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ABSTRACT

In this paper, we propose the geometric invariance hypothesis (GIH), which argues that
the input space curvature of a neural network remains invariant under transformation
in certain architecture-dependent directions during training. We investigate a simple,
non-linear binary classification problem residing on a plane in a high dimensional
space and observe that—unlike MLPs—ResNets fail to generalize depending on the
orientation of the plane. Motivated by this example, we define a neural network’s av-
erage geometry and average geometry evolution as compact architecture-dependent
summaries of the model’s input-output geometry and its evolution during training.
By investigating the average geometry evolution at initialization, we discover that the
geometry of a neural network evolves according to the data covariance projected onto
its average geometry. This means that the geometry only changes in a subset of the
input space when the average geometry is low-rank, such as in ResNets. This causes an
architecture-dependent invariance property in the input space curvature, which we dub
GIH. Finally, we present extensive experimental results to observe the consequences
of GIH and how it relates to generalization in neural networks. The code for this paper
is available at https://github.com/dr-faustus/GIH.

1 INTRODUCTION

Ever since the advent of deep learning, the importance of architecture and its impact on performance, es-
pecially through introducing inductive biases, have been well-known and established (Battaglia et al., 2018;
Tay et al., 2023a;b; White et al., 2023). However, the modern machine learning toolbox still lacks a unified
tool that can provide an interpretable and tangible connection between architecture, data, and inductive
biases. This has fragmented the approaches to architecture design into heuristic-based modifications (He
et al., 2016; Ioffe & Szegedy, 2015; Hochreiter & Schmidhuber, 1997), biology-inspired design (Bahdanau
et al., 2015; Vaswani et al., 2017; LeCun et al., 2015), or efficiency-guided decisions (Dosovitskiy et al.,
2021; Gu & Dao, 2023), among other things. Many consequential characteristics of a deep neural network
such as decision boundaries, smoothness, and the types of features the model relies on for prediction can
be determined from the input space. We propose the geometry of a model in the input space as a new
tool to relate neural architectures and their inductive biases.

Consider a simple D-dimensional non-linear binary classification problem, where the discriminative fea-
tures of the two classes are two 2-dimensional concentric circles (Figure 1) occupying a plane determined
by two orthogonal directions (u1,u2) ∈RD. The other D−2 dimensions are unstructured, meaning
the variation in those dimensions is caused by i.i.d. and zero mean Gaussian noise. Solving such a
problem with a nonlinear decision boundary was one of the motivations behind the exodus of the machine
learning community from linear models (logistic regression, SVMs, etc.) to kernel methods and then neural
networks (Bishop, 2007; Goodfellow et al., 2016). Conventional wisdom tells us that no matter on which
directions the circles reside on, a modern neural network is complex enough to learn this decision boundary
with ease (Zhang et al., 2017; 2021). For an MLP, this is indeed the case: any model that is wide enough
and uses non-linearity with at least a single hidden layer can learn this decision boundary for any orthogonal
u1,u2. However, a standard ResNet18 (He et al., 2016) is seldom capable of generalizing for randomly
selected u1,u2 despite its elaborate architecture design and much larger size. This observation indicates the
existence of an architecture dependent geometric inductive bias in the input space, which raises the question:

∗Work done while at Imperial College London.
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How does the geometry of a neural network in the input space evolve during training,
and what is the role of architecture and data in it?1

In our quest to answer this question, we discover
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Figure 1: Geometric Invariance Hypothesis in
ResNet. A simple binary classification problem in
RD. The data is structured as two concentric circles
in the plane defined by axes u1,u2 and otherwise
uncorrelated. The axis u1 is aligned with the aver-
age geometry, i.e. u1G

t
Fu1≫0, and shared between

both datasetsDA andDB. The axisu2 is aligned with
Gt

F inDA on the left and not aligned withGt
F inDB

on the right (see projections on bottom left corners).
The green curves demonstrate the decision boundaries
of the model for different initializations and mini-
batches. Observe that the model can only generalize if
bothu1 andu2 are aligned with the average geometry.

a phenomenon, which we dub the Geometric
Invariance Hypothesis (GIH). GIH claims that
for a family of neural networks F, there exists
an architecture-dependent subspace SF ⊆ RD,
where the geometry of neural networks in F can
only change in directions u∈SF during training.
In the context of our example, let us assume two
datasets DA and DB sharing x-axis u1=v∈SF ,
but have different y-axes u2 =vA ∈ SF for DA

and u2=vB /∈SF for DB, with F corresponding
to the ResNet18 architecture. As evident by
Figure 1, in this case the neural network is able
to achieve generalization on DA, but not on
DB. More specifically, the decision-boundaries
(green curves) show us that in DA the model
is able to find the optimal, circular-shaped
decision boundary regardless of the stochasticity
introduced by initialization or mini-batching.
However, in DB, the model is missing the signal
on the directions corresponding to u2, relying on
noise on other dimensions ∈SF in order to reduce
the train loss, and thus failing to generalize.

In order to formalize a notion of “geometry in the
input space” for a neural architecture and how it
“evolves” during training, we define two distinct
but related maps for a neural network with a scalar
output, which we dub the average geometry (Gt

F
at time t during training and for the family of models F) and the average geometry evolution (∆t

F at
time t during training), respectively. These two maps correspond to the covariance of the gradient of a
neural network w.r.t. the input and its derivative w.r.t. time according to the gradient flow model (Barrett
& Dherin, 2021). We find these functions to be related to decision boundaries through a first-order
Taylor approximation, and also to the Hessian of the loss w.r.t. the input. Through investigating ∆t

F at
initialization (t=0) for a simple MLP and CNN architecture, we observe that the changes in the input
geometry of a neural network at initialization correspond to the projection of the train data covariance
onto its geometry at initialization. Hence, we hypothesize a similar behavior for the remainder of training,
which brings us to our definition of GIH, whereupon the role of SF is taken by the subspace spanned
by the eigenvectors of G0

F . We confirm GIH through experimentation on synthetic data and CIFAR-10.

Related Works. The inductive bias of neural networks are seen as one of the missing links explaining
the generalization ability of deep neural networks (Soudry et al., 2018; Barrett & Dherin, 2021; Smith
et al., 2021), while also being an important tool in architecture design (Battaglia et al., 2018; Tay et al.,
2023a). The majority of research focused on identifying and explaining the inductive biases of deep neural
networks are focused on the behavior of the model in the parameter-space (Jacot et al., 2018; Atanasov
et al., 2022; Mahankali et al., 2023; Tu et al., 2024), in the frequency domain (Basri et al., 2019; Teney
et al., 2024), or in the function domain (Nye & Saxe, 2018; Pérez et al., 2019; Shah et al., 2020). The
closest of such attempts to our work is the neural anisotropy directions (NADs) paper (Ortiz-Jiménez et al.,
2020), which provides empirical evidence for an existing geometric inductive bias in deep neural networks
in linear classification. Specifically, they empirically show that the eigenvectors and the eigenvalues of the
covariance of the gradient of a neural network w.r.t. the input provides a robust method for identifying and
ranking directions (called NADs) in which the network prefers to classify the data in a linear classification
task. As a follow-up, it was later shown that these directions can be connected to the set eigenfunctions of
the NTK of a neural network in a linear task (Ortiz-Jiménez et al., 2021). In this paper, we improve upon
these works by providing an explanation for this behavior through analytical and empirical investigation,
while also removing the linearity assumption from the results. As a result of this investigation, we are

1Note that in this paper, we are specifically focusing on geometric inductive biases at initialization.
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also able to justify the proposed method in (Ortiz-Jiménez et al., 2020) for identifying the NADs. For
a detailed summary of the related works, please refer to App. A.1.

Contributions. Our contributions can be summarized as follows:

• We first define a function summarizing the input space geometry of a model and its evolution. We
then factorize the contributors to the evolution of geometry during training into a data-dependent
term and a model-dependent term. We investigate each element and their interaction theoretically,
from which we conjecture a general form. Then, the results are confirmed empirically.

• Following these insights, we propose The Geometric Invariance Hypothesis (GIH), which
states that the geometry of deep learning models in the input space becomes invariant in certain
directions determined by the architecture.

• We provide extensive experimental results aimed at establishing the validity of GIH and how it
relates to generalization in neural networks. Specifically, we show that through GIH, we can deter-
mine the location of the decision boundaries a neural network can learn. Furthermore, we observe
that GIH can help us detect the features and train samples the model relies on for generalization.

For details on the experimental settings and a discussion on the limitations of our work, please refer to
App. A.12 and App. A.13, respectively.

2 THE GEOMETRY OF THE INPUT SPACE

In this section, we will first provide the notations we use in our paper. Then, we provide preliminary
definitions and results which we will use to formalize and motivate our claims in the rest of the paper.

2.1 NOTATIONS

We denote the pre-activation output of the classification layer of the model, which for simplicity we
assume to be scalar (i.e., dealing with binary classification problems) as fθ(x), parameterized by θ with
x ∈RD. We assume the model to be a neural network, trained on DT = {(xµ,yµ)}mµ=1, where xµ is
the input and yµ is the label. We denote a family of models (i.e., architecture) as F, with fθ(·)∈F. We
denote the loss function as L(θ)=

∑m
µ=1ℓ(fθ(xµ),yµ), where L(.) is the sum of squared errors (SSE,

refer to App. A.2 for details) in our theoretical analysis, and cross-entropy in our experiments. Furthermore,
we denote the gradient w.r.t. the input and the parameters by ∇xfθ(x) and ∇θfθ(x), respectively, and
the second-order derivative w.r.t. the parameters and data as ∇2

x,θfθ(x). For ease of analysis, we rely
entirely on the gradient flow model for modeling the training procedure: i.e., we denote t∈R+

0 as the
t≥ 0 moment in training and assume the optimization process to be continuous. So to investigate the
changes in a particular function gF(x,θ), which is a function of input x and parameters θ for the family
of model F, we usually rely on dgF

dt =∇θgF(x,θ)
⊤θ̇, where θ̇= dθ

dt .

We also use a probing distribution over the input to get the average behavior of a particular function
gF(x,θ), which we denote as x∼P. The probing distribution can be any distribution of choice that
covers the area of interest in the input space. For instance, we can use train or validation samples, or a
standard Gaussian distribution, which is our choice for P in this paper. We also define A

m1,m2,...,mk−−−−−−−−→B
as |Corr(A,B)| approaching 1 at the limit ∀i mi→∞, where A and B are both matrices of the same
dimension, Corr(·,·) is the Frobenius cosine similarity, |·| is the absolute value operator, and A is a
function of scalars {mi}ki=1. More informally, we use A∝B when we claim |Corr(A,B)| for the two
matrices A and B to be much larger than the magnitude of the cosine similarity between two randomly
generated vectors of the same dimension to the point of one being able to approximate the other.

2.2 DEFINITIONS

In order to facilitate answering our central question, we will try to define two functions that help
us understand the geometry of a neural network architecture in the input space, and how it changes
during training. Given that our focus in this paper is on classification tasks, a good starting point
would be the gradient of the model w.r.t. the input ∇xfθ(x). From robustness literature, we know that
∇xfθ(x) can inform us about the decision-boundaries in the immediate vicinity of x (Madry et al.,
2018; Moosavi-Dezfooli et al., 2016). This can be easily shown through a first-order Taylor expansion
of the output of the model. Specifically, let δ be a vector with a small L2 norm. Then we can write
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fθ(x+ δ)− fθ(x) ≈ δ⊤∇xfθ(x) using Taylor expansion. Therefore, δ in the direction of ∇xfθ(x)
maximizes the change in the output of the model, potentially flipping its prediction. Consequently, by
maximizing δ⊤∇xfθ(x) we obtain valuable information about the local changes in fθ(x) through δ.

