
A Experiments

As proof of concept, we demonstrate our theoretical findings empirically in a simulated logistic
regression setting. In the first set of experiments, we adopt the model from Section 4.2 where agents
are constrained in how they modify their features. In the second set of experiments we adopt a model
more akin to that in [20] where the negatively classified agents are penalized from deviating from
their true features. For simplicity, we refer to the first setting as the “constrained agent” case, and the
second as the “costly deviations” case. The details of all numerical results are deferred to the end of
this section.

A.1 Agents with constraints

To begin, we verify our theoretical findings from Section 4.2. First we let the decision-maker lead and
the agents follow, and then we switch the roles. In both cases the slower player runs the derivative-free
update (3), and the faster player runs standard (projected) gradient descent. We generate 100 samples,
fix α = 2, σ = 1, d = 1, and vary B and p. We run the interaction for a total of T = 100000 epochs,
with each epoch of length τ = 200. In Figure 2 and Figure 3 we plot the decision-maker’s and the
agents’ average running risk against the number of epochs, for the two different orders of play, for
B = 2 and B = 1, respectively. For p ∈ {0.1, 0.5} and B = 2, we observe a clear gap between
leading and following, the agents leading being the preferred order for both players. For p = 0.9 or
B = 1, the two equilibria coincide asymptotically, however for any finite number of epochs both
players still prefer the agents to lead.
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Figure 2: Decision-maker’s and agents’ average running risk for varying p and B = 2.

A.2 Agents with costly deviations

In this section, we verify our findings on a model where the decision-maker’s problem is the same
logistic regression problem posed in Section 4.2, but the strategic agents are penalized for deviating
from their true features. In particular, the agents’ risk R takes the form:

R(µ, θ) =
λ

2
‖µ‖2 − µT θ.

We remark that though this setup is conceptually very similar to that in Section 4.2 (increasing λ’s
can be seen as shrinking the constraint set), we use it to highlight that the experimental results are not
caused by interactions with the constraints. Further, this setup is more readily comparable to previous
models studied in, e.g., [20].

In our experiments we once again let the decision-maker lead and the agents follow, and then we
switch the roles. In both cases the slower player runs the derivative-free update (3), and the faster
player runs standard (projected) gradient descent. We generate 100 samples in R2, fix α = 1.5[1, 1]T
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Figure 3: Decision-maker’s and agents’ average running risk for varying p and B = 1.

and σ = 1, and vary λ and p. We run the interaction for a total of T = 50000 epochs, with each
epoch of length τ = 100. In Figure 4 and Figure 5 we plot the decision-maker’s and the agents’
average running risk against the number of epochs, for the two different orders of play and for λ = 1
and λ = 20 respectively. To be able to analyze the long-run behavior, we also explicitly compute
the Stackelberg risks of the decision-maker and strategic agents and find the global minima which
correspond to the decision-maker’s and agents’ equilibria respectively.

Figure 4: Decision-maker’s and agents’ average running risk for varying p and λ = 1.

In Figure 4 we empirically observe that there is gap between the decision-maker’s risk at their
Stackelberg equilibrium and at the agents’, and that the decision-maker consistently achieves a lower
risk when the agents lead. Further, we note that agents consistently prefer leading, meaning that
both the decision-maker and agents prefer if the order-of-play is flipped. We also observe that the
proposed dynamics converge to the desired equilibria, validating our theoretical results.

Remark A.1. Our empirical results suggest that the agents’ equilibrium is a strictly better equilib-
rium in terms of the social cost (defined classically in game theory as the sum of the agents’ and
decision-maker’s risks). Such equilibria were not captured by prior models and only emerge when
considering learning dynamics of both players.
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Figure 5: Decision-maker’s and agents’ average running risk for varying p and λ = 20.

