXTENSIVE EXPERIMENTS OF SECTION 5.1

In Section 5.1, we show that in the GRACE method, after replacing the trained transformation weights
with a random Gaussian matrix, the downstream performance does not deteriorate as expected. We
conclude that the transformation weights learned in GCL are not better than random.

To enhance the generalizability of our conclusion, we extended our experimental evaluations to
include additional GCL methods. The experimental settings are kept the same. Table 12 and Table
13 respectively show the results using the DGI and BGRL methods. For DGI, after replacing the
transformation weights W; or W5 with a random Gaussian matrix, the performance is comparable
with before. Moreover, replacing both W, and W, raises the performance from 71.92% to 72.18%
on average. For BGRL, substituting the original transformation weights with random matrices brings
an increase of nearly 2% in average performance at best. Although we can not exhaustively try all
GCL methods, the results of the representative methods are able to verify that GCL fails to learn
effective transformation weights.

Table 12: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
(W1 and/or W) learned in DGI with random weights. Red indicates the best method, while
underlined represents the second-best choice.

Method Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

DGI 83.10+1.10 66.18 £1.30 8247 £0.38 41.55+0.78 61.754+1.64 8557+£295 74.00+275 80.82+1.97 7193

Randomize W;  79.75 £0.80 65.59 +£0.60 82.66 +0.39 38.65+ 0.87 066.04 £0.85 8541+197 75884375 80.82+1.80 71.85
Randomize W3  83.61 +=0.92  70.19 £0.97 8256 £0.30 3938+£1.09 60.204 1.31 85.74 £3.11 7338+1.63 80.98+1.97 72.01
Randomize both  80.99 +0.77 65.85+0.60 82.89 +0.37 41.04 £0.94 6821+ 120 8492+3.11 7275+1.00 80.82+197 72.18

Table 13: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
(W1 and/or W) learned in BGRL with random weights. Red indicates the best method, while
underlined represents the second-best choice.

Method Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

BGRL 79.57£090 68.88£1.36 83.11 040 32.92+039 46.02+190 8574+£3.11 72.75+£2.00 8049 +1.64 68.69

Randomize W;  81.02+0.64 71.56 = 1.30 83.11 £0.40 3048 £0.70 4626 £1.27 8525+1.97 8563 +3.00 8098+ 197 70.54
Randomize W,  82.97 +1.05 70.22+1.02 83.29+0.38 3242+0.79 46.76 £1.29 8541 +3.11 7238+2.00 80.49+180 69.24

Randomize both  81.86 £0.61 71.05+1.06 83.41+0.41 30.99£051 46.13+£136 8557+197 72.63+£1.50 80.98+1.97 69.08

E EXPERIMENTS WITH A FIXED PUBLIC-SPLITTING.

In Section 4.2, we evaluate PROP and other graph self-supervised methods on the node classification
task with a random splitting. To avoid the conclusion working on one specific split setting, we here
evaluate the models on the public fixed splits following Zhu et al. (2021c); Zhang et al. (2021).
In practice, we use the public splitting introduced in Pei et al. (2020) for most datasets. There is
no available public splitting for Amazon-Photo and Amazon-Computers, so we randomly split the
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dataset into 1/1/8 as the train/validation/test set, differing from the splitting in Section 4.2. Other
experimental settings are kept the same. As shown in Table 14, on 6 in 10 benchmarks PROP
performs the best among baselines and exceeds the runner-up ProGCL by 4.23% on average. The
results verify the effectiveness of PROP in different data-splitting cases.

Table 14: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
benchmarks with the public splitting. Red indicates the best method, while underlined represents the
second-best choice.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Texas Wisconsin Cornell Mean

DeepWalk  80.87 +1.07 63.14 £ 1.05  81.55+0.27 84.66 £ 040 89.59+0.18 43.32£0.79 60.81 +1.27 53.44£5.09 43.63+425 4459+£295 64.56
Node2Vec  84.27 +0.70 66.04 +£1.83 81.33+0.36 83.92+0.31 89.314+020 3841+1.19 59.50+230 60.81+1.89 55104373 60.54+3.24 67.92

GAE 8596 +£1.03 7278 £ 1.11 8506+ 049 7529 £0.53 89.50+0.26 3556+ 127 56.51+1.62 6243+£486 61.18+3.53 60.27+3.51 6845

VGAE 86.20 £0.76 7326 £0.65 85.19+0.43 72.17+£0.33 86.90+0.38 4238 +£1.13 6029+ 105 63.78£3.51 59.61+275 60.54+2.16 69.03

GRACE 84.10 £ 1.01 7041 £0.92 8479 +038 7851 £044 87.80+041 39.65+0.87 5583+1.05 64.59+£459 5882+491 60.81+£216 6853
DGI 87.204+0.99 7250+ 1.49 8255+0.38 71.35+£0.57 80434+0.63 36.61 £1.05 52024132 70.54+297 63.534+392 61.62+2.16 67.84
MVGRL 83.44+0.72 71.61 £0.73 8248 £0.30 80.96+0.67 86.87+041 31.48+0.83 5877+145 6838+298 62944353 61.62+2.16 6886
CCA-SSG  87.71 £0.75 7542+ 0.80 85.55+£0.40 78964033 90.91+0.38 40.164+0.74 5498+ 1.18 68.65+3.78 64.12+431 61.894+243 70.84
BGRL 85.77+0.89 72.66 £ 1.54 84.63+049 7443+£091 85504059 37.20+1.07 53.82+1.67 67.03+£2.70 60.59+3.14 60.81 £2.43 6824
GCA 86.60 £0.79 7471 £1.18 86.44+0.34 7563 +£046 88.77+0.54 4133+£0.88 5928 +1.54 69.46+£2.97 6294+275 61.89+£2.16 70.71