However, a δ computed based on ∇xfθ(x) for a single value of θ only informs us about a decision-
boundary for a single parameterization of the model, subjecting it to noise caused by stochastic factors
such as mini-batching and initialization. Therefore, we propose to average the gradient over a distribution
of θ: Eθ[∇xfθ(x)]. While trying to maximize δ⊤Eθ[∇xfθ(x)] can be a way to find a direction that can
potentially flip the prediction of fθ(x), it only contains first-order information about how the distribution
of θ affects the local changes in fθ(·) at x, causing potential loss of information. For instance, let us
assume a case where ∇xfθ(x) is zero-mean w.r.t. θ, i.e., x corresponds to a local extremum. In this case,
Eθ[∇xfθ(x)] does not contain any information about the local changes in fθ(x). On the other hand, one
can instead look at the covariance of ∇xfθ(x) w.r.t. θ to obtain information about the directions towards
which the decision boundaries have a significant presence. Therefore, a much more informative function
about the local changes in fθ(x) in the input space would be Eθ

[
∇xfθ(x)∇xfθ(x)

⊤]. Finally, since we
rarely care about the behavior of a model for a single input, we also use a probing distribution P to sample
x from. With this motivation, we introduce the following definition for a function informing us about
the geometry of a neural network architecture in the input space:
Definition 2.1. Let F be a family of neural networks. We define the average geometry of F at x
and train time t as:

Gt
F(x)=Eθ∼Tt

[
∇xfθ(x)∇xfθ(x)

⊤], (1)
where Tt determines the distribution of the trajectory of θ during training on the train data DT at
moment t, with the source of stochasticity usually being initialization and mini-batching. Furthermore,
we define the average geometry of F induced by the probing distribution P as Gt

F,P=Ex∼P [G
t
F(x)].

In App. A.3, we report that Gt
F(x) is indeed directly related to the curvature of the loss w.r.t. input,

making the connection between the function we propose and the geometry of a neural network architecture
in the input space clear.

We can capture the geometry of a family of models in the input through Gt
F(x) at time t during training.

However, this function does not tell us how the model geometry changes at time t, thus only providing half
of the picture. So we need another quantity that can inform us about the evolution of the geometry in the
input space. Given our line of reasoning that resulted in the definition of average geometry, we start with the
function∇xfθ(x)∇xfθ(x)

⊤. Following the gradient-flow model, we can capture the evolution of this func-
tion by getting its derivative w.r.t. time, which gives us: ∇2

x,θfθ(x)θ̇∇xfθ(x)
⊤+∇xfθ(x)θ̇

⊤∇2
x,θfθ(x)

⊤.
With a similar motivation, we get the expectation of this quantity w.r.t. the parameters θ and x sampled
from a probing distribution, resulting in the following definition:
Definition 2.2. Let F be a family of neural networks. We define the average geometry evolution
of F at x and train time t as:

∆t
F(x)=Eθ∼Tt

[
∇2

x,θfθ(x)θ̇∇xfθ(x)
⊤
]
+Eθ∼Tt

[
∇2

x,θfθ(x)θ̇∇xfθ(x)
⊤
]⊤

, (2)

where Tt determines the distribution of the trajectory of θ during training on the train data DT at moment
t, with the source of stochasticity usually being initialization and mini-batching. Furthermore, we define
the average geometry evolution of F induced by the probing distribution P as ∆t

F,P=Ex∼P [∆
t
F(x)].

In App. A.3, we will see that ∆t
F(x) is indeed directly related to the evolution of the curvature of the loss

w.r.t. input, making the connection between the function and the evolution of geometry of a neural network
architecture in the input space clear. For the SSE loss we have ∆t

F(x)=Dt
F(x)+Dt

F(x)
⊤, where:

Dt
F(x)=−

m∑
µ=1

Eθt

[(
∇2

x,θfθt(x)∇θfθt(xµ)∇xfθt(x)
⊤)·(fθt(xµ)−yµ))

]
. (3)

Following (3), we can argue that the changes in the local geometry are the result of the interaction between
two main components: 1) the data, and 2) the current average geometry. The first component affects
the geometry through the changes in the parameter (θ̇) by gradient-descent, while the second component
affects the geometry through the mixed-derivative ∇2

x,θfθ(x) and the gradient ∇xfθ(x). While such an
interaction may seem extremely complex at first, we will see that by probing the average geometry and
average geometry evolution with an appropriate probing distribution P, we observe (through theoretical
and empirical means) that the expected value of this interaction is actually surprisingly simple and akin
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to a linear projection, leading to interesting results on the behavior of the average geometry Gt
F,P and

generalization in a neural network.

For simplicity, we refer to both of the average geometry and the average geometry evolution of a standard
Gaussian probing distribution and at initialization (i.e., t=0) as GF and ∆F , respectively. For t>0, we
denote these two functions as Gt

F and ∆t
F . We name S=

∑m
µ=1xµx

⊤
µ the unnormalized data covariance.

3 CHANGES IN THE AVERAGE GEOMETRY DURING TRAINING

In this section, we study the factors that affect the changes in the geometry of the model in the input space
through theoretical and empirical means. More specifically, we will start by theoretically detecting the
data-dependent factor in ∆F by investigating it in an “isotropic” model. The term “isotropic,” as will
become clear in this section, indicates a lack of geometric inductive bias in the model. We then theoretically
look at the interaction between the data-dependent and model-dependent factors in a “non-isotropic” model,
which we set to be a convolutional neural network with a pooling layer. Motivated by these theoretical
results, we will conjecture that at the initial stage of training, the changes in the average geometry of the
model follow a linear dynamic driven by an interaction between the initial geometry (GF) due to the
model and the covariance of the data. In App. A.4, we provide theoretical and empirical results supporting
the claim that this dynamic is independent of the labels, and can be considered task-independent.

3.1 ISOTROPIC MODEL

We provide theoretical results for the average geometry evolution ∆F,P at initialization according to the
gradient flow model, over the probing distribution P=N

(
0,σ2

xI
)

2. We do not make assumptions about
the data, and instead focus on models that can be considered “isotropic” (Battaglia et al., 2018).

First, let us start with a simple example of a linear regression (i.e., F corresponding to linear regression mod-
els), which we write as fθ(x)=θ⊤x. We assume that the parameters are initialized as zero-mean and i.i.d.,
as is the common practice. Since ∇xfθ(x)=θ, the average geometry at initialization for this model will be
GF=Eθ0

[
θ0θ

⊤
0

]
∝I. This property indicates a “lack of geometric inductive biases” at initialization, which

as shown in App. A.5, is also shared with MLPs of any depth with ReLU non-linearities. In Section 3.2,
we will elaborate on the significance of this property. Following (3), and given that ∇2

x,θfθ(x)=I, we
have ∆F=−

∑m
µ=1Eθ0

[(
θ⊤xµ−yµ

)
·xµθ

⊤]=−σ2
θS for an i.i.d. and zero-mean Gaussian initialization

of θ with standard deviation σθ, following Stein’s lemma. Therefore, we can see that in the absence of
non-linearity and more layers, the average geometry evolution of an isotropic model at initialization corre-
sponds to the covariance of the data. When introducing these two elements, in the form of an MLP with a
single hidden layer and ReLU non-linearity, we have the following theorem that shows a similar behavior:
Theorem 3.1. Let F be the family of MLPs with a single hidden layer of size n and ReLU non-linearity.
Assuming that we use the SSE loss, then as the input dimension D and the model width n become
larger, the average geometry at initialization ∆F approaches the data covariance S up to a constant, i.e.,

∆F
n,D−−→S. The convergence rate is O

(
1√
D·n

)
.

We provide a sketch of the proof and encourage the reader to read the whole proof in App. A.11.2. The
average geometry evolution of this model at initialization corresponds to n2 terms of the second and
fourth moments of the parameters of the first layer ϕ over the space shared by halfspaces defined by the
train data and the inputs sampled from the probing distribution, i.e. Eϕ

[
1ϕ⊤x>01ϕ⊤xµ>0ϕϕ

⊤]xµx
⊤
µ and

Eϕ

[
1ϕ⊤x>01ϕ⊤xµ>0

(
ϕ⊤xµ

)2
ϕϕ⊤

]
. As the input dimension becomes large enough, these two halfspaces

will almost surely become orthogonal, resulting in the second and the fourth moments of the first-layer
parameters over the intersection of these two halfspaces becoming equal to the second and the fourth
moments up to a constant. The second moments yield n2−n terms corresponding to S, while the fourth
moments yield n2−n terms corresponding to S and n terms corresponding to Exµ∈DT

[
∥xµ∥22

]
I, which

vanish in favor of the S terms as the depth of the first layer becomes large enough.

Theorem 3.1 gives us an interesting insight into our factorization of ∆F underscoring that in the absence of
geometric inductive biases introduced by the model, the geometry adapts according to the data covariance.

2Given the homogeneous quality of the architectures used in our theoretical analysis, we will set σx=1 for the
probing distribution.
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Therefore, the data-dependent component in (3) is equivalent to the empirical covariance of the data
estimated on the train samples.

3.2 THE LINEAR RELATIONSHIP BETWEEN GEOMETRY, DATA, AND ARCHITECTURE

We now shift our focus to examining the effect of the model on the geometry and the interaction between
the data-dependent and the model-dependent components in ∆F . Specifically, we aim to introduce
architecture components, such as convolution operations and pooling layers, that as noted in App. A.5,
introduce geometric inductive biases to the model. We start our investigation by looking at a neural
network with a linear activation function:
Theorem 3.2. Let F be the family of convolutional neural networks with a single hidden layer, linear
activation function, and a global average pooling layer on each channel. Assuming that we use the SSE
loss, then as the model width n becomes larger, the average geometry evolution at initialization ∆F(x)

approaches GF(x)SGF(x) up to a constant, i.e., ∆F(x)
n−→GF(x)SGF(x). The convergence rate is

O(1/n). For proof, please refer to App. A.11.3.

From Theorem 3.2, we observe that in the initial stages of training, Gt
F will change towards the linear

projection of S onto GF in a linear convolutional neural network with pooling. Considering the results of
Theorem 3.1 and Theorem 3.2, we can now better understand the effect of the two components present in (3)
causing the shift in geometry at the beginning of training: the data in the form of covariance, and the architec-
ture in the form of average geometry. We provide empirical confirmation for the two theorems in Figure 7.

Given the results of Theorem 3.1 and Theorem 3.2, we will conjecture about ∆F for a neural network
without making assumptions about the architecture. From Theorem 3.1, we know that for the gradient-flow
model at t= 0, the changes in the geometry in the presence of an isotropic model (more explanation
in App. A.5) correspond to the covariance of the data. From Theorem 3.2, we understand that the data
covariance is linearly projected on the average geometry at initialization GF for the non-isotropic model
used in the theorem. Then, without any assumptions about the architecture we have the following:

Conjecture 1. Let F be a family of neural networks. Then, assuming we use the SSE loss, the average
geometry evolution at initialization ∆F is highly correlated with the projection of data covariance onto
the average geometry at initialization, i.e.,∆F∝GFSGF . As a result, the average geometry will change
according to this form at the initial stages of training, i.e., Gt

F approaches GFSGF for t close to 0.