In Figure 5 we again observe that the proposed dynamics converge to the Stackelberg equilibria. By
comparing with Figure 4 we also observe that as λ is increased and p increases, the gap between
the two equilibria shrinks and disappears entirely when p = 0.9 and λ = 20. This is similar to
the behavior seen in the constrained agent problem where shrinking the constraint set can give
rise to Nash equilibria where neither agent strictly prefers leading or following. This highlights
the inter-dependence between the preferred order-of-play and the problem structure, meaning that
understanding when leading or following is strictly preferred by players is a non-trivial learning
problem.

A.3 Further experimental details

To generate Figure 1, we first find the decision-maker’s equilibrium by optimizing L
(

θ
‖θ‖2B, θ

)
,

as given in the proof of Proposition 4.2, with 1000 steps of gradient descent. We approximate the
relevant expectation via a sample average over 1000 samples x0 ∼ N(α, σ2). Once we have θSE, we
compute µBR(θSE) = θSE

‖θSE‖2B. To find the agents’ equilibrium, we perform grid search over 1000

equally spaced points in the interval [−B,B]. For each point in the grid, we compute the relevant
best response θBR(µ) by running 1000 steps of gradient descent, again estimating the expectation
over 1000 samples. We take as the agents’ equilibrium the point µ in the grid that minimizes the
estimated value of R(µ, θBR(µ)).

To generate Figures 2 and 3, in all experiments we set the step size of the faster player, that is,
the one running gradient descent, to 0.1. When the decision-maker leads, we set their step size to
be ηt = 0.5t−3/4. When the agents lead, we set their step size to be ηt = 0.05t−3/4. We let the
perturbation parameter δ decrease with time, and set δt = t−1/4.

To generate Figure 4, when the decision-maker led, we set their step size to be ηt = 0.1t−3/4. When
the agents led, we set their step size to be ηt = 0.01t−3/4. We let the perturbation parameter δ
decrease with time, and set δt = t−1/4. When the decision-maker and agents followed, their stepsizes
for gradient descent were 0.1 and 0.01 respectively. To generate Figure 5 all parameters were the
kept the same except when the decision-maker led, we set their step size to be ηt = t−3/4.

To compute the decision-maker’s and agents’ risk at the decision-maker’s equilibrium, we explicitly
computed the decision-maker’s Stackelberg risk by using the fact that the best response of the agents
is µBR(θ) = 1

λθ. We then minimized this risk directly using gradient descent with a fixed step-size
of 0.1.

To compute the decision-maker’s and agents’ risk at the agents’ equilibrium, we computed their
Stackelberg risk over a grid by fixing µ and running gradient descent with stepsize 0.1 on the decision-
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maker’s problem until convergence for each value of µ. We then found the minimum of the agents’
Stackelberg risk by searching over the grid.

B Proofs

Lemma B.1. Suppose thatM is compact. If the decision-maker is proactive and the strategic agents’
actions satisfy condition (A1), then

lim
τ→∞

1

τ

τ∑
j=1

E‖µj,τ − µBR(θt)‖2 = 0.

Similarly, if the decision-maker is reactive and

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

ESRR(µt)− SRR(µSE) = 0,

then

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

E‖µt − µSE‖2 = 0.

Proof. We will prove the second statement; the proof of the first statement is completely analogous.

By the uniqueness of µSE and compactness of M, notice that for all µ and ε > 0 such that
‖µ − µSE‖2 ≥ ε, we have SRR(µ) − SRR(µSE) ≥ δ(ε) > 0, for some δ(ε). We will use this
observation to argue that, if 1

T

∑T
t=1 E‖µt − µSE‖2 6→ 0, then that must imply positive regret in the

limit, which concludes the proof by contradiction.

Denote distt = limτ→∞ E‖µt − µSE‖2, and suppose that

lim
T→∞

1

T

T∑
t=1

distt 6= 0.

