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1 PRELIMINARIES
Most diffusion models are based on the framework of DDPMs [1],
which consist of a forward diffusion process and a reverse genera-
tion process, both of which are modelled as Markov chains. During
forward diffusion, Gaussian noise is slowly added to the original
data 𝑥0 according to a fixed variance schedule {𝛽1, 𝛽2 . . . 𝛽𝑇 } in 𝑇
steps. Finally, a sequence of noisy samples {𝑥0, ..., 𝑥𝑡 , ..., 𝑥𝑇 } is pro-
duced, where 𝑥𝑇 ∼ 𝑁 (0, I). Each diffusion step is formulated as:

𝑞 (𝑥𝑡 | 𝑥𝑡−1) := 𝑁
(
𝑥𝑡 ;

√
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I

)
(1)

By setting the 𝛼𝑡 = 1 − 𝛽𝑡 and the 𝛼𝑡 = Π𝑇
𝑡=1𝛼𝑖 , 𝑥𝑇 can be

obtained at any moment 𝑡 by the following equation:

𝑞 (𝑥𝑡 | 𝑥0) := 𝑁
(
𝑥𝑡 ;

√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 ) I

)
(2)

During the reverse generation process 𝑝 (𝑥𝑡−1 | 𝑥𝑡 ), the noise is
gradually removed and the original data is reconstructed. To solve
the problem, the DDPM learns the parametric Gaussian transform
𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ). Essentially, it predicts the mean of the Gaussian dis-
tribution 𝜇𝜃 (𝑥𝑡 , 𝑡). The reverse process is expressed as follows:

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) = 𝑁
(
𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡) , 𝜎2𝑡 I

)
(3)

During training, the denoising neural network 𝑓𝜃 (𝑥𝑡 , 𝑡) is trained
to minimize the training objective via L2 loss, that is, predicting 𝑥0
from the 𝑥𝑡 [1] :

𝐿 = ∥ 𝑓𝜃 (𝑥𝑡 , 𝑡) − 𝑥0∥2 (4)
In the inference phase, data samples 𝑥0 are reconstructed from the
noise 𝑥𝑇 in an iterative manner using the model 𝑓𝜃 and updating
rules [1].

2 ADDITIONAL EXPERIMENTAL RESULTS
2.1 The universality of interpretable latent

space
The interpretable latent space proposed is derived from an auto-
encoder pre-trained on the OSdataset. However, SAR images from
different remote sensors exhibit distinct characteristics. To demon-
strate the matching generality of this interpretable latent space,
as depicted in Figure 1, inference was conducted on images from
both the OSdataset and the SEN1-2 datasets. The translated im-
ages (Template 𝑆), translated features (Template𝑂 ′), and similarity
∗Corresponding author.

maps were visualized. For samples from the OSdataset, the trans-
lated template images and features closely resemble the actual tem-
plate images (Template 𝑆) and features (Template 𝑆 ′), yielding cor-
rect matching results. Conversely, on the diverse SEN1-2 datasets,
the translated SAR templates exhibit reduced overall brightness
compared to the ground truth SAR templates, owing to the higher
overall brightness in the OSdataset. Nevertheless, this disparity
does not affect the matching. Moreover, the SAR images in the
SEN1-2 datasets display more noise than those in the OSdataset.
Despite this, the translated images and features exhibit less noise
while preserving the structural connectivity features. Furthermore,
the resulting similarity maps continue to exhibit smooth single
peaks, precisely locatedwithin the correctmatching regions.These
observations collectively underscore the generality of the auto-encoder
trained on the OSdataset, representing a one-time investment.

2.2 Visualisation of the impact of the ACB
Theproposed Attention Calibration Block (ACB) operates on 2D at-
tention maps following cross-attention. To assess the smoothness
and calibration efficacy of our proposed ACB on attention maps, as
depicted in Figure 2, we visualize the ground truth, pre-correction,
and post-correction attention maps of four samples during the in-
ference process on two datasets. Specifically, we selected an urban
built-up area and a rural cropland area for each dataset, with the
rural farmland area posing greater matching difficulty due to its
numerous highly similar areas. Samples (a) and (c) are from the
OSdataset, while samples (b) and (d) are from SEN1-2. The sam-
pling steps were set to 5, and at the final sampling iteration, we
visualize the attention map before and after ACB with a feature
stride of 8.