So the changes in the geometry are caused by the projection of the covariance of the data onto the initial
average geometry. As a result, in the case of the existence of a structure in the initial average geometry
GF , one can fully expect the geometry to be invariant (or numerically, changing extremely slowly) in
certain directions with low correlation to the initial average geometry.

Considering that the average geometry evolution and our analysis of ∆t
F is based on the gradient-flow

model, we cannot confirm Conjecture 1 directly in a discrete training regime. Therefore, in order to present
empirical evidence confirming our results so far, we instead rely on looking at the average geometry Gt

F for
the entirety of the training period using gradient descent. In this case, an increasing correlation between
Gt

F and GFSGF (or S for an MLP) near the initialization point in training will support our theoretical
analysis. We provide the experimental results supporting Conjecture 1 in Figure 2. In this experiment, we
plot the correlation between average geometry at time t (Gt

F) and the projection of data onto the initial aver-
age geometry of the model, as proposed in Conjecture 1. We will use the normalized Frobenius dot product
to measure the correlation between two matrices. For our experiments, we use the CIFAR-10 data. We con-
struct a binary variant of CIFAR-10 in which the task is to distinguish animal from non-animal inputs, which
we dub CIFAR-2. For each class of CIFAR-2, we sample 5000 data points randomly3. Furthermore, we re-
port the results for an MLP with 2 hidden layers of size 100, LeNet, ResNet18 without batch normalization,
and ViT without layer normalization. More details on the implementation can be found in the appendix.

As we can observe in Figure 2, there is clear evidence for the changes in the average geometry being highly
correlated with S and GFSGF at the beginning of training, which is what we claim in Conjecture 1.

3Note that per the results of Corollary A.4, in case of normalization, GF will depend on the variance of each
individual patch of the input. In our experiments, we found that in practice it is difficult to exactly compute this
“normalized” variant of GF due to its dependence on - among other things - the kernel size of the convolution
operations or the patch size of the ViT. For this reason, and for the sake of simplicity, we omit the normalization layers
from the architectures we experiment on for non-synthetic data.
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(a) MLP
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(b) LeNet
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(c) ResNet18
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Figure 2: The correlation between Gt
F=Gt

F,N(0,I) and S and GFSGF for the (a) MLP, (b) LeNet, (c)
ResNet18 without batch normalization, and (d) ViT without layer normalization on CIFAR-2. Note that
D=32×32×3=3072, which means the expected cosine similarity of two randomly generated vectors
in the input space is O

(
1/
√
3072

)
≈0.02. Therefore, we consider the correlations significant.

Another interesting observation to note is that the values of S and GFSGF are virtually identical in the
case of MLPs, which confirms our view of MLPs being isotropic, or in other words, having no geometric
inductive biases, which manifests itself in the form of GF ≈ I. On the other hand, this is not the case
in the other models, with the correlation between Gt

F and GFSGF being significantly larger than MLP
during the initial training stage compared to S. This difference in correlation indicates the existence of
a structure in GF for these models, which we consider to be the geometric inductive biases of the model.

4 THE GEOMETRIC INVARIANCE HYPOTHESIS

In this section, we will introduce the Geometric Invariance Hypothesis (GIH), providing empirical
evidence supporting it, and investigating its implications on the generalization ability of deep networks.
Notably, we study the relationship between the complexity of the decision boundary and GIH, establishing
a connection between GIH and the simplicity bias hypothesis (SBH) (Pérez et al., 2019).

4.1 THE PROJECTION OF DISCRIMINANT FEATURES ONTO THE INITIAL GEOMETRY

In the previous section, we observed an intriguing phenomenon wherein at the initial stages of training,
the average geometry of the model changes according to the projection of the covariance of the data S
onto the initial average geometry GF . Note that as we get further into the training process, we expect the
set of features used by the model to narrow down to “discriminant features,” which can be viewed as the
features upon which the model can discriminate data. Assuming that the changes in the geometry are still
caused by the projection of a subspace of the data support (relating to the discriminant features) onto the
initial average geometry, and the initial average geometry itself is structured, then the input geometry will
remain invariant in the directions with low correlation with GF

4. In App. A.5, we consider the choices in
the architecture that can result in a structure in GF . Furthermore, in App. A.6 we will observe the structure
in GF for the neural networks used in this paper.

This observation indicates the possibility that the initial geometry also plays a role in the later stages
of training. More specifically, we want to know whether the model’s geometry in the input space will
remain invariant during later stages of training in directions with low correlation with GF as well. We
formalize this concept in the form of the following hypothesis, which we dub the “ Geometric Invariance
Hypothesis” (GIH):

Conjecture 2. (Geometric Invariance Hypothesis) Let F be a family of neural networks. Let
Eig(A) correspond to the subspace defined by the top eigenvalues of the matrix A. We conjecture that
Eig(∆t

F)⊆Eig(GFSGF). In other words, the geometry of the model remains invariant in directions
not in Eig(GF) during training.

In order to support Conjecture 2, we first define a measure to monitor the changes in the average geometry,
which we call the geometric velocity: Ġt =1−Corr

(
Gt

F ,G
t−1
F
)
, where Corr(·,·) is the normalized

Frobenius dot product. For this experiment, we will look at Ġt and training accuracy when the data
is sampled from the Gaussian distribution N (0,GF/∥GF∥2), where ∥GF∥2 is the spectral norm of

4Note that while we use the term invariance to refer to the geometry of the model having small changes in
certain directions, in practice this “invariance” comes in the form of a large condition number in GF . As a result,
the invariance happens on a spectrum, and the changes in Gt

F in a specific direction u gradually decreases as the
correlation between u and GF becomes smaller.
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(b) LeNet
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(c) ResNet18
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(d) ViT

Figure 3: The train accuracy (green lines) and velocity Ġt(·,·) (blue lines) of the (a) MLP, (b) LeNet, (c)
ResNet18 without batch normalization, and (d) ViT without layer normalization on two synthetic datasets:
GF covariance x∼N (0,GF/∥GF∥2) and flip(GF) covariance x∼N (0,flip(GF)/∥flip(GF)∥2)
with random labels. A horizontal line for velocity indicates no change in the geometry.
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(a) LeNet
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(b) ResNet18
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(c) ViT

Figure 4: Test accuracy of (a) LeNet, (b) ResNet18 without batch normalization, and (c) ViT without layer
normalization on the CIFAR-2 data with for various types of decision boundary. The ith x-axis point corre-
sponds to a dataset wherein the discriminant feature is the ith eigenvalue of GFSGF in descending order.

GF . We compare training accuracy and the velocity of this dataset to another dataset where the data is
sampled from another Gaussian distribution N (0,flip(GF)/∥flip(GF)∥2), with flip(GF) being GF with
its eigenvalues flipped (i.e., in the reverse order). The experimental results are observable in Figure 3.

We observe very little change in the average geometry of the model when trained on the data with
flip(GF) covariance compared to the data with GF covariance. This larger shift in the geometry supports
Conjecture 2, showing that the geometry of the model will change very little in directions with a low
correlation with GF . In Section 4.2, we will see that neural networks trained using gradient descent may
fail to generalize when the normal to the decision boundary aligns with directions exhibiting geometric
invariance, as defined by Conjecture 2.

4.2 THE GEOMETRIC INVARIANCE HYPOTHESIS AND THE GENERALIZATION GAP

In this section, we try to investigate the relationship between GIH and generalization. In particular,
we define three types of labeling for the CIFAR-10 dataset with varying complexity: linear as
y=sgn((x⊤u)+b), quadratic as y=sgn((x⊤u)2+b), and sinusoidal as y=sgn(sin(x̄⊤u)+b) , where
x̄ corresponds to a standard normalized input5, and u corresponds to the discriminant feature. We train
and evaluate a model on each labeling function for u set to the eigenvectors of GFSGF in descending
order, which can be seen in Figure 4. In order to make sure that our observation is not caused by a lack
of separability for certain selections of u, we set the learning rate and number of epochs in a way to ensure
all models will reach 100% train accuracy. Also, in order to simulate the effect of label noise, we add a
small amount of noise to the input when calculating the labels (but not to the input itself during training)6.

As we can observe in Figure 4, there is a clear correlation between the eigenvalues corresponding to u and
the test accuracy of the model on all labeling functions, with datasets labeled based on a u with a smaller
eigenvalue having larger generalization gap. These results further extend (Ortiz-Jiménez et al., 2020), which
mainly focused on linear decision boundaries. Note that as we saw in the previous subsection, for datasets
with a low correlation between the discriminant feature andGF , the model is incapable of finding the actual
decision boundary. As a result, it will instead rely on features in other directions to “memorize” the train sam-
ples, resulting in a lack of generalization. Consequently, the GIH explains this phenomenon, which was first
observed in (Ortiz-Jiménez et al., 2020). Another interesting observation to make is that for more complex

5We added a normalization component to the sinusoidal labeling in order to control the complexity of the problem
by controlling the variance of x, which is set to 1.0 on each channel separately.

6We sample i.i.d. Gaussian noise scaled on each channel separately, setting the variance to 0.2 times the variance
of the channel.
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(b) LeNet
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(c) ResNet18
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Figure 5: The test accuracy of the linear and non-linear components of (a) MLP, (b) LeNet, (c) ResNet18,
and (d) ViT on the synthetic data with both linear and non-linear components. The x-axis corresponds
to the eigenvalue index in descending order.

decision boundaries, GIH will have a “sharper” impact on generalization, meaning that the decision bound-
ary needs to reside in us with larger eigenvalues in order for the model to detect the decision boundary. This
observation appears to be separate from GIH, and best explained by the SBH. However, as we will see in the
next subsection, the geometric inductive biases need to be considered when talking about SBH. In App. A.7,
you can observe the relationship between GIH and generalization in the presence of “isotropic” data.

4.3 RETHINKING THE SIMPLICITY BIAS HYPOTHESIS

The simplicity bias hypothesis (SBH) argues that neural networks prefer to learn features with simpler
relationships with the predictive variable. However, as we observed in the previous subsection, depending
on the direction of these features, the model may not be capable of learning them at all. So in order to
reconcile the SBH with GIH, we design the following experiment involving synthetic data formulated
as x=ϵu1y+zu2,u3

y +ω, with Gaussian noise ω∼N
(
0,σ2

ω

(
I−u1u

⊤
1 −u2u

⊤
2 −u3u

⊤
3

))
for orthogonal

u1,u2,u3. We define zy as zu2,u3
y =ry · α·u2+β·u3

∥α·u2+β·u3∥2 , with α and β being standard normal variables, and
r1≠r−1 for uniformly distributed y∈{−1,1}.

Therefore, in this experiment we have a linear discriminant and a non-linear discriminant feature in the
form of u1 and zy. We select u2 and u3 from eigenvectors of GF with large eigenvalues, while changing
u1 according to the eigenvectors of GF . Figure 5 reports the test accuracy for the linear and non-linear
components. In agreement with GIH, we can see that when u1 has a high correlation with GF , the
model always selects the linear component since the linear component has perfect accuracy while the
non-linear component does not do better than a random guess. However, as the correlation between u1 and
GF decreases, we observe that the model becomes gradually more reliant on the non-linear component.
Therefore, SBH holds true when both components are on the same scale in terms of correlation with GF .
But when the linear component has a low correlation with GF , the model learns the non-linear component
contrary to what SBH would predict.