Then, that implies that for every ε > 0, there is a sequence {ak}∞k=1 such that 1
ak

∑ak
t=1 distt > ε for

all k. Fix 0 < ε′ < ε, and denote pk = 1
ak
|{t ≤ ak : distt > ε′}|. Then, we have

ε <
1

ak

ak∑
t=1

distt ≤ pkDM + ε′,

where DM = maxµ,µ′∈M ‖µ − µ′‖2. Therefore, pk ≥ ε−ε′
DM

> 0. This shows that in the sum
1
ak

∑ak
t=1 distt there is a constant fraction of terms outside a ball of radius ε′ around µSE, in expecta-

tion. Fix one such term distt∗ . Then, we know

ε′ ≤ distt∗ ≤ lim
τ→∞

P{‖µt∗ − µSE‖2 ≥ ε′/2}DM + ε′/2.

Therefore, we can conclude that limτ→∞ P{‖µt∗ − µSE‖2 ≥ ε′/2} ≥ ε′

2DM
> 0. On this event, we

also know that limτ→∞ SRR(µt∗) − SRR(µSE) > δ(ε′/2). Putting everything together, we have
shown that

1

ak

ak∑
t=1

lim
τ→∞

ESRR(µt)− SRR(µSE) ≥ ∆ > 0,

and this holds for all terms in the sequence {ak}. This finally implies that
1
T

∑T
t=1 ESRR(µt) − SRR(µSE) 6→ 0. Since this contradicts the hypothesis, we conclude

that limT→∞ limτ→∞
1
T

∑T
t=1 E‖µt − µSE‖2 = 0.
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B.1 Proof of Theorem 3.1

We let ŜRL(θ) = Ev∼Unif(B)[SRL(θ + δv)], where B denotes the unit ball. Then, we know that

∇ŜRL(θ) =
d

δ
Eu∼S [SRL(θ + δu)u],

where S denotes the unit sphere. Denote by θ̂SE the optimum of ŜRL, and notice that ŜRL is convex
since SRL is convex.

For any fixed t, we have

‖φt+1 − θ̂SE‖22 ≤ ‖φt − ηt
d

δ
L(µ̄t, φt + δut)ut − θ̂SE‖22

≤ ‖φt − θ̂SE‖22 − 2ηt
d

δ
L(µ̄t, φt + δut)u

>
t (φt − θ̂SE) + η2

t

d2

δ2
‖L(µ̄t, φt + δut)ut‖22

≤ ‖φt − θ̂SE‖22 − 2ηt
d

δ
L(µ̄t, φt + δut)u

>
t (φt − θ̂SE) + η2

t

d2B2

δ2
. (6)

Focusing on the middle term, we have

L(µ̄t, φt + δut)u
>
t (φt − θ̂SE) = L(µ̄t, φt + δut)u

>
t (φt − θ̂SE)± L(µBR(θt), φt + δut)u

>
t (φt − θ̂SE)

≥ L(µBR(φt + δut), φt + δut)u
>
t (φt − θ̂SE)− βµ‖µ̄t − µBR(θt)‖2DΘ.

Denote εt
def
= E‖µ̄t − µBR(θt)‖2. Taking expectations of both sides, we get

EL(µ̄t, φt + δut)u
>
t (φt − θ̂SE) ≥ L(µBR(φt + δut), φt + δut)u

>
t (φt − θ̂SE)− βµDΘεt.

Going back to equation (6) and taking expectations of both sides, we get

E‖φt+1 − θ̂SE‖22 ≤ E‖φt − θ̂SE‖22 − 2ηt(E[∇ŜRL(φt)
>(φt − θ̂SE)]− βµDΘεt) + η2

t

d2B2

δ2

≤ E‖φt − θ̂SE‖22 − 2ηt(EŜRL(φt)− ŜRL(θ̂SE)− βµDΘεt) + η2
t

d2B2

δ2
,

where in the last line we use the fact that ŜRL is convex. After rearranging, we have

EŜRL(φt)− ŜRL(θ̂SE) ≤ 1

2ηt

(
E‖φt − θ̂SE‖22 − E‖φt+1 − θ̂SE‖22

)
+
ηtd

2B2

2δ2
+ βµDΘεt.