Observing the attention maps, it is evident that they exhibit di-
agonal sparsity. For samples (a) and (b) from the urban built-up
area, cross-attention accurately perceives rich texture details; how-
ever, the attention maps display numerous points with inconsis-
tent values and a few with incorrect locations. Following ACB, the
corrected attention maps no longer contain tokens with incorrect
locations and are smoothed. It is noteworthy that while ACB effec-
tively calibrates the attention map, a slight inconsistency with the
ground truth is observed. Nonetheless, our translation results still
yield correct matches. This is because although the attention map
contains information about the match location, refining the atten-
tion region step by step is necessary, and direct matching using
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Figure 1: Visualisation of translated SAR template images (Template 𝑆), the translated features (Template𝑂 ′), and the similarity
maps from different areas of the OSdataset and SEN1-2 datasets.The auto-encoder trained on the OSdataset possesses a certain
degree of universality, which is a one-time investment.

the attention map is suboptimal compared to matching using the
translated image.

Rural farmland areas comprise numerous similar rectangular re-
gions, often resulting in erroneous perceptions by cross-attention.
In samples (c) and (d), it is evident that the values and locations of
most tokens in the uncalibrated attention map are confusing and
inconsistent. However, surprisingly, the ACB module can still con-
solidate all the information from the attentional graph to produce a
more consistent attentional graph. Calibration in rural farmland ar-
eas is slightly inferior compared to urban built-up areas due to the
challenges associated withmatching in rural farmland areas.These
findings demonstrate that the proposed attention calibration block
possesses effective local calibration capabilities and some global
calibration capabilities, leading to more accurate attention percep-
tion and matching effects.

2.3 Analysis of Interpretability
Existing methods extract common features of multimodal images
for matching, which is abstract, and hard to understand its simi-
larity. However, our approach is built on cross-modal translation,
which translates one modality into the other modality in the latent
space, and completes matching in the translated feature space. We
adopt structural similarity index measure (SSIM) to constrain the
translation process. Figure 3 (a) visually shows the matching fea-
ture similarities of SAR-optical images. It shows that our model
can capture similar structures (red circle) via modality translation,
whereas common cross-modal features extracted by MARU-Net
are inconsistent. Figure 3 (b) quantitatively shows that the more
similar the features, the better the matching.

2.4 Analysis of Robustness
Most methods extract unknown common features of multimodal
images, which is vulnerable to the interference. Our translation-
based method focuses on consistency structural features, which is
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insensitive to noises. Figure 4 visually compares the correct match-
ing rate (CMR) [2, 3] of SOTA methods on noisy optical template
images in the OSdataset without further training. It shows that the
CMR of all methods decreases with the addition of more noises.
However, the CMR of our model only has a very slight drop when
the noise variance is less than 5%, and consistently remains higher
than that of others on different noisy data.

2.5 Analysis of Generalization
In the submission, the experimental datasets, OSdataset and SEN1-
2, consist of optical-SAR image pairs. To evaluate the generaliza-
tion, we conduct experiments on an extra NIR (Near Infrared)-SAR
dataset containing 100 NIR-SAR image pairs with a size of 5556 ×
3704 pixels and 5m spatial resolution.These large-scene images are
crop into 5521 image pairs with the size of 512 × 512. The NIR im-
ages are treated as templates, with the training, validation and test-
ing datasets split in a 7:2:1 ratio. Firstly, we trained SOTA models
on the NIR-SAR dataset (w/ Training) to evaluate each approach.
In addition, we tested the NIR-SAR testing dataset directly using
SOTA models trained on the OSdataset (w/o Training) to further
assess the generalization. Table 1 quantitatively shows the gener-
alization performance from different views.