ProGCL 85454085 73.61 £1.10 86.86+0.41 81.64£0.70 89.91+031 50.23+0.86 67814147 6946297 6275+275 61.35+1.35 7291

PROP 84.57+0.82 7455+ 1.09 84.65+024 8478+ 0.38 90.83+0.34 57.20+1.41 68.71+1.18 71.35+4.60 79.61+3.14 7514 +3.78 77.14

F FLIP EXPERIMENTS IN SECTION 5.2

In this flip experiment, we first train GRACE with ChebNetlI as the encoder and save the learned
transformation weights W ¢y, and propagation coefficients O¢cy,. Then we train ChebNetll in the
supervised setting with the propagation coefficients fixed with 8¢y, or the transformation weights
fixed with Wy,. As shown in Table.15, despite using the propagation coefficients learned by GCL,
the model still achieves satisfying performances compared to the original supervised model. However,
after replacing the transformation weights, the performance deteriorates largely. The results further
confirm our conclusion in Section 5.2

Table 15: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients
with optimal O¢y, (or the transformation weights with W¢y,), and learn the transformation weights
(or propagation coefficients) in the supervised setting. 1 denotes an all-one vector. Red indicates the
best, while underlined represents the second-best choice.

Method o w Cora CiteSeer PubMed Squirrel Chameleon Texas ‘Wisconsin Cornell Mean
SL Learn Learn 88.39 +0.74 79.67 +0.72 87.11+£0.25 49.34+1.09 69.52+0.96 89.67+2.13 91.25+2.75 88.36+3.11 80.41
CL Oc. WeL 8342+092 7479+£0.57 8492+026 37.90+£0.79 55674096 77.87+279 8638+£3.63 7574+3.61 72.09

Fix-transformation Learn W,  76.62 £2.12 7625+ 0.64 8332+£046 36.56+0.61 5241+206 60.16+6.39 7525+438 59.514+508 65.01
Fix-propagation Ocr  Learn 87.06+0.53 79.55+£0.74 85764023 4144+106 64444074 87.38+295 90.63+£3.00 84264262 7757

All-one baseline 1 Learn 7174 +3.22 7592+0.61 79.38+0.47 3327+0.61 4232+090 55414443 7413+4.13 60.82+6.56 61.65

G AGGREGATION STEP IN PROP

In this section, we present the accuracies of PROP with different propagation steps. We find the best
step choice varies among datasets, but a shallow propagation is enough in most cases. As shown in
Figure 2, only one-step propagation performs best in datasets including Cora, CiteSeer, Chameleon,
Squirrel, Computers, and Photo. For Texas, Wisconsin, Cornell, Actor, and CS, the raw features, (i.e.,
zero propagation step) are enough. Moreover, when the performance achieves the best, raising the
propagation step will cause a degradation.
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Figure 2: Accuracy (%) of PROP with different propagation steps. We mark the best step choice with
a red star. Experiments are conducted ten times and the shadow denotes the derivation.

H TRIALS ON LEARNING EFFECTIVE TRANSFORMATION WEIGHTS IN GCL

According to the analysis in Section 5.1, GCL learns uninformative weights that are excessively
smoothing. Here we try three ways to solve this problem: 1) enforcing the sparsity of weights with [y
normalization; 2) using whitening methods (Bell & Sejnowski, 1997; Kessy et al., 2018); 3) using
normalization methods (Huang et al., 2018; Hua et al., 2021; Guo et al., 2023a).

l; regularization. As a typical technique, the [; regularization encourages sparsity by driving some
weights to zero and retaining the most relevant features. In practice, we add a penalty proportional
to the sum of the absolute values of the encoder parameters to the contrastive loss, i.e., Liotal =
Lo + A ZZ |w;|, where L¢y, is the contrastive loss, A is the regularization strength, and the w;
is the parameters of the encoder. We conduct experiments on ChebNetlIl with the /; regularized
GRACE training objective, varying the regularization strength X in [1 x 1074,1 x 1075,1 x 1076].
As shown in Table 16, the /; regularization improves performance over the original GRACE on
the Squirrel, Chameleon, Texas, Wisconsin, and Cornell datasets, though it still lags behind PROP,
except on Wisconsin. However, for Cora, Citeseer, and PubMed, /; regularization negatively impacts
performance.

Table 16: Test accuracy (%) of node classification benchmarks. We train ChebNetlI using the [y
regularized GRACE objective. A denotes the regularization strength. Red indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 £0.76 78.87 = 0.63 82.89 £048 5848 +1.03 6882+ 142 86.23+3.11 89.00+3.25 86.23+3.11