Summing up over t ∈ {1, . . . , T}, we get

T∑
t=1

(E[ŜRL(φt)]− ŜRL(θ̂SE)) ≤ D2
Θ

2η1
+

1

2

T−1∑
t=1

(
1

ηt+1
− 1

ηt

)
D2

Θ +
d2B2

2δ2

T∑
t=1

ηt + βµDΘ

T∑
t=1

εt

≤ D2
Θ

2ηT
+
d2B2

2δ2

T∑
t=1

ηt + βµDΘ

T∑
t=1

εt,

where we use the fact that ηt is non-increasing.

We use the fact that SRL is Lipschitz to bound the difference between SRL and ŜRL:∣∣∣E[ŜRL(φt)− SRL(θt)]
∣∣∣ ≤ 2βδ,

and similarly
min
θ∈Θ

(ŜRL(θ)− SRL(θ) + SRL(θ)) ≥ min
θ

SRL(θ)− βδ.

Putting everything together, we conclude

T∑
t=1

(E[SRL(θt)]− SRL(θSE)) ≤ D2
Θ

2ηT
+
d2B2

2δ2

T∑
t=1

ηt + 3βδT + βµDΘ

T∑
t=1

εt.
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Setting ηt = η0d
− 1

2 t−
3
4 and δ = δ0d

1
2T−1/4 yields the final bound:

T∑
t=1

(E[SRL(θt)]− SRL(θSE)) ≤
(
D2

Θ

2η0
+

2B2

δ2
0

)√
dT 3/4 + βµDΘ

T∑
t=1

εt.

For the second statement, observe that

‖µ̄t − µBR(θt)‖2 ≤
1

τ

τ∑
j=1

‖µt,j − µBR(θ)‖2,

and the right-hand side tends to 0 in expectation as τ →∞ by Lemma B.1.

B.2 Proof of Theorem 3.4

By standard convergence guarantees of gradient descent on PL objectives [34], we have

‖µt − µBR(θt)‖2 ≤
√
κ(1− γηµ)τ/2‖µt−1 − µBR(θt)‖2,

where κ def
=

βRµ
γ . Denote εt

def
= ‖µt − µBR(θt)‖2. We will show that εt decays fast enough due to the

decay in ηt. In particular, we have

εt = ‖µt − µBR(θt)‖2 ≤
√
κ(1− γηµ)τ/2‖µt−1 − µBR(θt)‖2

=
√
κ(1− γηµ)τ/2‖µt−1 − µBR(θt−1) + µBR(θt−1)− µBR(θt)‖2

≤
√
κ(1− γηµ)τ/2 (‖µt−1 − µBR(θt−1)‖2 + ‖µBR(θt−1)− µBR(θt)‖2)

≤
√
κ(1− γηµ)τ/2‖µt−1 − µBR(θt−1)‖2

+
√
κ(1− γηµ)τ/2

ηtdβBR

δ
‖L(µt, φt + δut)ut‖2

≤
√
κ(1− γηµ)τ/2εt−1 +

√
κ(1− γηµ)τ/2

ηtdβBR

δ
B.

Now suppose τ is chosen such that τ > log(κ)

log
(

1
1−γηµ

) . Then we have thatα(τ)
def
=
√
κ(1−γηµ)τ/2 < 1.

(Note that as τ increases, α(τ) can be driven to zero.) Altogether, we find that:

εt ≤ α(τ)εt−1 + α(τ)ηt
dβBRB

δ
.

Unrolling the recursion, we find that

εt ≤ α(τ)tε0 +
dβBRB

δ

t∑
i=1

α(τ)t+1−iηi.

Summing up over t ∈ {1, . . . , T}, we get
T∑
t=1

εt ≤ ε0
T∑
t=1

α(τ)t +
dβBRB

δ

T∑
t=1

t∑
i=1

α(τ)t+1−iηi

≤ ε0
1− α(τ)

+
dβBRB

δ

T∑
t=1

T∑
i=1

α(τ)t+1−iηi1{i ≤ t}

=
ε0

1− α(τ)
+
dβBRB

δ

T∑
i=1

ηi

T∑
t=1

α(τ)t+1−i1{i ≤ t}

=
ε0

1− α(τ)
+
dβBRB

δ

T∑
i=1

ηi

T∑
t=i

α(τ)t+1−i

≤ ε0
1− α(τ)

+
dβBRB

δ(1− α(τ))

T∑
t=1

ηt.
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For ηt = η0d
−1/2t−3/4 and δ = δ0d

1/2T−1/4, we have
T∑
t=1

εt ≤
1

1− α(τ)

(
ε0 +

4βBRBη0

√
T

δ0

)
.

