
7 Appendix448

7.1 Mask-Based Sample Generation449

Figure 5. The mask-centric point cloud representation. Each mask is rendered in a distinct color. Points that
belong to multiple masks are rendered with only one color.

To obtain object masks on a point cloud, all RGB-D images are first cropped to focus on the450

workspace area. The Segment Anything Model [44] is then applied to each RGB image to ac-451

quire 2D segmentation masks of all objects. Given the pixel-wise correspondence between the RGB452

image, masks, and depth map, we can map these 2D masks onto the point cloud using the depth453

information and transformation matrices. Note that each point pi may belong to multiple masks,454

such as pi ∈ Ma and pi ∈ Mb, where Ma and Mb are different masks. By combining the point455

clouds and mask information from multiple cameras, a raw mask-centric point cloud representation456

is reconstructed. After preprocessing and filtering, we finally obtain the refined mask-centric point457

cloud scene, illustrated in Figure. 5.458

In our implementation, we use the centers of the individual object masks as center points to construct459

Bi for generating grasp poses during training data collection. This method provides more even point460

sampling compared to the FPS-based method, ensuring a more uniform distribution of grasp points.461

Additionally, it avoids generating many unstable poses on the edges and corners of objects. Although462

FPS is still used to construct Bi during inference, we found that our model effectively reduces the463

probability of grasping the edges or corners of objects.464

7.2 Model Architecture465

The detailed architecture of EquiFormerV2, as mentioned in Section 4.5, is illustrated in Figure. 6.466

Compared to the original structure, we have made several key modifications. The original SO(3)467

embedding has been replaced with a single linear layer that takes the point coordinates and normal468

directions as input directly. This embedding is then used in subsequent blocks. After the first equiv-469

ariant graph attention block, we apply FPS to downsample the point cloud. For each downsampled470

point, we use KNN to find its neighbors and build edges between them. During upsampling, we471

reverse these edges from each downsampling block by swapping the source and destination of these472

edges. This allows us to gradually transfer information from the downsampled points to the points473

in the upsampling blocks. The theoretical foundation and mathematical proof of EquiFormerV2 can474

be found in [17, 36, 37].475

Figure. 7 visualizes the procedure for evaluating grasp poses on the orbit of point p in the point476

cloud. Given the point normal vector np and the Fourier coefficients Fm
l,p output from the network,477

the spherical harmonics basis function is first multiplied with the coefficients to reconstruct the478

spherical harmonics signals on S2. This corresponds to Equation. 1. These signals can be used as479

the grasp quality function, i.e., fp : S2 → R. The orbit grasp sampler then takes the normal vector480

as input and outputs a set of approach vectors {r3 ∈ Op = {r3 ∈ S1 : n⊤
p r3 = 0}}. These vectors481

are used to query fp by Equation. 1 to yield the grasp quality of each approach vector.482
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Figure 6. Overview of the EquiFormerV2 architecture. (a) shows the overall structure of EquiFormerV2,
while (b), (c), and (d) illustrate the submodules of (a). Multiple EquiFormerV2 blocks, incorporating FPS and
KNN layers for connectivity, are stacked to form our UNet-style architecture.

Figure 7. Visualization of grasp poses sampling and evaluation. To enhance clarity, this procedure is illus-
trated using one point p in the point cloud. The Fourier coefficients of p, denoted as Fm

l,p, and the spherical
harmonics basis functions SH are used to reconstruct the grasp quality function fp : S

2 → R on the 2-sphere
S2, as detailed in Equition.1. The circle on the top right, viewed along the normal direction of point p, shows
the grasp quality of each sampled pose, with redder colors indicating higher quality.
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7.3 Simulation Additional Details483

We provide several figures (Figure. 8, 9) to give more information about the simulation environment484

and the grasp pose evaluation process.485

Figure 8. (a) and (b) illustrate examples of “pile” and “packed” scenes, respectively.

Figure 9. (a) The downsampled point cloud. (b) We show sampled grasp poses at the points with the highest
grasp quality scores in each of the 10 Bi. A more intense green color indicates higher quality. For simplicity,
only 18 of the 36 sampled poses per point are displayed. (c) The best grasp poses among all B1,...,n.