Table 1: The comparison of SOTAs on the NIR-SAR dataset.

Methods w/ Training w/o Training
CMR (T=5) RMSE (T=5) RMSE (all) CMR (T=5) RMSE (T=5) RMSE (all)

OSMnet 0.7852 2.7871 13.2734 0.5917 3.1245 16.1871
MARU-Net 0.8129 2.4707 10.1147 0.6226 2.6082 15.9857
RSOMNet[3] 0.8160 2.1015 8.9358 0.6832 2.3044 14.0608

Ours 0.8341 2.2312 8.7958 0.7188 2.3874 11.2455

Table 2:The performance of SOTAmethods on two datasets.

Methods OSdataset SEN1-2
CMR(T=5) RMSE(T=5) RMSE(all) Time(s) CMR(T=5) RMSE(T=5) RMSE(all) Time(s)

RSOMNet 0.8296 2.0834 7.9752 0.1847 0.9108 1.4793 5.0752 0.1021
Pars (M) Com (G) Mem (GB) Time (s) Pars (M) Com (G) Mem (GB) Time (s)

VSMatch 3.06 2.2e5 0.86 451.2569 3.06 5.5e4 0.52 87.155
OSMnet 5.53 42.92 1.29 0.0913 5.53 11.2 0.67 0.0568

MARU-Net 18.82 39.6 1.14 0.0895 18.82 10.3 0.64 0.0346
RSOMNet 13.57 140.9 3.24 0.1847 13.57 21.6 1.20 0.1152
Ours (w/o) 20.7+5.6 61.7 2.09 0.1572 20.7+5.6 13.4 1.01 0.1021
Ours (w/) 21.1+5.6 51.1↓ 1.45↓ 0.1093 21.1+5.6 12.6↓ 0.74↓ 0.0621

Pars: Parameters Com: Computational complexity Mem: Memory usage

2.6 Model Performance
Figure 5 visually compares SOTAmodels on SEN1-2 dataset, which
displays the superiority of our method. Table 2 provides a quanti-
tative comparison of an advanced matching method published in
2024, RSOMNet[3]. It is observed that our method performs bet-
ter than RSOMNet on all metrics on the SEN1-2 dataset. For the
OSdataset, our approach (RMSE(T=5)=2.29) is inferior to RSOM-
Net (RMSE(T=5)=2.0834) on the RMSE(T=5). The OSdataset is a
high-resolution dataset, which contains richer details. However,
our translation-based method focuses more on the structural fea-
tures. Therefore, our method is not state-of-the-art on the pixel-
level metric RMSE, but shows promising match accuracy. ‘

0 1 2 3 4 5 8 10 15 20 30

Gaussian variance(%)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

CM
R(
T=
5)

Ours
RSOMNet
MARU-Net
OSMNet
VSMatch

Figure 4: CMR of SOTAs on noising OSdataset.

2.7 Model Parameters
Table 2 further details parameters, computation, and memory us-
age of several SOTA methods during inference. For the large-scale
OSdataset, the sparse attention mechanism (Ours(w/)), compared
to the method without sparse attention (Ours(w/o)), significantly
reduces memory and computation resource usage while only in-
creasing parameters by 1.5%. Our model consists of both trainable
and frozen parameters (the encoder), where trainable parameters
are comparable toMARU-Net’s. RSOMNet requires very large com-
putation resources.
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Figure 2: Visualisation of ground truth, pre-calibrated, and post-calibrated attention maps on 4 samples. The two samples (a)
and (b) are from urban built-up areas, and the samples (s) and (d) are from Rural farmland areas. Samples (a) and (c) are from
the OSdataset and samples (b) and (d) are from the SEN1-2 datasets.These results show that the proposed attention calibration
block has an effective local calibration capability and some global calibration capability.
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Figure 3: The interpretability explanation.
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Figure 5: The visualization of SOTAs on SEN1-2 dataset.
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