A=0 (GRACE) 83424092 74.7940.57 84.92+0.26 3790+0.79 55.67+0.96 77.87+£279 86.38+3.63 7574+ 3.61

A=le-4 5371 £1.10 26974050 81.20+£0.21 33.07+0.89 48.60+ 142 80.984+230 70.00+1.88 82794246
A=le-5 7887 £1.17 7329+0.63 84.17+£0.23 3746+089 5637+1.01 56.56+197 91.88+2.25 81.80+2.30
A=le-6 7775 £0.80 7390+0.74 84.16+0.21 3827+£1.02 5691+1.09 52.794+4.76 86.88+£2.88 74.26+7.38
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Whitening methods. Whitening methods are used to decorrelate and normalize data. By making
dimensions mutually independent, whitening methods implicitly solve the representation collapse
problem. Here we consider the typical Zero-phase Component Analysis (ZCA) whitening (Kessy
et al., 2018), which transforms the input data such that it has zero mean and identity covariance
matrix, while also preserving data structure as much as possible. It is computed by multiplying
the data by the inverse square root of its covariance matrix, i.e., £ = VA_%VTCB, where V is the
matrix of eigenvectors and A is the diagonal matrix of eigenvalues of the covariance matrix of . We
conduct experiments under the GRACE framework with a ZCA whitening layer added to the encoder
ChebNetll. As shown in Table 17, the whitening improves performance over the original GRACE on
the PubMed and Chameleon datasets but drastically deteriorates most of the other datasets.

Table 17: Test accuracy (%) of node classification benchmarks. We train ChebNetlI using GRACE
with the ZCA whitening. Red indicates the best, while underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 8548 £0.76 78.87 +£0.63 82.89+0.48 5848 +1.03 68.82+ 142 86.23+3.11 89.00+3.25 86.23+3.11

GRACE 83424092 7479 +0.57 8492+0.26 37.90+0.79 55.674+096 77.87+279 86.38+3.63 75.7443.61

GRACE+ZCA 7929+ 1.71 47.29+0.70 8576 +£0.29 36.72+0.91 58.60+1.07 43.77+836 2738 +£3.63 38.5246.23

Normalization methods. For normalization methods, we consider the widely used Batch Nor-
malization (BN) (Ioffe, 2015), and the recently proposed Decorrelate ContraNorm (DCN) (Guo
et al., 2023a). Batch normalization scales and shifts the mini-batch of data to have a mean of zero
and a standard deviation of one, i.e., & = (x — uB)/\/a% + €, where pup and o% are the mean
and variance of the mini-batch B, and ¢ is a small constant for numerical stability. DCN scatters
representations in the embedding space and leads to a more uniform distribution. The formulation of
GCNisT =x —sxx X softmax(:cTa:), where s is the scale factor. We conduct experiments under
the GRACE framework with a BN or DCN layer added to the encoder ChebNetIl. As shown in Table
18, BN and DCN both fail to bring substantial improvement over the original GRACE.

Table 18: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with BN or DCN normalization. s denotes the scale factor in DCN. Red indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell
PROP 8548 £0.76 78.87 +0.63 82.89 £0.48 58.48 +1.03 68.82+1.42 86.23 +3.11 89.00+3.25 86.23 +3.11
GRACE 83424092 7479 £0.57 84.92+0.26 37.90£0.79 55.67+096 77.87+£2.79 86.38+3.63 75.74+3.61
GRACE + BN 8225+1.00 72.78+1.00 85.10+0.24 39.56+0.47 54.77+0.74 76.07+295 72.63+4.75 75.90+2.79

GRACE + DCN (s=0.5) 79.79 £0.99 73.86+0.86 84.00+037 38.17+0.95 56.19+1.03 71.15+2.13 8325+250 71.64+459
GRACE +DCN (s=1.0)  75.19 £1.08 7491 £0.63 83.06+0.22 3828+1.12 57354098 7426+1.64 90.50+1.50 76.72+3.11
GRACE +DCN (s=5.0) 7440 £1.15 74464063 79.41+0.35 38.01+£0.79 58974133 7295+£344 8325+275 7344+344

In summary, these techniques offer limited effectiveness for GCL when used with polynomial GNNs.
We think the possible reason is that the learning of transformation weights needs a high-quality
supervision signal. Although these methods help prevent representation collapse, they do not carry
extra information. Therefore, GCL still fails to learn good transformation weights.

I HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we conduct the hyperparameter sensitivity analysis comparing PROPGCL and the
corresponding backbone GCL methods. We vary the range of hyperparameters and evaluate the
downstream performance. Here, we choose two hyperparameters in the model architecture, the
hidden dimension and the propagation step. We consider the DGI backbone with the Chebyshev basis.
As shown in Figure 3 and Figure 4, the performance of DGI with ChebNetlI is highly influenced by
disturbing hyperparameters. For example, on Cora, decreasing the hidden dimension from 256 to 128
causes nearly 40% accuracy degradation. In comparison, the performances of PROP-DGI show low
variance under different hyperparameter combinations, and a sharp decline is only observed when
using small neural networks.
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ments are conducted on DGI with ChebNetlI as the encoder.
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Figure 4: Hyperparameter sensitivity analysis on the hidden dimension and propagation step. Experi-
ments are conducted on PROP-DGI with the Chebyshev basis.

J DETAILS ABOUT POLYNOMIAL GNNSs

In this section, we introduce polynomial GNNs from the spectral perspective. Developed from graph
signal processing, graph convolution means transforming the graph signals to the Fourier domain and
then back to the vertex domain after suitable filtering, i.e., H = Ugg(A)U " X, where gy is the filter,
U is the matrix of eigenvectors of graph Laplacian L, A is the diagonal matrix of eigenvalues. The
problem arises when the parameters in gg(A) are entirely unconstrained, leading to a lack of spatial
localization in the convolution and a high time complexity due to eigenvalue decomposition.