7.4 Physical Experiments Additional Details486

Implementation Details. Although our design initially selects the grasp pose with the highest Z487

value after filtering, we observed that this highest Z value can sometimes be unstable on the physical488

robot, unlike in simulations. Therefore, because our method generates a series of grasping poses for489

each point, we also consider poses within a 3cm range below the highest grasp pose. If a pose490

within this range has the highest grasp quality (i.e., it is at least better than the highest pose), we491

select it instead. This approach effectively reduces failures caused by weak grasping and mitigates492

the sim-to-real gap.493

Failure Mode Analysis. In the single-view setting, we observe that the GSR of our method for494

the Packed scene is lower than that for the Pile scene, which is inconsistent with the simulation495

results. The primary failure mode (5/8) involves a white bottle that blends with the table mat color.496

This blending results in inaccurate depth and point cloud shape estimation by the camera, preventing497
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the gripper from being inserted deeply enough to provide sufficient friction. For the Pile task, the498

primary reason for failure is the thickness of the objects, where thin objects cause their point cloud499

to merge with that of the table, distorting the shape of objects. This distortion leads to inaccurate500

normal estimation and unreasonable poses generated by our model. Additionally, the smooth surface501

and specific shape of some objects lead to insufficient friction, causing objects like stones to slip out502

of the gripper’s hand. In the multi-view setting, the overall tendency of failure is similar to the503

single-view setting. While the point clouds from different perspectives help mitigate the distortion504

problem, introducing more cameras also introduces calibration errors between them. These errors,505

in turn, transfer to noises that appear in the point cloud.506

7.5 Full Ablation Results507

Larger Point Cloud as Input and Data Augmentation. As mentioned in Section 4.3, we em-508

phasize the importance of using a larger point cloud Bi = N (ci,m) instead of just the local point509

cloud Bi = B(ci, rl) is crucial for eliminating boundary effects by providing more context. To510

evaluate this, we compare the performance of these two input formats. Besides, despite our network511

being SE(3)-equivariant, overfitting remains a concern. Therefore, we also assess the impact of data512

augmentation by comparing results with and without random rotations of the point cloud in SE(3)513

space before each SGD step. The results, shown in Figure. 10, indicate that using the larger point514

cloud as input significantly improves performance, as evidenced by lower loss and higher prediction515

accuracy. Moreover, we also find that without data augmentation, validation loss increases in the516

later stages of training, regardless of other strategies used. These findings underscore the necessity517

of larger point clouds for providing context and the importance of data augmentation.518

(a). The validation loss trends. (b). The predicted accuracy of all validation poses.

Figure 10. The ablation study results of larger point cloud as input and data augmentation.

Performance Comparison Between Mask-Based and FPS-Based Training Data. We compared519

the effects of mask-based versus FPS-based training data. Although both methods perform similarly520

in simulations, differences appear in real-world experiments. As shown in Figure. 11, with the521

same input, the grasp quality distribution from the mask-based trained network is more uniform and522

centered around the object’s center of mass (e.g., the banana, hammer, and shoe). This indicates523

that the mask-based trained network can evaluate a wide range of grasp poses more effectively. In524

contrast, the FPS-based trained network tends to produce grasps biased towards the object’s edges525

or specific small regions. These edge-focused poses are relatively unstable than those around the526

center of mass. We interpret this as a result of FPS-based training lacking object-centric awareness,527

which causes the network to focus on specific areas, and consequently, it struggles to effectively528

assess grasps at other positions. Mask-based training data, however, incorporates object-centric529

information. This enables the network to evaluate grasp poses across the entire object. Therefore,530

even when FPS is used for input during inference, the network maintains enough robustness to531

handle unseen geometric information.532
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Figure 11. Grasp quality distribution for different training data generation strategies. The highest grasp
quality of all sampled poses at each point represents that point’s quality. The left column displays the original
point cloud. The middle column shows predictions from the network trained with mask-based data. The right
column shows predictions from the network trained with FPS-based data.
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