B.3 Proof of Theorem 3.6

Define µ∗t = Dt(µ1, θBR(µ1), . . . , µ∗t−1, θBR(µt−1), ξt). First we will prove that

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

ESRR(µt)− SRR(µSE) = 0. (7)

To show this, it suffices to prove that for all t, µt →p µ
∗
t as τ →∞. The sufficiency of this condition

follows because

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

ESRR(µt)− SRR(µSE)

= lim
T→∞

lim
τ→∞

1

T

T∑
t=1

[ESRR(µt)− ESRR(µ∗t ) + ESRR(µ∗t )]− SRR(µSE)

= lim
T→∞

lim
τ→∞

1

T

T∑
t=1

(ESRR(µt)− ESRR(µ∗t )) ,

where the last step follows by the assumption that the agents play a rational strategy. Therefore,
if µt →p µ

∗
t , continuity of SRR(µ) implies ESRR(µt) − ESRR(µ∗t ) → 0 and we get the desired

conclusion.

We prove that µt →p µ
∗
t by induction. Notice that µ1 ≡ µ∗1 by definition.

Suppose that µj →p µ
∗
j for all j < t. Denote by θj,τ the possibly randomized algorithm that maps

µj to θj . Then, for any µ ∈ M, we know that ‖θj,τ (µ)− θBR(µ)‖2 →p 0 by assumption. This in
turn implies that for all j < t,

‖θj,τ (µj)− θBR(µ∗j )‖2 ≤ ‖θj,τ (µj)− θBR(µj)‖2 + ‖θBR(µj)− θBR(µ∗j )‖2 →p 0,

where the second term tends to 0 by the continuous mapping theorem. Finally, we can apply the
continuity of Dt to conclude that µt →p µ

∗
t , as desired.

Let β denote the Lipschitz constant of SRL. Finally, we we can apply this Lipschitz condition to
conclude:

1

T

T∑
t=1

EL(µt, θt,τ )− L(µSE, θBR(µSE))

=
1

T

T∑
t=1

[EL(µt, θt,τ )± EL(µt, θBR(µt)))]− L(µSE, θBR(µSE))

=
1

T

T∑
t=1

(EL(µt, θBR(µt))− L(µSE, θBR(µSE)) + E[L(µt, θt,τ )− L(µt, θBR(µt)])

≤ β

T

T∑
t=1

E‖µt − µSE‖2 +
1

T

T∑
t=1

E[L(µt, θt,τ )− L(µt, θBR(µt)].

By Lemma B.1, the guarantee (7) implies that the first term vanishes. The second term vanishes by
continuity. Therefore, taking the limit over T, τ , we obtain

lim
T→∞

lim
τ→∞

1

T

T∑
t=1

EL(µt, θt)− L(µSE, θBR(µSE)) = 0,

as desired.
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B.4 Proof of Propositon 4.1

First we assume the decision-maker leads. When θ is the deployed model, the best response by the
agents is to simply move by distance B in the direction of θ. Thus, µBR(θ) is given by:

µBR(θ) = arg min
µ

E(x,y)∼P(µ) − x>θ =
θ

‖θ‖2
B.

This implies the following expected loss for the decision-maker:

L(µBR(θ), θ) = E
z∼P

(
θ
‖θ‖2

B
)`(z; θ) =

1

2
E(x0,y)∼P(0)

(
y − x>0 θ − ‖θ‖2B

)2
=
σ2

2
+

1

2
‖β − θ‖22 +

B2

2
‖θ‖22.