These issues can be overcome with the use of a polynomial filter gg(A) = fz_ol 0, A*, where the
parameter @ € R¥ is a vector of polynomial coefficients. Therefore, the graph convolution can be
reformulated as H = ( £<:—01 0, L*)X. We call GNNs using the polynomial approximated filters as
polynomial GNNs. As one of the pioneer works, ChebNet (Defferrard et al., 2016) use Chebyshev

polynomial parametrization to localize filters as gg(A) = 22{:0 0T (A), where A = 2A/ Apax — I,
0 is the Chebyshev coefficients, and T;(A) is the Chebyshev polynomial of order k recursively
calculated by Ty (z) = 22Ty —1(x) — Tp—2(z) with Ty(z) = 1L and T3 (z) = =.

In section ??, we consider three popular polynomial GNN variants. GPRGNN (Chien et al., 2021)

uses the monomial basis functions evaluated at A, i.e., gg(A) = £<:—01 0, (I — L)* with 0 as
learnable coefficients. BernNet (He et al., 2021) uses the Bernstein polynomial approximation,
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ie, go(A) = Sr o O3 (X) (21 — L)XFL* with 6 as learnable coefficients. ChebNetll (He
et al., 2022) enhances the orlginal Chebyshev polynomial approximation by Chebyshev interpolation,

formulated as go(A) = KLH Zf:o Z]K:o 0Ty (2;) Tk (L), where z; = cos((j + 1/2)7/(K + 1))
are the Chebyshev nodes of Tk 1, and 8 are learnable coefficients.

K CHARACTERIZATION OF LEARNED PROPAGATION COEFFICIENTS

In section 5.2, we find after replacing the transformation weights with supervised ones, the model
trained in GCL performs as well as in a supervised manner. To show that given the transformation
weights, GCL can learn effective propagation coefficients. We compare the propagation coefficients
learned by SL, GCL, and the fix-transformation GCL. As shown in Figure 5, compared with CL, the
propagation coefficients learned by fix-transformation GCL are closer to those in SL. Notably, the
best propagation coefficients for one dataset may not be unique. Therefore, differing from the SL
coefficients does not necessarily indicate poor quality, and the results can not prove that GCL learns
bad propagation coefficients. However, it demonstrates that GCL can learn effective propagation
coefficients fitting the given transformation weights.
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Figure 5: Propagation coefficients of the supervised learning (SL), the contrastive learning (CL), and
the fix-transformation contrastive learning (fix-trans CL) introduced in Section 5.2. We show the first
three propagation coefficients for the space limit.

L CHARACTERIZATION OF LEARNED TRANSFORMATION WEIGHTS

In Section 5.1, we demonstrated the transformation weights learned by GCL and SL on the Cora
dataset. Here, we extend these findings by presenting comprehensive results across various datasets.
As depicted in Figure 6, the weights learned by GCL exhibit a smoother heatmap compared to those
learned by SL. Furthermore, as shown in Figure 7, the weights learned by SL display diverse, data-
dependent distributions, while those learned by CL consistently follow a Gaussian-like distribution.
These results provide further evidence that GCL struggles to learn effective transformation weights.

M EFFICIENCY ANALYSIS

PROPGCL is more efficient than the original baselines in time and memory consumption as shown
in Table 19 and Table 20. Remarkably, PRO-GRACE saves 84.29% training time per epoch for the
original GRACE with Chebyshev basis on Coauthor CS. For memory consumption, PROP-GRACE
consumes over 99% less memory in the encoder for different benchmarks than the original baseline.
The boost of time and memory efficiency of PROPGCL is attributed to the exclusion of transformation
weights computation in self-supervised training.
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Figure 6: Heatmap of the transformation weights learned by GCL and SL.
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Figure 7: Distribution of the transformation weights learned by GCL and SL.

N ANALYSIS ON BASIS POLYNOMIAL FUNCTIONS

Polynomial GNNSs variants mainly differ in the polynomial basis function choices, e.g., the monomial
basis in GPRGNN (Chien et al., 2021), the Bernstein basis in BernNet (He et al., 2021), and the
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Table 19: Comparison of training time per epoch in seconds between polynomial GNNSs and its corre-
sponding -PROP version in the GRACE framework. Improvement refers to the percentage increase
in speed of the -PROP version compared to the baseline, i.e., (tGrRACE — tPROP—GRACE)/LGRACE-
Experiments are all conducted on a single 24GB NVIDIA GeForce RTX 3090, except those denoted
with % on 48GB Nvidia A40 for out-of-memory.

Basis Method Cora  CiteSeer PubMed Photo  Computers CS Squirrel Chameleon  Actor
GRACE 0.1611  0.1939 02795  0.2872 0.4639 1.5111*  0.7004 0.2295 0.2872
Chebyshev
PROP-GRACE  0.1409  0.1478 0.2650  0.2400 0.3626 0.2374*  0.2581 0.1450 0.2073
Improvement 12.54%  23.79% 5.18% 16.44% 21.84% 84.29%  63.15% 36.82% 27.83%
. GRACE 0.1515  0.2215 02513  0.4878 0.9293 6.7666*  1.8997 0.4079 0.2619
Bernstein
PROP-GRACE  0.1226  0.1178 02334 0.3832 0.6968 0.6038*  0.5175 0.1653 0.1789
Improvement 19.03%  46.79% 7.10% 21.45% 25.02% 91.08%  72.76% 59.47% 31.69%
. GRACE 0.1114  0.1023 0.1217  0.1606 0.2340 1.2487% 03714 0.1524 0.1202
Monomial
PROP-GRACE 0.1024  0.1224 0.1221  0.1428 0.1928 0.1927*  0.1650 0.1151 0.1109
Improvement 8.06% 16.42% 0.31% 11.12% 17.61% 84.57%  55.56% 24.46% 7.74%