5 WHAT CAN GEOMETRY TELL US ABOUT THE SAMPLES

In this section, we provide an application-based approach to the implications of the GIH. Specifically, we
focus on the implications of the GIH on the feature space and the distribution of the samples and try to see if
the distribution of features and data can be related to the generalization ability of the model through GIH.
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Figure 6: Test accuracy of (a) LeNet, (b) ResNet18 without batch normalization, and (c) ViT without layer
normalization for the feature distribution experiment. We report results for CIFAR-2, with features elimi-
nated up to the index number of the generalized eigenvectors of GF and S. For a fair comparison and using
random orthogonal directions, we delete features until similar variability is removed from the data support.
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Feature importance. A natural question that arises from the geometric invariance hypothesis is: will
eliminating features with the lowest possible correlation with GF from the data have an impact on the
performance? In order to answer this question, we design the following experiment. We find the directions
with the lowest correlation withGF and the highest correlation withS by solving the generalized eigenvalue
decomposition problem over GF and S. Using the resulting eigenvectors7, we perform a simple orthogonal
projection on the data to eliminate the features residing in those directions. More concretely, for a sample
x and the set of spanning vectors VGIH ={vn

1 ,v
n
2 ,...,v

n
D}, we set x⊥GIH

k =QGIH
k x, where QGIH

k =ID−∑k
i=1viv

⊤
i . We perform the orthogonalization on both the train and the test data, essentially eliminating the

features from the data. As a baseline method, we also sample a set of spanning vectorsVRand from a random
Gaussian distribution orthogonalized using the Gram-Schmidt procedure. However, for a fair comparison,
for a givenQGIH

k , we first find an index k′ where the explained variance by {vr
1,v

r
2,...,v

r
k′} onS becomes no

more than the explained variance by {vn
1 ,v

n
2 ,...,v

n
k′}, and then set QRand

k =ID−
∑k′

i=1viv
⊤
i . We then train

and evaluate the model on the orthogonalized dataset. The results from CIFAR-2 are reported in Figure 6.

From the experiment results we can observe that
Model Percentage of Removed Data (%)

30 50 70 90

LeNet-R 61.7±0.4 56.6±0.3 52.4±0.3 45.1±0.3
LeNet-S 62.5±0.2 58.5±0.4 53.5±0.3 45.9±0.2

ResNet18-R 75.8±0.6 71.8±0.4 65.1±0.3 52.4±0.4
ResNet18-S 77.0±0.2 73.2±0.4 66.2±0.3 54.4±0.2

ViT-R 57.5±0.1 51.5±0.1 45.5±0.1 35.6±0.1
ViT-S 58.4±0.1 52.2±0.2 46.5±0.1 36.2±0.1

Table 1: The test accuracy of LeNet, ResNet18
without batch normalization, and ViT without layer
normalization for the data distribution experiment.
We report mean performance along with a 68%
confidence interval for CIFAR-10, with datapoints
eliminated randomly (R) or based on their score
value (S). The best performance is boldface.

eliminating features based on their correlation
with the geometry at initialization causes a lower
drop in performance than eliminating them
randomly. Therefore, we can safely claim that
it is beneficial to take GIH into account when
performing dimensionality reduction on data.

Sample importance. In this experiment, we
try to understand whether there is a relationship
between the contribution of a datapoint to the
performance of the model and the amount of
variation it has in the invariant directions of the
geometry. Specifically, given a datapoint x, we
measure its correlation with the initial geometry
GF as: Score(x) = (x/∥x∥2)⊤GF (x/∥x∥2).
Then, we sort the datapoints according to their Score(·) value and eliminate the ones with the smallest
score. We compare the results to a baseline wherein we randomly eliminate the datapoints. You can see the
results of this experiment in Table 1. For a more detailed experiment please refer to Table 2 in the appendix.

As evident by the experimental results, there is a clear relationship between the contribution of a datapoint
to the performance and its Score(·) value. While the difference in performance between the random
baseline and our geometry-based score is somewhat modest (at most about 2%), we note two factors are
not considered in our Score(·): 1) whether the features present in a datapoint with high correlation with
the initial geometry are actually discriminant or not, and 2) whether by eliminating a datapoint, we lose
a rare feature that is not frequent in the other train samples. Considering these factors may improve the
performance further, which is out of the scope of this paper.

6 CONCLUSION AND FUTURE WORK

In this paper, we have provided theoretical and empirical results that investigate the changes in the
input space geometry of a neural network during training. Based on these results, we proposed the
Geometric Invariance Hypothesis, which argues that depending on the architecture, the changes in the input
geometry of the model can be limited to a small subspace of the input space. After empirically supporting
this hypothesis, we provided several experimental pieces of evidence to show the impact of geometric
invariance on the generalization of deep neural networks. Considering the practical impacts of GIH, as
discussed in Section 5, we expect our paper to provide valuable information to the study of inductive biases
in neural networks, the role of data and its conditioning on generalization, and architecture design.

For future work, we point to several possible extensions of our results. Firstly, we note that the theoretical
results provided can be applied to more complex architectures. Secondly, other optimization methods
and their implications for GIH can be considered. Thirdly, we note the possible impact of GIH on
other subfields of machine learning, such as AutoML and neural architecture search, the student-teacher
framework, and foundation models as another important issue to consider.

7We perform an orthogonalization procedure on the resulting eigenvectors to ensure they can span the input space.
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(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 12873–12884, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
c4ef9c39b300931b69a36fb3dbb8d60e-Abstract.html.

Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Infor-
mation science and statistics. Springer, 2007. ISBN 9780387310732. URL https:
//www.worldcat.org/oclc/71008143.

Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, and
Tom Goldstein. Loss landscapes are all you need: Neural network generalization can be explained
without the implicit bias of gradient descent. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=QC10RmRbZy9.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adaptive
computation and machine learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL
http://www.deeplearningbook.org/.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state
spaces. CoRR, abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL
https://doi.org/10.48550/arXiv.2312.00752.

Charles Guille-Escuret, Hiroki Naganuma, Kilian Fatras, and Ioannis Mitliagkas. No wrong turns:
The simple geometry of neural networks optimization paths. CoRR, abs/2306.11922, 2023. doi:
10.48550/ARXIV.2306.11922. URL https://doi.org/10.48550/arXiv.2306.11922.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90.
URL https://doi.org/10.1109/CVPR.2016.90.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error
linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/1606.08415.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
1997. doi: 10.1162/NECO.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.
8.1735.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448–456. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and generalization
in neural networks. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
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Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. What can linearized neu-
ral networks actually say about generalization? In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 8998–9010, 2021. URL https://proceedings.neurips.
cc/paper/2021/hash/4b5deb9a14d66ab0acc3b8a2360cde7c-Abstract.html.
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Table 2: The test accuracy of LeNet, ResNet18 without batch normalization, and ViT without layer
normalization for the data distribution experiment. We report results for CIFAR-10, with datapoints
eliminated randomly (R) or based on their score value (S). We report the mean performance along with
a 68% confidence interval for each setting. The best performance is boldface.

Model Percentage of Removed Data (%)
10 20 30 40 50 60 70 80 90

LeNet-R 65.0±0.4 63.95±0.3 61.7±0.4 58.9±0.4 56.6±0.3 54.8±0.3 52.4±0.3 49.5±0.2 45.1±0.3
LeNet-S 65.9±0.5 65.1±0.6 62.5±0.2 60.9±0.46 58.5±0.4 56.4±0.1 53.5±0.3 50.8±0.2 45.9±0.2

ResNet18-R 78.6±0.2 76.8±0.3 75.8±0.6 73.9±0.3 71.8±0.4 68.8±0.1 65.1±0.3 60.3±0.5 52.4±0.4
ResNet18-S 79.6±0.2 78.4±0.3 77.0±0.2 75.9±0.3 73.2±0.4 70.0±0.3 66.2±0.3 61.5±0.4 54.4±0.2

ViT-R 62.0±0.1 60.0±0.2 57.5±0.1 54.6±0.1 51.5±0.1 48.7±0.0 45.5±0.1 41.3±0.1 35.6±0.1
ViT-S 62.9±0.1 60.6±0.1 58.4±0.1 55.4±0.1 52.2±0.2 49.7±0.1 46.5±0.1 42.1±0.0 36.2±0.1
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Figure 7: The correlation between ∆F (a) for the MLP introduced in Theorem 3.1 and S, and (b) the
CNN introduced in Theorem 3.2 and GFSGF at initialization. The experiment is performed on CIFAR-2.
The x-axis corresponds to the width of the model (i.e., hidden size in MLP and number of channels in
CNN), while the y-axis shows the correlation based on Frobenius cosine similarity.

A APPENDIX

A.1 RELATED WORKS

Since the seminal work of (Zhang et al., 2017), there has been a lot of research aimed at reconciling the
classical notion of bias-variance hypothesis and the uniform convergence theory with the success of deep
neural networks (Neyshabur et al., 2017; Nagarajan & Kolter, 2019; Belkin et al., 2018; Kalimeris et al.,
2019; Bachmann et al., 2021; Chiang et al., 2023). Regarding this issue, there are two schools of thoughts
that either attribute this observation to an inductive bias introduced by the gradient-based optimization
methods used in deep learning (Neyshabur et al., 2017; Barrett & Dherin, 2021; Smith et al., 2021), or
the “volume hypothesis” arguing for the inherently larger volume of “good” solutions that generalize
well (Chiang et al., 2023). However, there is one certainty with regards to this issue: the existence of
“inductive biases” in these networks that result in a large decrease in the hypothesis class of solutions
provided by the model, causing generalization in practice.

In search of these inductive biases, some research has been focused on the optimization of neural
networks (Neyshabur et al., 2017; Arora et al., 2019; Guille-Escuret et al., 2023), which inevitably deals
with the geometry of these models in the parameter space (Arpit et al., 2017). On the other hand, the
introduction of neural tangent kernels allowed a link to be established between the rich literature of
kernel methods (Bartlett & Mendelson, 2002) and the asymptotic behavior of neural networks at infinite
width (Jacot et al., 2018). This also gave rise to some research concerned with inductive biases of deep
models in the kernel space, which is also mainly focused on the geometry of parameter space (Jacot et al.,
2018; Bietti & Mairal, 2019; Ortiz-Jiménez et al., 2021). However, there are also some research on the
spectral inductive biases of neural networks, which provide interesting but intangible results for the type
of frequencies used by these models in practice (Basri et al., 2019; Wen & Jacot, 2024).

The limited research on the geometry of deep neural networks in the input space is our main motivation
for this work. The closest line of research to our paper are the simplicity bias hypothesis (SBH) (Pérez
et al., 2019), and the neural anisotropy directions (Ortiz-Jiménez et al., 2020). The SBH (Arpit et al.,
2017; Pérez et al., 2019; Kalimeris et al., 2019) has become a cornerstone of deep learning theory, with
implication for generalization and robustness of deep neural networks (Kalimeris et al., 2019; Shah et al.,
2020). Specifically, SBH argues that neural networks learn functions of increasing complexity from the
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data. Therefore, in the presence of multiple solutions to the problem with various complexities, deep neural
networks opt for the simplest one. In this paper, we see that while SBH is still a valid hypothesis for the
inductive biases of neural networks, the geometry of the model in the input space - which is determined
by its architecture - also plays a role in the “preference” of deep neural networks for simpler functions.
Meaning that, depending on the architecture, there are more complex solutions that may be learned by the
model before simpler ones. This behavior is due to the geometry of the model remaining invariant in certain
directions of the input space. We dub this behavior geometric invariance, and our hypothesis that introduces
this behavior as a geometric inductive bias of neural networks, the Geometric Invariance Hypothesis (GIH).