This objective is convex and thus by finding a stationary point we observe that it is minimized at
θSE = β

1+B2 . By plugging this choice back into the previous equation, we observe that the minimal
Stackelberg risk of the decision-maker is equal to

SRL(θSE) = L(µBR(θSE), θSE) =
σ2

2
+
‖β‖22B2

2(1 +B2)
. (8)

Moreover, the agents’ loss at θSE is equal to:

R(µBR(θSE), θSE) = −‖θSE‖2B = −‖β‖2B
1 +B2

.

Now we reverse the order of play and assume that the agents lead. If the agents move by µ, i.e. they
follow the law P(µ), then the decision-maker incurs loss:

L(µ, θ) = E(x,y)∼P(µ)
1

2

(
y − x>0 θ − µ>θ

)2
=
σ2

2
+

1

2
‖β − θ‖22 +

1

2
(µ>θ)2.

By computing a stationary point, we find that the best response of the decision-maker is:

θBR(µ) = (I + µµ>)−1β =

(
I − µµ>

1 + ‖µ‖22

)
β.

The Stackelberg risk of the strategic agent is then

SRR(µ) = R(µ, θBR(µ)) = −µ>θBR(µ) = −µ>
(
I − µµ>

1 + ‖µ‖22

)
β

= −µ>β +
‖µ‖22µ>β
1 + ‖µ‖22

= − µ>β

1 + ‖µ‖22
.

Among all µ such that ‖µ‖2 = C, SRR(µ) is minimized when µ points in the β direction: µ = C β
‖β‖2 .

With this reparameterization, we can equivalently write minµ SRR(µ) as

min
C>0
‖β‖2

−C
1 + C2

.

This function is decreasing for C ∈ (0, 1], and increasing for C > 1. Therefore, µSE =

min(1, B) β
‖β‖2 , and

SRR(µSE) = −‖β‖2
min(1, B)

1 + min(1, B)2
.

Finally, we evaluate the decision-maker’s loss at µSE:

L(µSE, θBR(µSE)) =
σ2

2
+

1

2

(β>µSE)2‖µSE‖22
(1 + ‖µSE‖22)2

+
1

2

(
‖β‖2

min(1, B)

1 + min(1, B)2

)2

=
σ2

2
+

1

2

‖β‖22 min(1, B)4

(1 + min(1, B)2)2
+

1

2

(
‖β‖2

min(1, B)

1 + min(1, B)2

)2

=
σ2

2
+
‖β‖22 min(1, B)2

2(1 + min(1, B)2)
.
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B.5 Proof of Proposition 4.2

First we evaluate L(µ, θ):

L (µ, θ) = E(x,y)∼P(µ)

[
−yx>θ + log(1 + ex

>θ)
]

= E(x,y)∼P(µ)

[
log(e−yx

>θ + e(1−y)x>θ)
]

= E(x0,y)∼P(0)[1{y = 1} log(1 + e−x
>
0 θ) + 1{y = 0} log(1 + ex

>
0 θ+µ

>θ)].

We prove that the agents are never worse off if they lead. We will provide a sufficient condition;
namely, we will show that

SRR

(
θSE

‖θSE‖2
B

)
= R(µBR(θSE), θSE).

This immediately implies that SRR(µSE) ≤ R(µBR(θSE), θSE).

To see this, first observe that
R(µBR(θSE), θSE) = B‖θSE‖2,

where θSE = arg minθ L
(

θ
‖θ‖2B, θ

)
. Here we use the fact that the best response of the agents is to

simply move by distance B in the direction of θ:

µBR(θ) = arg max
µ∈M

θ>µ =
θ

‖θ‖2
B.