Table 20: Comparison of memory consumption of encoder in KBs between PROPGCL and the
original baseline. We consider GRACE with the Chebyshev basis function here. Improvement.
refers to the percentage decrease in the memory consumption of the -PROP version compared to the
baseline. i.e., (MGRACE — MPROP—GRACE)/MGRACE.-

Encoder Cora  CiteSeer PubMed Photo  Computers CS Squirrel Chameleon  Actor
GRACE 3894.04 8434.04 2028.04 2518.04  2562.04  2562.04 5206.04  5678.04  2892.04
PROP-GRACE  11.24 28.97 3.95 5.86 6.04 6.04 16.36 18.21 7.32

Improvement  99.71%  99.66%  99.81%  99.77% 99.76% 99.76%  99.69% 99.68% 99.75%

Chebyshev basis in ChebNetlI (He et al., 2022). We introduce detailed basis function formulations in
Appendix J.

In this section, we compare different basis polynomial functions used in PROPGCL. Here we consider
the Chebyshev basis, Bernstein basis, and monomial basis. As shown in Table 21 and Table 22,
the performance of PROPGCL is relatively robust in the choice of basis functions. For homophily
benchmarks, PROP-GRACE with Chebyshev basis and the PROP-DGI with monomial basis achieve
the best, surpassing the second slightly by 0.05% on average. For heterophily benchmarks, the best
PROP-DGI with the Chebyshev basis achieves 73.71% on average, and the Bernstein basis ranks
second. In general, the Chebyshev basis is preferred in PROPGCL.

Table 21: Test accuracy (%) of homophily node classification benchmarks, comparing different basis
functions in PROPGCL. Red indicates the best method, while underlined represents the second-best.

Method Basis Cora CiteSeer PubMed Photo Computers CS Mean
Chebyshev 8742+ 0.95 81.56+0.83 86.19+035 9332+031 88.12+023 9595+0.14 88.76

PROP-GRACE  Bernstein ~ 87.52 4+ 1.20 81.69 +0.86 85.90+0.25 9342+024 87.77+0.22 95.97+0.13 88.71
monomial  87.34+ 1.13  81.86 £ 0.79 86.41 £0.23 93.19+£0.26 86.85+034 9591+0.15 88.59

Chebyshev  86.19 +1.05 80.78 £0.65 85.14 £0.22 9278 £0.37 89.81 £0.20 9582 +0.18 88.42

PROP-DGI Bernstein ~ 86.49 £0.99 80.93+0.72 85804040 93.53+0.26 89.77+025 9546+0.16 88.66
monomial  86.86 + 1.02 81.69 +£0.86 86.56 = 0.33 93.72 +0.25 88.18 £0.34 9557 +0.14 88.76

O EXPERIMENTAL DETAILS

O.1 BENCHMARKS

Node classification benchmarks. 1) Citation Networks (Sen et al., 2008; Namata et al., 2012). Cora,
CiteSeer, and PubMed are three popular citation graph datasets. In these graphs, nodes represent
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Table 22: Test accuracy (%) of heterophily node classification benchmarks, comparing different basis
functions in PROPGCL. Red indicates the best method, while underlined represents the second-best.

Method Basis Squirrel Chameleon Actor Texas Wisconsin Cornell Mean
Chebyshev  55.09 +£0.81 71.73 £1.18 39.35+0.81 89.84+1.81 8850+3.63 86.72+246 71.87

PROP-GRACE  Bernstein ~ 48.51 +£0.85 70.02+0.88 39.33+£0.81 90.16+1.31 89.00+325 88.52+295 70.92
monomial  51.96 £ 0.69 69.28 £1.05 39.52+£0.89 8443 +2.62 84.13+450 8820+2.79 69.59

Chebyshev  60.53 + 0.66 74.11 = 0.96 39.53 +£0.84 91.80 £2.30 88.88+£2.50 87.38+2.62 73.71

PROP-DGI Bernstein ~ 53.08 £ 0.83 71.20 £0.81 3948 +0.77 9246+ 1.48 91.63 £3.00 87.38+2.63 72.54
monomial  56.65+0.77 72.12+£0.72 37.80£0.57 93.11+1.80 83.63 £5.88 81.97+295 70.88

papers and edges correspond to the citation relationship between two papers. Nodes are classified
according to academic topics. 2) Amazon Co-purchase Networks (Shchur et al., 2018). Photo and
Computers are collected by crawling Amazon websites. Goods are represented as nodes and the
co-purchase relationships are denoted as edges. Node features are the bag-of-words representation
of product reviews. Each node is labeled with the category of goods. 3) Wikipedia Networks
(Rozemberczki et al., 2021). Squirrel and Chameleon are collected from the English Wikipedia,
representing page-page networks on specific topics. Nodes represent articles and edges are mutual
links between them. 4) WebKB Networks (Pei et al., 2020). In Texas, Wisconsin, and Cornell datasets,
nodes represent web pages and edges represent hyperlinks between them. Node features are the bag-
of-words representation of web pages. 5) Actor Networks Pei et al. (2020). Each node corresponds to
an actor, and the edge between two nodes denotes co-occurrence on the same Wikipedia page. Node
features correspond to some keywords on the Wikipedia pages. Statistics of datasets are shown in
Table 23.

Table 23: Statistics of node classification benchmarks. 7 (G) denotes the edge homophily ratio
introduced in Zhu et al. (2020a).