The neural anisotropy directions (NADs) as defined in (Ortiz-Jiménez et al., 2020) touch on the concept
of geometric invariance for training on linearly separable datasets. Specifically, (Ortiz-Jiménez et al., 2020)
observe that in the case of linearly separable data in specific direction u, depending on the architecture,
neural networks are incapable of generalizing when u has a low correlation with the covariance of the
gradient of the model w.r.t. input at initialization. This observation can be seen as a specific version of
GIH limited to the linearly separable data. However, unlike our paper which motivates GIH from the
perspective of investigating the geometry of a neural network, (Ortiz-Jiménez et al., 2020) explain their
observations regarding GIH through the concept of discriminative dipoles, which corresponds to a pair
of data points residing on the opposite sides of a linear decision boundary. Therefore, given that our paper
does not make assumptions about the task, GIH can be seen as a generalization of the concept of NADs.

A.2 SUM OF SQUARED ERROR LOSS AND ITS DYNAMICS

Following related works (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019) we use the sum of squared
error (SSE) loss between the labels and the prediction of the model for the simplicity of analysis. However,
as we see in the experiments, in practice our analysis holds for cross-entropy loss as well. The SSE loss
can be written as:

L(θ)= 1

2

m∑
µ=1

(fθ(xµ)−yµ)
2
. (4)

In this case, we can write the dynamics of the parameter as:

θ̇=−
m∑

µ=1

∇θfθ(xµ)(fθ(xµ)−yµ). (5)

A.3 LOSS CURVATURE IN THE INPUT SPACE

An important source of information about the geometry of a neural network in the input space is the
Hessian of the loss w.r.t. the input, which contains information about the curvature. Let ∇2

x be the Hessian
operator. Using the chain rule on ℓ(fθ(x),y), we can write:

∇2
xℓ(fθ(x),y)=

∂ℓ

∂f
(fθ(x),y)·∇2

xfθ(x)+
∂2ℓ

∂f2
(fθ(x),y)∇xfθ(x)∇xfθ(x)

⊤.

We can factorize the two components determining the curvature of the loss in the input space in two: 1)
global model curvature (Hessian, for scalar fθ(x)), and 2) local model curvature (gradient outer-product).
Assuming that we’re in the over-parameterized setting with fθ(·) belonging to a family of neural networks,
we can expect the magnitude of the first derivative of the loss function w.r.t. the model to reach near 0 at some
point during the training procedure. Therefore, starting at some point in the training, we continue to have:

∇2
xℓ(fθ(x),y)≈

∂2ℓ

∂f2
(fθ(x),y)∇xfθ(x)∇xfθ(x)

⊤. (6)

So we can look at the gradient outer-product of the model as a low-rank approximation of the geometry of the
model in the input space8. In order to isolate the effect of architecture and other non-stochastic components

8Note that this is very similar to the Gauss-Newton approximation of the loss Hessian w.r.t. the parameters,
which is extensively used in optimization (Martens, 2020). However, here we are using this approximation solely
to understand the geometry of the model in the input space.
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(a) MLP
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(b) LeNet
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(c) VGG11
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(d) ResNet18

Figure 8: The correlation between Gt
F=Gt

F,N(0,I) and S and GFSGF for the (a) MLP, (b) LeNet, (c)
VGG11 without batch normalization, and (d) ResNet18 without batch normalization on CIFAR-2 with
random labeling.

in the model (e.g. the optimization method, initialization method, etc.) that influence the “geometric induc-
tive biases” of the model, we can marginalize the effect of the parameters out. Assuming that the second-
derivative of the loss function w.r.t. the model output has a small variation over Tt9, then we can write:

Eθ∼Tt

[
∇2

xℓ(fθ(x),y)
]
∝Gt

F(x).

Therefore, by looking at the average geometry at point x and time t through Gt
F(x), we will have an

increasingly accurate approximation of the loss curvature in the input at point x and time t up to a constant.
Given a probing distribution P, we can consider Ex∼P,θ∼Tt

[
∇2

xℓ(fθ(x),y)
]

as the average geometry,
which we estimate by Gt

F,P=Ex∼P [G
t
F(x)].

Based on this approximation of the geometry in the input space, we will formulate a function informing
us about the changes in the geometry as well. Let us start with the derivative of (6) w.r.t. time in order
to get the changes in the loss curvature through the gradient flow model:

d∇2
xℓ

dt
(fθ(x), y) ≈

∂3ℓ

∂f3
(fθ(x), y) ·

(
∇θfθ(x)

⊤θ̇
)
∇xfθ(x)∇xfθ(x)

⊤

+
∂2ℓ

∂f2
(fθ(x),y)∇2

x,θfθ(x)θ̇∇xfθ(x)
⊤ +

∂2ℓ

∂f2
(fθ(x),y)∇xfθ(x)θ̇

⊤∇x,θfθ(x)
⊤.

Assuming that the third-derivative of the loss function w.r.t. the model output is close to zero10, and
assuming the independence of Tt and the second derivative of the loss, we can get the expected value
of the two sides w.r.t. the parameters to isolate the effect of inductive biases, which gives us:

Eθ∼Tt

[
d∇2

xℓ

dt
(fθ(x),y)

]
∝∆t

F(x).

Therefore, based on the loss curvature evolution function and given a probing distribution P, we define the

average geometry evolution asEx∼P,θ∼Tt

[d∇2
xℓ

dt (fθ(x),y)
]
, which we estimate as∆t

F,P up to a constant.

A.4 INDEPENDENCE OF ∆F(x) FROM LABELS

In this section, we try to investigate the dependence between the average geometry evolution at initialization
∆F and the train labels yµ, i.e., the relationship between the changes in the geometry at initialization and
the task. Firstly, we provide the following proposition to show that at the first gradient descent step, this
independence can be proved provided that the model has a single-layer perceptron for its classification
layer and is trained via SSE loss.
Proposition A.1. LetF be a family of neural networks with a single layer perceptron initialized i.i.d. from a
zero-mean Gaussian as the classification layer, trained via SSE. Then ∆F(x) is independent of train labels.

Proof. Let fθ(x) be the model defined by the proposition:

fθ(x)=

n∑
i=1

ωih
i
ϕ(x),

9This can happen, for instance, when we have the SSE loss where the second-derivative is constant.
10For instance, in the cross entropy loss the third derivative will be equal to the second derivative of the softmax

function, which is bounded by 1/8, while it is equal to zero in the SSE loss.
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where hϕ(x) is the hidden representation in the penultimate layer of the model, hiϕ(x) is its ith element,
and ω corresponds to the weights of the classification layer. Therefore, θ corresponds to the concatenation
of ω and ϕ. The required derivatives are:

∇xfθ(x)=

n∑
i=1

ωi∇xh
i
ϕ(x),

∂fθ
∂ωi

(x)=hiϕ(x),

∂∇xfθ
∂ωi

(x)=∇xh
i
ϕ(x),

∇ϕfθ(x)=

n∑
i=1

ωi∇ϕh
i
ϕ(x),

∇x,ϕfθ(x)=

n∑
i=1

ωi∇x,ϕh
i
ϕ(x).

So we can write ∆F(x)=AF(x)+AF(x)
⊤, where we have:

(7)
AF(x) = −

m∑
µ=1

(
n∑

i1=1

n∑
i3=1

n∑
i4=1

Eθ

[
ωi3h

i1
ϕ (xµ)

(
ωi4h

i4
ϕ (xµ)− yµ

)
∇xh

i1
ϕ (x)∇xh

i3
ϕ (x)

⊤
]

+Eθ

[
ωi1ωi2ωi3

(
ωi4h

i4
ϕ (xµ)− yµ

)
∇x,ϕh

i1
ϕ (x)∇ϕh

i2
ϕ (xµ)∇xh

i3
ϕ (x)

⊤
])

.

Note that the terms related to yµ in (7) contain an odd number of ωis. Considering that ω is i.i.d. and
zero-mean Gaussian, its odd moments are equal to zero, which means these terms will be eliminated. This
completes our proof.

As we can observe from Proposition A.1, ∆F is provably independent of the task and only depends on
inputs. In order to show that this behavior remains consistent at the initial stages of training, we formulate
an experiment similar to Section 3. Specifically, we try to show that even if there’s nothing to learn
from the data, and the task is fully about the “memorization” of the data, ∆F still follows the behavior
outline in Conjecture 1. So we relabel the CIFAR-2 dataset introduced in Section 3 using a uniform
random distribution over {−1,1}. We then report the correlation between Gt

F and GFSGF along with
the training accuracy for each epoch. The results are visualized in Figure 8. We point out that these results
clearly indicate the universality of our theoretical motivations, meaning that the behavior outlined in the
theorems in Section 3 culminating in the introduction of Conjecture 1 are independent of the task.

A.5 THE STRUCTURE OF GF

In this section we try to investigate how the architecture affects GF . First, we will present the following
theorem for the case where F corresponds to an MLP or CNN with ReLU non-linearity and without
pooling layers or skip-connections:
Theorem A.2. Let F be the family of MLPs or CNNs with ReLU non-linearity, without pooling layers
or skip-connections. Then we have GF(x) = c ·I for some constant c. For the proof, please refer to
App. A.11.4.

As we can observe in Theorem A.2, in the case where F does not contain any pooling, self-attention, or
skip-connections, the matrix GF will correspond to the identity matrix, and therefore, is a full rank matrix.

However, this is not the case in other types of architecture components. For instance, the following theorem
will show that the introduction of an average pooling layer will introduce a structure to GF :
Theorem A.3. Let F be the family of CNNs with a linear convolution layer and a single kernel, followed
by a batch normalization layer and a global average pooling layer. Also, let Mj correspond to a binary
matrix that simulates the convolutional operation for the jth filter. Assuming we use SSE loss, we have:

GF∝
∑
j1

∑
j2

Ij1,j2,
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where Ij1,j2 is a diagonal binary matrix corresponding to the overlap of the jth1 and jth2 patch of the data.
For the proof, please refer to App. A.11.5.

From Theorem A.3 we observe thatGF will have a diagonal form, with each diagonal element proportional
to how many times the corresponding input element has been in the receptive field of the convolution
filter. In the case of batch normalization, the structure of GF can be potentially even more complex:
Corollary A.4. Let F be the family of CNNs with a linear convolution layer and a single kernel, followed
by a batch normalization layer and a global average pooling layer. Also, let Mj correspond to a binary
matrix that simulates the convolutional operation for the jth filter. Assuming that the train data is
zero-mean and we use SSE loss, then we have:

GF∝
∑
j1

∑
j2

Mj1Eθ

[
θθ⊤

σj1(θ)·σj2(θ)

]
M⊤

j2,

where σj(θ)=Varxµ∈DT
(θ⊤M⊤

j xµ). Therefore, the terms in GF corresponding to each pair of indices
j1,j2 is bounded as:

1√
λj1minλ

j2
min

Ij1,j2 ⪰Mj1Eθ

[
θθ⊤

σj1(θ)·σj2(θ)

]
M⊤

j2 ⪰
1√

λj1maxλ
j2
max

Ij1,j2,

where λjmin,λ
j
max are the smallest and largest eigenvalues of the covariance of the jth patch of the data.