By the fact that θSE is a Stackelberg equilibrium, we know that∇θSRL(θSE) = 0, where SRL(θ) =
L( θ
‖θ‖2B, θ):

∇θSRL(θ) = E(x0,y)∼P(0)

1{y = 1}e
−x>0 θ(−x0)

1 + e−x
>
0 θ

+ 1{y = 0}
ex
>
0 θ+‖θ‖2B(x0 + θ

‖θ‖2B)

1 + ex
>
0 θ+‖θ‖2B

 .
In contrast, consider∇θL(µ, θ):

∇θL(µ, θ) = E(x0,y)∼P(0)

[
1{y = 1}e

−x>0 θ(−x0)

1 + e−x
>
0 θ

+ 1{y = 0}e
x>0 θ+µ

>θ(x0 + µ)

1 + ex
>
0 θ+µ

>θ

]
.

Notice that ∇θSRL(θSE) = 0 implies that ∇θL( θSE
‖θSE‖2B, θSE) = 0. Since L(µ, θ) is convex in θ,

this condition implies that θSE is a best response to θSE
‖θSE‖2B, hence

SRR

(
θSE

‖θSE‖2
B

)
= R(µBR(θSE), θSE).

Now we analyze the decision-maker’s preference. Notice that L(µ, θ) is increasing in µ>θ; that is,
for any θ it holds that maxµ L(µ, θ) = L(µBR(θ), θ). Using this, we observe that for every θ we
have

L(µSE, θBR(µSE)) ≤ L(µSE, θ) ≤ max
µ∈M

L(µ, θ) = SRL(θ).

Since this also holds for θ = θSE, we conclude that following is never worse than leading for the
decision-maker.

C Local guarantees when SRL is nonconvex

We provide local guarantees in the limit when the decision-maker’s Stackelberg risk is possibly
nonconvex. Specifically, we show that the update rule (3) converges to a stationary point of a smooth
version of the decision-maker’s Stackelberg risk, provided that the strategic agents achieve iterate
convergence. Moreover, under mild regularity conditions, this stationary point is a local minimum
(see, e.g., Theorem 9.1 in [7]).
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Proposition C.1. Assume that the agents achieve iterate convergence, ‖µt − µBR(θt)‖ → 0 almost
surely as t→∞. Further, assume that the decision-maker’s Stackelberg risk is Lipschitz and smooth,
and that L(µ, θ) is Lipschitz in its first argument and bounded for all µ and θ. If the decision-maker
runs update (3) with ηt satisfying

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞, and δ = ε

4β , then as t → ∞,

φt → φ∗ such that∇ŜRL(φ∗) = 0, where ŜRL(φ) = Ev∼Unif(B) [SRL(φ+ δv)].

Proof. We make use of results from the literature on stochastic approximations (see, e.g., [10]).

As in the proof of Theorem 3.1, let ŜRL(φ) = Ev∼Unif(B) [SRL(φ+ δv)], and recall θt = φt + δut,
ut ∼ Unif(Sd−1).

We begin by writing the update for φt as:

φt+1 = φt − ηt

∇φŜRL(φt)−

∇φŜRL(φt)−
d

δ
L(µBR(θt), θt)ut︸ ︷︷ ︸

=I




− ηt
d

δ

L(µt, θt)ut − L(µBR(θt), θt)ut︸ ︷︷ ︸
=II


Since

∇φŜRL(φ) = Eu∼Unif(Sd−1)

[
d

δ
SRL(φ+ δu)u

]
,

we know Eu[I] = 0. Since L is bounded and SRL is smooth, we know ‖I‖2 is bounded. Thus, I is a
zero-mean random variable with finite variance.

For term II, we use the assumed Lipshchitzness of L in the first argument to find that:

‖II‖2 ≤ βµ‖µt − µBR(θt)‖2‖ut‖2
= βµ‖µt − µBR(θt)‖2,

where we use the fact that ‖u‖2 = 1. By assumption, ‖µt−µBR(θt)‖2 → 0 almost surely as t→∞.
Thus, we can write the update rule as:

φt+1 = φt − ηt
(
∇φŜRL(φt) + ξt +Mt

)
,

where ξt = o(1) and Mt is a zero-mean random variable with finite variance. Since the assumed
choice of ηt satisfies

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞ we can invoke Chapter 2, Corollary 3 in [10]

to find that φt → φ∗ ∈ {φ : ∇φŜRL(φ) = 0}.
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