Homo / Hetero Category Dataset #Nodes #Edges #Features # Classes H(G)

Cora 2,708 5,278 1,433 7 0.81

Citation CiteSeer 3,327 4,552 3,703 6 0.74

Homophily PubMed 19,717 44,338 500 3 0.80

Co-purchase Photo 7,650 119,081 745 8 0.83

Computers 13,752 245,861 767 10 0.78

Wikipedia Chameleon 2,277 36,101 2,325 6 0.23

Squirrel 5201 217,073 2,089 4 0.22

. Texas 183 279 1703 5 0.11
Heterophily

WebKB Wisconsin 251 466 1703 5 0.21

Cornell 183 277 1703 5 0.30

Film-actor Actor 7,600 30,019 932 5 0.22

Graph Classification benchmarks. 1) Molecules. MUTAG (Debnath et al., 1991) is a dataset of
nitroaromatic compounds and the goal is to predict their mutagenicity on Salmonella Typhimurium.
NCI1 (Wale et al., 2008) is a dataset of chemical molecules that are annotated based on their activity
against non-small cell lung cancer and ovarian cancer cell lines. 2) Bioinformatics. PROTEINS
(Borgwardt et al., 2005) is a dataset of proteins that are classified as enzymes or non-enzymes.
Nodes represent the amino acids and two nodes are connected by an edge if they are less than 6
Angstroms apart. DD (Dobson & Doig, 2003) consists of protein structures with nodes corresponding
to amino acids and edges indicating that two amino acids are within a certain number of angstroms. 3)
Social Networks. IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015) are movie
collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
IMDB. In each graph, nodes represent actors/actresses; corresponding nodes are connected if they
appear in the same movie. COLLAB (Yanardag & Vishwanathan, 2015) is derived from three public
collaboration datasets representing scientific collaborations between authors. For all benchmarks, we
use collections from TUDataset (Morris et al., 2020). Statistics of datasets are shown in Table 24.
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Table 24: Statistics of graph classification benchmarks. We report average numbers of nodes, edges,
and features across graphs in graph classification datasets.

Category Dataset #Graphs # Nodes # Edges # Features # Classes
MUTAG 188 17.9 39.6 7 2
Moleculars NCII 4110 2987  32.30 37 2
PROTEINS 1113 39.1 145.6 0 2
Proteins DD 1178 28432 715.66 89 2
IMDB-BINARY 1000 19.8 193.1 2
Social Networks ~ IMDB-MULTI 1500 13.0 131.9 3
COLLAB 5000 74.49 2457.78 3

0.2 BASELINES

We categorize baselines for the node classification task into 1) traditional graph embedding al-
gorithms DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016); 2) graph
autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016); 3) graph contrastive
methods GRACE (Zhu et al., 2020b), DGI (Velickovic et al., 2019), GCA (Zhu et al., 2021¢), MV-
GRL (Hassani & Khasahmadi, 2020), ProGCL (Xia et al., 2022); 4) graph non-contrastive methods
CCA-SSG (Zhang et al., 2021) and BGRL (Thakoor et al., 2022), 5) heterophily baselines compared
in Section 6.2, PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al., 2023), DSSL (Xiao et al., 2022).The design details are as follows.

1) Traditional graph embeddings.

* DeepWalk (Perozzi et al., 2014). DeepWalk leverages truncated random walks to capture
local network structures. The algorithm treats the random walks as sequences of nodes, akin
to sentences in language models. It learns latent representations by applying skip-gram to
maximize the co-occurrence probabilities of nodes appearing in these random walks.

* Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing breadth-first sampling (BFS) and depth-first sampling (DFS). This allows
Node2Vec to capture both homophily and structural equivalence, making the learned node
embeddings more expressive.

2) Graph autoencoders.

* GAE (Kipf & Welling, 2016). GAE involves an encoder-decoder architecture, where the
encoder is a GCN that transforms node features into latent embeddings by aggregating
information from neighboring nodes. The embeddings are then used by the decoder, which
typically applies a simple inner product operation to reconstruct the graph structure, such as
predicting edges between nodes.

* VGAE (Kipf & Welling, 2016). VGAE extends GAE by introducing a probabilistic frame-
work using a variational autoencoder (VAE) setup. It models latent variables with Gaussian
distributions, enabling the generation of node embeddings that capture uncertainty. This
design improves the model’s ability to capture complex structures in graphs, especially in
tasks like link prediction.

3) Graph contrastive methods.

The mode of GCL has three mainstreams: local-to-local, global-to-global, and global-to-local (Zhu
et al., 2021b). A classic example of local-to-local is GRACE (Zhu et al., 2020b), which generates
two graph views by augmentations and the same nodes in augmented views are positive while all
the other node pairs are negative. Global-to-global mode is often used with multiple graphs in
the graph classification task, with GraphCL (You et al., 2020) as an early but influential trial. For
the global-to-local perspective, positive pairs are taken as the global representation and nodes of
augmented views, and negative pairs are the global representation and nodes of corrupted views. DGI
(Velickovic et al., 2019) is a typical example.
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* GRACE (Zhu et al., 2020b). GRACE generates two graph views by corruption and learns
node representations by maximizing the agreement of node representations in these two
views. To provide diverse node contexts for the contrastive objective, GRACE proposes a
hybrid scheme for generating graph views on both structure and attribute levels.