For the proof, please refer to App. A.11.6.

The Corollary A.4 indicates that introducing normalization to the model will result in a re-weighting of the
influence of the input elements based on their variance onto GF , atop the receptive field-related structure
introduced by Theorem A.3. In our experience, in cases where the covariance of the training data has
a structure, this will result in the normalization of GF w.r.t. each patch of data which depends on the
kernel size in CNNs and the patch size in ViT.

Therefore, we can see that certain architecture components can introduce structure toGF , which can reduce
the ranking of GF . This indicates a significant narrowing of the geometric inductive biases of the model on
the input space, as considered by this paper, which as we observed in Figure 4, results in the model being
unable to generalize in tasks wherein the decision boundary lies in directions with low correlation with GF .

A.6 VISUALIZATION OF THE AVERAGE GEOMETRY

In this section, we provide a visualization of the average geometry at initialization, i.e., GF for various
architectures. As we can observe in Figure 9, an MLP has a full-rank average geometry at initialization,
with the matrix GF resembling the identity matrix. On the other hand, the eigenvalues of the other
architecture have a much wider range, clearly indicating a presence of structure in the average geometry.

A.7 GIH AND GENERALIZATION GAP WITH ISOTROPIC DATA

In this section, we try to isolate the effect of GIH over the generalization gap by making the data covariance
as close to “isotropic” as possible. Specifically, we design the following experiment involving synthetic
data formulated as follows:

x=ϵαu+ω, ω∼N
(
0,σ2

(
I−uu⊤)), (8)

where we have α∼N (0,1), and we consider u to be the discriminant feature, similar to Section 4.2. Note
that in this setting, for ϵ≈σ we can roughly say x∼N

(
0,σ2I

)
, which eliminates the effect of data over the

changes in geometry. Similar to the experiment in Section 4.2, we assess the generalization ability of the
model for varying complexity of tasks: linear as y=sgn((x⊤u)+b), quadratic as y=sgn((x⊤u)2+b),
and sinusoidal as y=sgn(sin(x̄⊤u)+b). Note that we can view the ratio ϵ/σ as a measure of the margin
between the two classes, which controls the difficulty of the problem. In Figure 10, you can observe the
test accuracy of the models for these tasks, with u selected from the eigenvectors of GF in descending
order of the eigenvalues.

As we can observe, in the absence of a structure in the data covariance, the MLP model will be completely
devoid of any geometric inductive bias, achieving generalization in all directions with similar equality.
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(a) MLP
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(b) LeNet
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(c) ResNet18
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(d) ViT

Figure 9: The visualization of the average geometry at initialization (GF) for (a) MLP, (b) LeNet, (c)
ResNet18, and (d) ViT in the upper row, along with their eigenvalues in the lower row. The input
space corresponds to a single-channel 32 × 32 image. Note that the visualized NAD components
in (Ortiz-Jiménez et al., 2020) corresponds to the eigenvectors of this matrix. Considering Conjectures 1
and 2, we can interpret this matrix as how the variation in the data impacts the geometry during training.
For instance, in MLP we observe that the average geometry is a scaled identity matrix. As a result, the
data variation impacts the geometry of each input element separately. On the other hand, in LeNet the
average geometry is a matrix with non-zero elements around the diagonal. As a result, we expect the data
variation to impact the geometry of input elements in proximity to each other. Similarly, in ResNet and
ViT we observe a periodic structure in the average geometry. As a result, we expect the data variation
to impact the geometry of input elements in a cyclic manner.
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(b) LeNet
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(c) ResNet18

0 250 500 750 1000
Eigenvalue Index

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

10 5

10 4

10 3

10 2

10 1

100

Ei
ge

nv
al

ue

Linear
Quadratic
Sinusoidal
Eigenvalue

(d) ViT

Figure 10: The test accuracy for the (a) MLP, (b) LeNet, (c) ResNet18, and (d) ViT on the synthetic data.
We set σ=1 for all experiments and ϵ to 0.9 and 2.0 for the linear and quadratic decision boundaries,
respectively. For the sinusoidal decision boundary, we set ϵ to 2.1 for MLP and LeNet, and 5.0 for
ResNet18 and ViT.

On the other hand, in the case of the models with structured average geometry, the performance of the
model in all tasks is correlated with the eigenvalue of the corresponding discriminant feature. These results
provide further support for the GIH, while also confirming that the observation in Section 4.2 is due to
the existence of a structure in both the data covariance and the initial geometry.

A.8 THE EFFECT OF DATASIZE ON GIH

GIH is implicitly based on the assumption that the average geometry evolution still follows the pattern
introduced in Conjecture 1 in the latter stages of training. Therefore, a natural question that may arise from
this assumption and our experimental setting is that: Can GIH be solely attributed to the over-parameterized
regime? In order to answer this question definitely, we designed several experiments to investigate the
effect of datasize on GIH fully.
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(a) CIFAR-10
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Figure 11: The test accuracy of LeNet for the (a) CIFAR-10 and the (b) synthetic Gaussian datasets
introduced in Section 4.2 and App. A.7, respectively. We used the exact same training setting but with
the same amount of training samples as model parameters (50k samples).
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Figure 12: The train accuracy and velocity Ġt(·, ·) of the ResNet18 without batch normalization
on two synthetic datasets: GF covariance x ∼ N (0,GF/∥GF∥2) and flip (GF) covariance
x ∼ N (0,flip(GF)/∥flip(GF)∥2) with random labels. We perform the experiments for datasizes in
{10000,20000,40000,60000,80000,100000}.

In the first step, we start by looking at the test accuracy and the effects of GIH on generalization as we
observed in Section 4.2 and App. A.7 on the verge of under-parameterization in LeNet. You can see the
results of this experiment in Figure 11. Note that in order to make the under-parameterized regime possible,
we had to slightly decrease the size of LeNet by making the fully connected layers slightly smaller. Despite
the larger dataset and the fact that the model is no longer in the over-parameterized regime, we can observe
that the performance of the model on the test sample is still exactly as the GIH would predict. Specifically,
we can still observe a “preference” to learn the features more aligned with the average geometry during
training. This observation rules out over-parameterization as a condition for GIH.

We can also look at the train accuracy and how it is affected by datasize. In order to do so, we focus on
ResNet18 and use the experimental settings of Section 4 for Figure 3. So we will look at the train accuracy
and the velocity of the average geometry for datasizes in {10000,20000,40000,60000,80000,100000}
for data sampled from N (0,GF/∥GF∥2) and N (0,flip(GF)/∥flip(GF)∥2). You can see the experiment
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Figure 13: The train accuracy and velocity Ġt(·, ·) of the ResNet18 without batch normalization
on two synthetic datasets: GF covariance x ∼ N (0,GF/∥GF∥2) and flip (GF) covariance
x ∼ N (0,flip(GF)/∥flip(GF)∥2) with random labels. We perform the experiments for datasizes in
{10000,20000,40000,60000,80000,100000}. Furthermore, we increase the batchsize for each datasize
so that the number of mini-batches would remain the same.

results in Figure 12. At first glance, the results may seem to indicate that the effects of GIH are vanishing
on the train accuracy as the number of datapoints increases. However, we were able to refute this point.
Specifically, based on these results we hypothesize that the reason the model is able to generalize on the
flip(GF) covariance data is that the number of iterations are also increasing, resulting in the parameter
ending up very far away from the initialization point. Therefore, it will effectively eliminate the geometric
inductive biases of the model caused by initialization, resulting in the model behaving according to the
geometric inductive biases of some Gt

F for some very large t>011.

In order to support our claim, we designed another similar experiment this time with a dynamic batchsize
that increases with the datasize to make sure the number of iterations of SGD on the parameters remains
constant. This will ensure that we are moving a similar distance in the parameter space during training for
all train data sizes. You can see the experiment results in Figure 13. As evident by the results, in this exper-
iment, the model is reverting to adhering to the behavior predicted by GIH, which supports our hypothesis
for the reason behind the observation in Figure 12. In App. A.9, we will see that while the distance from ini-
tialization seems to be affecting the predictions of GIH for train accuracy, it is not the case for test accuracy.

A.9 THE EFFECT OF LEARNING RATE ON GIH

Given that GIH is concerned with the training dynamics of neural networks, an important relationship
to explore is how learning rate impacts GIH. Specifically, in this section, we are trying to understand
whether the learning rate amplifies or reduces the effect of GIH, similar to the results of Appendix A.8. In
order to answer this question, we designed the following experiment for the ResNet18 model. We follow
the experimental settings of App. A.7 for the experiments presented in Figure 10, but for learning rate in
{1.0,0.1,0.01,0.001}. You can see the experiment results in Figure 14. Note that in all these experiments,
the model converges on the train data and reaches a 100% train accuracy.

11Note that we are abusing our notation to make the point that the effects of GIH are still present, but with some
average geometry computed at a different point during training than at initialization
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(a) Linear
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(b) Quadratic
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Figure 14: The test accuracy of ResNet18 for the (a) Linear, (b) Quadratic, and (c) Sinusoidal decision
boundaries on the synthetic data. We follow the same experimental setting as in App. A.7, except for
the learning rate, which is chosen from the following set: {1.0,0.1,0.01,0.001}.
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Figure 15: A visualization of the eigenvectors for the model introduced in App. A.10. The blue vectors
have non-zero eigenvalues, while the red vector has zero eigenvalue.

As we can observe, a very small learning rate has a detrimental effect on the performance of the model,
while larger learning rates generally generalize better. However, in all these cases we can observe that
the model is following the predictions of GIH, and we can observe a “preference” to learn the features
more aligned with the average geometry during training. Furthermore, these observations also support
our hypothesis for the results of the experiment performed in App. A.8, as larger learning rates, and thus
longer optimization paths, do not cause the effects of GIH over the test data to vanish.

A.10 AN EXAMPLE

For the sake of clarity, let us consider an example of a 3-dimensional input space, a point on which we
denote as:

x=

[
x1
x2
x3

]
.
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For our model, let us assume we have a convolution layer with a single kernel in the form of θ=
[
θ1
θ2

]
,

followed by an average pooling layer of size 2. Then, we can write the model in the vector form as:

fθ(x)=[1/2 1/2]

[
θ1 θ2 0
0 θ1 θ2

][x1
x2
x3

]

=
1

2
·[θ1 θ1+θ2 θ2]

[
x1
x2
x3

]
.

So the gradient of the model w.r.t. the input will be:

∇xfθ(x)=
1

2
·

[
θ1

θ1+θ2
θ2

]
.

So the outer product of the gradient with itself will be:

∇xfθ(x)∇xfθ(x)
⊤=

1

4
·

 θ21 θ21+θ1θ2 θ1θ2
θ21+θ1θ2 (θ1+θ2)

2
θ1θ2+θ22

θ1θ2 θ1θ2+θ22 θ22

.
Now let us assume the parameters are initialized as i.i.d. zero-mean Gaussian random variables, i.e.,
θi∼N

(
0,σ2

θ

)
. Then we can write:

GF=
σ2
θ

2

[
1 1 0
1 2 1
0 1 1

]
.