* GCA (Zhu et al., 2021c). GCA proposes adaptive augmentation that incorporates various
priors for topological and semantic aspects of the graph. On the topology level, GCA designs
augmentation schemes based on node centrality measures, while on the node attribute level,
GCA corrupts node features by adding more noise to unimportant node features.

* DGI (Velickovic et al., 2019). DGI relies on maximizing mutual information between
patch representations and corresponding high-level summaries of graphs—both derived
using established graph convolutional network architectures. The learned patch representa-
tions summarize subgraphs centered around nodes of interest, and can thus be reused for
downstream node-wise learning tasks.

* MVGRL (Hassani & Khasahmadi, 2020). MVGRL introduces a self-supervised approach
for learning node and graph-level representations by contrasting structural views of graphs.
MVGRL shows that contrasting multi-scale encodings does not improve performance, and
the best performance is achieved by contrasting encodings from first-order neighbors and
graph diffusion.

* ProGCL (Xia et al., 2022). ProGCL observes limited benefits when adopting existing
hard negative mining techniques of other domains in graph contrastive learning. ProGCL
proposes an effective method to estimate the probability of a negative being true and devises
two schemes to boost the performance of GCL.

4) Non-contrastive methods.

* CCA-SSG (Zhang et al., 2021). CCA-SSG optimizes a novel feature-level objective
that aligns features across different graph augmentations. It uses decorrelation to prevent
degenerate solutions, allowing the model to learn invariant node representations. The model
avoids a mutual information estimator or negative samples, which simplifies training and
reduces computational complexity.

* BGRL (Thakoor et al., 2022). BGRL avoids the use of negative samples by predicting
different augmentations of the input graph. BGRL relies on a bootstrapping mechanism,
where one branch predicts the output of another branch that is not updated by gradient de-
scent. This method eliminates the complexity of contrastive learning and negative sampling,
making it more scalable.

5) Heterophily baselines.

* PolyGCL (Chen et al., 2024). PolyGCL integrates spectral polynomial filters into graph
contrastive learning, enabling it to handle both homophilic and heterophilic graphs. The
method generates different spectral views using polynomials and incorporates high-pass
information into the contrastive objective.

* HGRL (Chen et al., 2022). HGRL introduces self-supervised learning for heterophilic
graphs by capturing distant neighbors and preserving original node features. It achieves
this through carefully designed pretext tasks optimized via high-order mutual information,
avoiding reliance on labels.

* GraphACL (Xiao et al., 2024). GraphACL focuses on an asymmetric view of neighboring
nodes. The algorithm captures both one-hop local neighborhood information and two-hop
monophily similarity, crucial for modeling heterophilic structures.

* SP-GCL (Wang et al., 2023). SP-GCL introduces a single-pass graph contrastive learning
method without augmentations. It theoretically guarantees performance across both ho-
mophilic and heterophilic graphs by studying the concentration property of features obtained
through neighborhood propagation.

* DSSL (Xiao et al., 2022). DSSL decouples neighborhood semantics in self-supervised
learning for node representation. It introduces a latent variable model that decouples node
and link generation, making it flexible to different graph structures. The method utilizes
variational inference for scalable optimization, improving downstream performance without
relying on homophily assumptions.
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We categorize the baselines in the graph classification task into 1) graph kernel methods including
GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag & Vishwanathan,
2015), 2) traditional graph embedding methods including node2vec (Grover & Leskovec, 2016),
sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017), 3) contrastive learning
methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), MVGRL (Hassani &
Khasahmadi, 2020), JOAOvV2 (You et al., 2021), ADGCL (Suresh et al., 2021) as introduced in recent
works. The design details are as follows.

1) Graph kernel methods.

* Graphlet Kernel (GL) (Shervashidze et al., 2009). GL works by counting the number
of small subgraphs (known as graphlets) of a fixed size that appear in each graph. The
comparison of these counts across graphs allows the kernel to capture the local topological
structures of the graphs, making it useful for tasks such as graph classification.

¢ Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al., 2011). WL extends the
concept of graph kernels by applying the Weisfeiler-Lehman test of isomorphism on graphs.
It involves iteratively relabeling the nodes of the graphs based on the labels of their neighbors
and then using these relabelings to define a kernel, typically counting matching sub-trees.

* Deep Graph Kernel (DGK) (Yanardag & Vishwanathan, 2015). DGK combines deep
learning techniques with graph kernels. It first learns a low-dimensional representation
of the graphs through unsupervised learning (often using a form of graph embedding or
autoencoders), then applies traditional kernel methods to these representations.

2) Traditional graph embeddings.

* Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing BFS and DFS. This allows Node2Vec to capture both homophily and structural
equivalence, making the learned node embeddings more expressive.

* Sub2Vec (Adhikari et al., 2018). Inspired by the word2vec model, sub2vec learns vector
representations for subgraphs in a graph. It treats each subgraph as a "word" and the
entire graph as a "document” to learn embeddings that capture the structural and contextual
properties of subgraphs.

* Graph2Vec (Narayanan et al., 2017). Similar to sub2vec, graph2vec is designed to learn
embeddings for entire graphs. By treating each graph as a "document" and graph sub-
structures as "words," graph2vec employs a document embedding approach to learn a
fixed-size vector representation for each graph.

3) Graph contrastive methods.

* GraphCL (You et al., 2020). GraphCL designs four types of graph augmentations to
incorporate various priors and learns graph-level representations by maximizing the global
representations of two views for a graph.

* InfoGraph (Sun et al., 2020). InfoGraph maximizes the mutual information between the
graph-level representation and the representations of substructures of different scales (e.g.,
nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the
data that are shared across different scales of substructures.