Therefore, the average geometry at initialization is a rank-2 matrix with the following eigenvalues and
eigenvectors:

• Eigenvector: v1=

[
1
2
1

]
, eigenvalue: λ1=3

• Eigenvector: v2=

[−1
0
1

]
, eigenvalue: λ2=1

• Eigenvector: v3=

[
1
−1
1

]
, eigenvalue: λ3=0

You can see a visualization of these eigenvectors in Figure 15. According to GIH the geometry of the model
in the input space can only change in the direction of the blue vectors, which corresponds to a 2-dimensional
plane. Therefore, the model is not capable of forming decision boundaries in the direction of the red vectors,
thus having a geometric inductive bias towards the features residing on the plane defined by the blue vectors.

A.11 PROOF OF THEOREMS

A.11.1 LEMMAS

We will start the proofs by first proving four lemmas that we will be using in the rest of this section.

Lemma A.5. Let δ ∼ N (0,I) be a standard Gaussian variable, and a,b ∈ RD be two unit vectors.
Then, as D becomes larger (D→∞), and assuming a,b are non-sparse (i.e., their magnitude is not
concentrated on a few elements), we have:

Eδ

[
1δ⊤a>01δ⊤b>0δδ

⊤]≈Eδ[1δ⊤a>01δ⊤b>0]·ID,

which becomes accurate at the rate of
√
D.
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Proof. We will start by partitioning the variability into three factors: δ=α·a+β ·b⊥+δ⊥, where b⊥ is
the unit vector in the direction of the orthogonal projection of b on a, and δ⊥∼N

(
0,ID−aa⊤−b⊥b

⊤
⊥
)
.

Then we can write:

Eδ

[
1δ⊤a>01δ⊤b>0δδ

⊤]=(E[1α>01α·a⊤b⊥+β·b⊤b⊥>0α
2
]
−E
[
1α>01α·a⊤b⊥+β·b⊤b⊥>0

])
aa⊤

+
(
E
[
1α>01α·a⊤b⊥+β·b⊤b⊥>0β

2
]
−E
[
1α>01α·a⊤b⊥+β·b⊤b⊥>0

])
b⊥b

⊤
⊥

+E
[
1α>01α·a⊤b⊥+β·b⊤b⊥>0αβ

](
b⊥a

⊤+ab⊤
⊥
)

+E
[
1α>01α·a⊤b⊥+β·b⊤b⊥>0

]
ID.

Now, we will upper-bound the coefficients of the first three terms. For the coefficient of the first term,
we can write:

=E
[
1α>01α·c+β>0α

2
]
−E[1α>01α·c+β>0] (9)

=
1

2
·
(
E
[
1α>0

(
erf
(

1√
2
α·c
)
+1

)
α2

]
−E
[
1α>0

(
erf
(

1√
2
α·c
)
+1

)])
(10)

=
1

2
·
(
E
[
1α>0erf

(
1√
2
α·c
)
α2

]
−E
[
1α>0erf

(
1√
2
α·c
)])

(11)

=
1

π
E
[
1α>0αexp

(
− 1√

2
α2·c2

)]
, (12)

where c= a⊤b⊥
b⊤b⊥

, (10) comes from the definition of indicator function and the error function erf(·), (11)
comes from α being a standard Gaussian variable which gives us E

[
1α>0α

2
]
=E[1α>0]=

1
2 , and (12)

comes from the following:

E
[
1α>0erf

(
α·c√
2

)
α2

]
=

1√
2π

∫ +∞

0

erf
(
α·c√
2

)
α2exp

(
−α2

2

)
dα (13)

=− 1√
2π

∫ +∞

0

erf
(
α·c√
2

)
α dexp

(
−α2

2

)
(14)

=
1√
2π

∫ +∞

0

(
erf
(
α·c√
2

)
+

2√
π
αexp

(
−α2·c2√

2

))
exp

(
−α2

2

)
dα (15)

=E
[
1α>0erf

(
α·c√
2

)]
+

2√
2π

E
[
1α>0αexp

(
−α2·c2√

2

)]
, (16)

with (14) resulting from αexp
(
−α2

2

)
dα=−dexp

(
−α2

2

)
, and (15) resulting from integration by parts.

Similarly, for the coefficient of the second term we can write:

=E
[
1α>01α·c+β>0β

2
]
−E[1α>01α·c+β>0] (17)

=
1√
2π

E
[
1α>0α·c·exp

(
−α2·c2

2

)]
+E[1α>01α·c+β>0]−E[1α>01α·c+β>0] (18)

=
1√
2π

E
[
1α>0α·c·exp

(
−α2·c2

2

)]
, (19)

where (18) comes from:

Eβ

[
1α·c+β>0β

2
]
=

1√
2π

∫ +∞

−α·c
β2exp

(
−β2

2

)
dβ (20)

=− 1√
2π

∫ +∞

−α·c
β dexp

(
−β2

2

)
(21)

=− 1√
2π

(
−α·c·exp

(
−β2·c2

2

)
−
∫ +∞

−α·c
exp

(
−β2

2

)
dβ
)

(22)

=
1√
2π

α·c·exp
(
−β2·c2

2

)
+Eβ[1α·c+β>0]. (23)
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And for the third term, we have:

E[1α>01α·c+β>0αβ]=
1√
2π

E
[
1α>0α·exp

(
−α2·c2

2

)]
,

which comes from:

Eβ[1α·c+β>0β]=
1√
2π

∫ +∞

−α·c
β·exp

(
−β2

2

)
dβ

=− 1√
2π

∫ +∞

−α·c
dexp

(
−β2

2

)
=

1√
2π

exp

(
−α2·c2

2

)
.

For (12), we have:

1

π
E
[
1α>0αexp

(
− 1√

2
α2·c2

)]
≤ 1

π
E[1α>0α]

=
1

π
√
2π

,

which comes from exp
(
−α2·c2

)
≤1. For (19), note that the maximum value of c·exp

(
−α2·c2

2

)
happens

at α2·c2=1, which gives us:

1√
2π

E
[
1α>0α·c·exp

(
−α2·c2

2

)]
≤ 1√

2π
E
[
1α>0exp

(
−1

2

)]
=
exp
(
−1

2

)
2
√
2π

.

And for (A.11.1), we have:

1√
2π

E
[
1α>0α·exp

(
−α2·c2

2

)]
≤ 1√

2π
E[1α>0α]

=
1

2π
,

which also comes from exp
(
−α2·c2

2

)
≤1.

So we can see that the coefficients of the first three terms are bounded. Furthermore, we can assume
a≠c′·b for some constant c′∈{+1,−1}, since otherwise the result would be trivial:

Eδ

[
1δ⊤a>01δ⊤b>0δδ

⊤]=Eδ

[
1δ⊤a>0δδ

⊤]
=
1

2
Eδ

[
δδ⊤
]

=
1

2
ID,

for c′=1, and:
Eδ

[
1δ⊤a>01δ⊤b>0δδ

⊤]=0,

otherwise. So as D→∞, given that a,b are non-sparse and unit vectors, their magnitude will be stretched
over the elements, resulting in each element of a and b approaching 0 at the rate of

√
D. Therefore, the

last term will be the dominant term, which completes our proof.

Lemma A.6. Let δ∼N (0,I) be a standard Gaussian variable, and a,b∈RD be two vectors. Then, assum-
ing a∼N (0,ID), the term Eδ[1δ⊤a>01δ⊤b>0] will be a uniform random variable w.r.t. a, and we have:

Eδ,a[1δ⊤a>01δ⊤b>0]=
1

2
, Ea

[
Eδ[1δ⊤a>01δ⊤b>0]

2
]
=
1

3
. (24)
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Proof. Note that since a is a standard Gaussian variable, its angle with a given vector b is a uniformly
distributed variable. Furthermore, Eδ[1δ⊤a>01δ⊤b>0] corresponds to the overlap of the two halfspaces
defined by δ⊤a> 0 and δ⊤b> 0, which is equal to the ratio of the angle between a and b in Radian,
divided by 2π. As a result, it is a uniform variable ∼U[0,1] (i.e., uniformly distributed in [0,1] range).
So its expected value and second moment are, respectively, 1

2 and 1
3 .

Lemma A.7. Let δ∼N (0,ID) be a standard Gaussian random variable of size D. Then we have:

Eδ

[
δδ⊤

∥δ∥22

]
=

1

D
ID. (25)

Proof. First, note that due to symmetry, the diagonal elements and the off-diagonal elements are equal
in (25). Therefore, we can get the diagonal elements by evaluating the trace:

Tr

(
Eδ

[
δδ⊤

∥δ∥22

])
=Eδ

[
Tr
(
δδ⊤
)

∥δ∥22

]
=Eδ[1]

=1.

This gives us diagonal elements equal to 1/D. On the other hand, note that we can write an off-diagonal
element in (25) as:

Eδi,δj

[
δiδj

δ2i +δ2j+D−2

]
,

which is equal to 0 due to the fact that δ is zero-mean and symmetric in distribution. This completes the
proof.

A.11.2 PROOF FOR THEOREM 3.1

Now that we have proved the two lemmas, we can prove Theorem 3.1.

Proof. Let fθ(x) be the model described in the theorem:

fθ(x)=

n∑
i=1

ωi·1ϕ⊤
i x>0ϕ

⊤
i x,

where ωi and ϕi are i.i.d. random Gaussian variables with zero mean and variance σ2
ω and σ2

ϕ, respectively.
As such, we have θ⊤=[ωi;ϕ

⊤
i ]

n
i=1, i.e., the concatenation of ωis and ϕis. The derivatives of fθ(x) can

be written as:

∇xfθ(x)=

n∑
i=1

ωi·1ϕ⊤
i xϕi,

∂fθ
∂ωi

(x)=1ϕ⊤
i x>0ϕ

⊤
i x,

∂fθ
∂ϕi

(x)=ωi·1ϕ⊤
i x>0x,

∂∇xfθ
∂ωi

(x)=1ϕ⊤
i x>0ϕi,

∂∇xfθ(x)

∂ϕi
(x)=ωi·1ϕ⊤

i x>0I.

Following Proposition A.1, we can write ∆F=AF+A⊤
F from (3) with:

(26)
AF = −

m∑
µ=1

Ex,θ

( n∑
i=1

1ϕ⊤
i x>01ϕ⊤

i xµ>0

((
ϕ⊤
i xµ

)
ϕi + ω2

ixµ

))
 n∑

j=1

ωj1ϕ⊤
j x>0ϕ

⊤
j

( n∑
k=1

ωk1ϕ⊤
k xµ>0ϕ

⊤
k xµ − y

) .
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Note that since ω is zero-mean, the terms related to y are eliminated from (26). Similarly, the terms
involving j ≠k are also eliminated. So we have:

(27)AF = −
m∑

µ=1

n∑
i=1

n∑
j=1

σ2
ω

[
Eθ,x

[
1ϕ⊤

i x>01ϕ⊤
i xµ>01ϕ⊤

j x>01ϕ⊤
j xµ>0

(
ϕ⊤
i xµ

)(
ϕ⊤
j xµ

)
ϕiϕ

⊤
j

]
+ σ4

ωEθ,x

[
1ϕ⊤

i x>01ϕ⊤
i xµ>01ϕ⊤

j x>01ϕ⊤
j xµ>0

(
ϕ⊤
j xµ

)
xµϕ

⊤
j

]]
.