* ADGCL (Suresh et al., 2021). ADGCL proposes a novel principle, adversarial GCL, which
enables GNNs to avoid capturing redundant information during training by optimizing
adversarial graph augmentation strategies used in GCL.

* JOAO (You et al., 2021). JOAO proposes a unified bi-level optimization framework to
automatically, adaptively, and dynamically select data augmentations when performing
GraphCL on specific graph data. JOAO is instantiated as min-max optimization.

0.3 SETTINGS

For the node classification task, following Zhu et al. (2020b); Velickovic et al. (2019); Hassani &
Khasahmadi (2020), we use linear evaluation protocol, where the model is trained in an unsupervised
manner and feeds the learned representation into a linear logistic regression classifier. In the evaluation
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procedure, we randomly split each dataset with a training ratio of 0.8 and a test ratio of 0.1, and
hyperparameters are fixed the same way for all the experiments. Each experiment is repeated ten
times with mean and standard derivation of accuracy score.

For the graph classification task, we use Adam SGD optimizer with the learning rate selected
in {1073,1074,107°} and the number of epochs in {20,100}. For PROP, we only search the
propagation step K in the range of [0, 1, 2, 3, 5, 10]. Following Sun et al. (2020); You et al. (2020),
we feed the generated graph embeddings into a linear Support Vector Machine (SVM) classifier,
and the parameters of the downstream classifier are independently tuned by cross-validation. The
C parameter is tuned in {1073,1072,--. | 10%,10%}. We report the mean 10-fold cross-validation
accuracy with standard deviation. All experiments are conducted on a single 24GB NVIDIA GeForce
RTX 3090.

0.4 HYPERPARAMETER

For all methods, we train the linear classifier for 2000 epochs with a learning rate of 0.01 and no
weight decay. For hyperparameters of the model architecture and the unsupervised training procedure,
we maintain consistency in the hyperparameter search space across methods as much as possible.

Specifically, for GRACE, we search the temperature 7 in [0.1, 0.5, 1.0], the projector hidden
dimension in [128, 256, 512], the learning rate in [0.01, 0.001], fix the patience as 50, and all
augmentation rates as 0.2. For DGI, we search the learning rate in [0.01, 0.001], the early-stopping
patience in [50, 100], and the hidden dimension in [128, 256, 512]. For CCA-SSG, we search the
training epochs in [20, 50, 100], A in [1e-3, 5e-4], the hidden dimension in [128, 256, 512], and fix
all augmentation ratios as 0.2. For GCA, we search the temperature 7 in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the drop scheme in [pr, degree, evc], and fix the early-stopping
patience as 50, the learning rate as 0.01, and all augmentation ratios as 0.2. For BGRL, we search the
predictor hidden dimension in [128, 256, 512], the learning rate in [1e-4, 1e-5], the weight decay in [0,
le-5], fix the learning rate warmup epochs as 1000, the momentum moving as 0.99. For DeepWalk,
we search the vector dimension in [128, 256, 512], the context window size in [5, 10], the walk
number in [10 20], and the walk length in [40, 80]. For Node2Vec, we search the vector dimension in
[128, 256, 512], the walk number in [10 20], the probability p in [0.5, 1.0], ¢ in [0.5, 1.0], and fix the
context window size as 10, and the walk length as 80. For MVGRL, we search the learning rate in
[0.01, 0.001], the early stopping patience in [50, 100], and the hidden dimension in [128, 256, 512].
For GAE and VGAE, we search the learning rate in [0.01, 0.001], the early stopping patience in [50,
100], and the hidden dimension in [128, 256, 512]. For the heterophily baselines in 6.2, we use the
optimal hyperparameter combinations provided in the original papers.

P PROOF OF THEOREMS

Q PROOF OF THEOREM 4.1
Here we present the proof of Theorem 4.1.

Proof. The gradient update of the Dirichlet energy objective (Equation 2) gives the following update
rule of node features H,

0L(H)

0H
where the « is the step size. When we choose the learning rate aw = 0.5, we recover the propagation
operation in Equation 1, i.e., Hyew, = AH.

H-«o

=H - 20LH = ((1 —2a)I + 2aA)H, (M

For convergence analysis, we have
LHT)) = (AKHOYTLAKH©)
—HO AKLAKHO® ®)
_ H(O)T(AQK _ A2K+1)H(O)_

As is known, the range of eigenvalue of L is [0, 2], therefore, the eigenvalues of A belong to [—1,1].
The eigenvalue of L equals 2 if and only if the graph is bipartite. So for non-bipartite graphs, which
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is often the case for complex graphs in real world, we have the eigenvalues of A belong to (—1,1].
Then when K goes towards infinity, we have lim g, oo L(H)) = 0, which ends the proof.  [J

R PROOF OF THEOREM 4.2
Here we present the proof of Theorem 4.2.

Proof. A key step is to notice that the alignment objective Equation 3 is closely relevant to the
Dirichlet energy when f(z;) = H;,V i € [N]:

Lajign(f) = — ZAij [H:Hj]/(z Ajj) = HTAH/(Z Aij) = HT(I—L)H/(Z Aij). 9

It is easy to see that graph convolution converges to identical vectors, known as oversmoothing.
Therefore, we have V 4, j, (Hy); = (H);. Therefore,

i Laign(fi) = H;AHoo/(Z Aij) = (Z Az‘j)/(z Aij)=-1,

which concludes the proof. O
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