For the first term in (27), we have n terms with i=j, which are equal to:

Eθ,x

[
1ϕ⊤

i x>01ϕ⊤
i xµ>0

(
ϕ⊤
i xµ

)2
ϕiϕ

⊤
i

]
=Eθ

[
Ex

[
1ϕ⊤

i x>0

]
1ϕ⊤

i xµ>0

(
ϕ⊤
i xµ

)2
ϕiϕ

⊤
i

]
=
1

2
Eθ

[
1ϕ⊤

i xµ>0

(
ϕ⊤
i xµ

)2
ϕiϕ

⊤
i

]
=
1

4
Eθ

[(
ϕ⊤
i xµ

)2
ϕiϕ

⊤
i

]
=
σ4
ϕ

4
xµx

⊤
µ +

σ4
ϕ

4
x⊤
µxµI,

And in the case when i≠j, we have n2−n terms each of which are equal to:

Ex

[
Eϕi

[
1ϕ⊤

i x>01ϕ⊤
i xµ>0ϕiϕ

⊤
i

]
xµx

⊤
µEϕj

[
1ϕ⊤

j x>01ϕ⊤
j xµ>0ϕjϕ

⊤
j

]]
(28)

≈σ4
ϕEx

[
Eϕi

[
1ϕ⊤

i x>01ϕ⊤
i xµ>0

]
·Eϕj

[
1ϕ⊤

j x>01ϕ⊤
j xµ>0

]]
xµx

⊤
µ (29)

=
σ4
ϕ

3
xµx

⊤
µ , (30)

where (29) comes from Lemma A.5, and (30) comes from Lemma A.6. For the second term in (27), when
i=j we have n terms in the following form:

Eθ,x

[
1ϕ⊤

i x>01ϕ⊤
i xµ>0

(
ϕ⊤
i xµ

)
xµϕ

⊤
i

]
=xµx

⊤
µEθ,x

[
1ϕ⊤

i x>01ϕ⊤
i xµ

ϕiϕ
⊤
i

]
(31)

=σ2
ϕ·xµx

⊤
µEx,ϕi

[
1ϕ⊤

i x>01ϕ⊤
i xµ>0

]
(32)

=
σ2
ϕ

2
xµx

⊤
µ , (33)

where (32) follows from Lemma A.5 and (33) follows from Lemma A.6. And finally, the second term
in (27) has n2−n terms with i≠j, which are equal to:

Ex

[
Eϕi

[
1ϕ⊤

i x>01ϕ⊤
i xµ>0

]
Eϕj

[
1ϕ⊤

j x>01ϕ⊤
j xµ>0

(
ϕ⊤
j xµ

)
xµϕ

⊤
j

]]
(34)

=σ2
ϕEx

[
Eϕi

[
1ϕ⊤

i x>01ϕ⊤
i xµ>0

]
Eϕj

[
1ϕ⊤

j x>01ϕ⊤
j xµ>0

]]
xµx

⊤
µ (35)

=
σ2
ϕ

3
xµx

⊤
µ , (36)

where (35) comes from Lemma A.5 and (36) comes from Lemma A.6.

Finally, given the results so far, we can write:

∆F=−2·
m∑

µ=1

(
nσ4

ϕσ
2
ω

4
+
(
n2−n

)σ4
ϕσ

2
ω

3
−
nσ2

ϕσ
4
ω

2
−
(
n2−n

)σ2
ϕσ

4
ω

3

)
xµx

⊤
µ −2·

nσ4
ϕσ

2
ω

4
∥xµ∥22I−2·O(

1√
D
)E1

=−2n

(
σ4
ϕσ

2
ω

4
+(n−1)

σ4
ϕσ

2
ω

3
+
σ2
ϕσ

4
ω

2
+(n−1)

σ2
ϕσ

4
ω

3

)
m∑

µ=1

xµx
⊤
µ −

2nσ4
ϕσ

2
ω

4

m∑
µ=1

∥xµ∥22I−O(
2√
D
)E1

=−O(n2)·S−O(
1√
D
)·E1−O(n)·E2,

where E1 is the error corresponding to our approximation from Lemma A.5, and E2 =
∑m

xµ=1∥xµ∥22I.

So we have lim
n,D→∞

∣∣∣∣ Tr(∆⊤
FS)

∥∆F∥F ·∥S∥F

∣∣∣∣= lim
n,D→∞

∣∣∣∣∣∣
Tr

((
O(n2)S+O

(
1√
D

)
E1+O(n)E2

)⊤
S

)
∥∥∥∥(O(n2)S+O

(
1√
D

)
E1+O(n)E2

)⊤
S

∥∥∥∥
F

·∥S∥F

∣∣∣∣∣∣=1
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A.11.3 PROOF FOR THEOREM 3.2

Proof. Let fθ(x) be the model described in the theorem:

fθ(x)=
1

k

n∑
i=1

ωi

 k∑
j=1

ϕ⊤
i M

⊤
j x

,

where ωi and ϕi are i.i.d. random Gaussian variables with zero mean and variances σ2
ω and σ2

ϕ, respectively,
and Mj is a binary matrix mimicking the convolution operation. Note that we set Ij1,j2 =Mj1M

T
j2

,
which is a binary diagonal matrix with elements in the receptive field of both j1 and j2 set to 1 and 0
otherwise. Furthermore, we have θ⊤=[ωi;ϕ

⊤
i ]

n
i=1, i.e., the concatenation of ωis and ϕis. The derivatives

of fθ(x) can be written as:

∇xfθ(x)=
1

k

n∑
i=1

ωi

 k∑
j=1

Mjϕi

,

∂fθ(x)

∂ωi
(x)=

1

k

k∑
j=1

ϕ⊤
i M

⊤
j x,

∂∇xfθ
∂ωi

(x)=
1

k

k∑
j=1

Mjϕi,

∂fθ
∂ϕi

(x)=
1

k
ωi

k∑
j=1

M⊤
j x,

∂∇xfθ
∂ϕi

(x)=
1

k
ωi

k∑
j=1

Mj.

We first evaluate GF(x):

GF(x)=
1

k2
Eθ


 n∑

i1=1

ωi1

 k∑
j1=1

Mj1ϕi1

 n∑
i2=1

ωi2

 k∑
j2=1

Mj2ϕi2

⊤


=
σ2
ω

k2

n∑
i=1

k∑
j1=1

k∑
j2=1

Eθ

[
Mj1ϕiϕ

T
i M

⊤
j2

]
=
nσ2

ωσ
2
ϕ

k2

k∑
j1=1

k∑
j2=1

Ij1,j2.

Now we will try to show that ∆F(x)=AF(x)+AF(x)
⊤=GF(x)SGF(x). Following Proposition A.1,

we can write ∆F as:

(37)AF(x) = − 1

k4

m∑
µ=1

n∑
i1=1

n∑
i2=1

k∑
j1=1

k∑
j2=1

k∑
j3=1

k∑
j4=1

(
σ2
ωEθ

[(
ϕ⊤
i1M

⊤
j1xµ

)(
ϕ⊤
i1M

⊤
j4xµ

)
Mj2ϕi1ϕ

⊤
i2M

⊤
j3

]
+ σ4

ωEθ

[(
ϕ⊤
i2M

⊤
j4xµ

)
Mj1M

⊤
j2xµϕ

⊤
i2M

⊤
j3

])
.

The first term in (37) has n terms with i1=i2 (substitute i1,i2 with i), which can be written as:

nMj2Eϕi

[(
ϕ⊤
i M

⊤
j1xµ

)
ϕiϕ

⊤
i xµx

⊤
µMj4ϕiϕ

⊤
i

]
=nMj2Eϕi

[
ϕiϕ

⊤
i M

⊤
j1xµx

⊤
µMj4ϕiϕ

⊤
i

]
So using Stein’s lemma, we have:

nMj2Eϕi

[
ϕiϕ

⊤
i M

⊤
j1xµx

⊤
µMj4ϕiϕ

⊤
i

]
=nσ2

ϕMj2

(
Eϕi

[
ϕ⊤
i M

⊤
j1xµx

⊤
µMj4ϕi

]
+M⊤

j1xµx
⊤
µMj4Eϕi

[
ϕiϕ

⊤
i

])
.
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The first term is equal to σ2
ϕTr

(
M⊤

j1
xµx

⊤
µMj4

)
, and the second term is equal to σ2

ϕMj1xµx
⊤
µMj4 . So

the n terms in (37) with i1=i2 are equivalent to:

nσ4
ϕIj2,j1xµx

⊤
µ Ij3,j4+nσ4

ϕTr
(
M⊤

j1xµx
⊤
µMj4

)
Ij2,j3.

The first term in (37) also has n2−n terms with i1≠i2, which can be written as:(
n2−n

)
Mj2Eϕi1

[
ϕi1ϕ

⊤
i1

]
M⊤

j1xµx
⊤
µMj4Eϕi2

[
ϕi2ϕ

⊤
i2

]
Mj3 =

(
n2−n

)
σ4
ϕIj2,j1xµx

T
µIj3,j4.

The second term in (37) has n2 which can be written as:

n2Ij1,j2xµx
⊤
µMj4Eϕi2

[
ϕi2ϕ

⊤
i2

]
Mj3 =σ2

ϕn
2Ij1,j2xµx

T
µIj3,j4.

So we can write:

∆F(x)=−2·
k∑

j1=1

k∑
j2=1

k∑
j3=1

k∑
j4=1

n2

k4
(
σ2
ωσ

4
ϕ+σ4

ωσ
2
ϕ

)
Ij1,j2SIj3,j4−2· n

k4
σ2
ωσ

4
ϕTr

(
M⊤

j1SMj4

)
Ij2,j3.

So we have:
∆F(x)=−O

(
n2
)
·GF(x)SGF(x)

⊤−O(n)·E,

where E corresponds to the error term
∑k

j1=1

∑k
j2=1

∑k
j3=1

∑k
j4=1 Tr

(
M⊤

j1
SMj4

)
Ij2,j3 .

Therefore, we can write: lim
n→∞

∣∣∣∣ Tr(∆F(x)⊤GF(x)SGF(x))
∥∆F(x)∥F ·∥GF(x)SGF(x)∥F

∣∣∣∣ =

lim
n→∞

∣∣∣∣ Tr
(
(O(n2)·GF(x)SGF(x)⊤+O(n)·E)

⊤
GF(x)SGF(x)

)
∥(O(n2)·GF(x)SGF(x)⊤+O(n)·E)∥F ·∥GF(x)SGF(x)∥F

∣∣∣∣=1 which completes our proof.

A.11.4 PROOF FOR THEOREM A.2

Proof. Let fℓ
θ(x) be an MLP or CNN with ℓ layers, no pooling or normalization layers, and a scalar output:

fℓ
θ(x)=

n∑
i=1

ωi1fℓ−1
ϕi

(x)>0f
ℓ−1
ϕi

(x),

where θ corresponds to the union of ωis and ϕis, and fϕi
(·) and fϕj

(·) for i≠j share the same parameters
up to the last layer. The derivative of fℓ

θ(x) w.r.t. x is:

∇xf
ℓ
θ(x)=

n∑
i=1

ωi1fℓ−1
ϕi

(x)>0∇xf
ℓ−1
ϕi

(x),

which means we have:

Eθ

[
∇xf

ℓ
θ(x)∇xf

ℓ
θ(x)

⊤]= n∑
i1=1

n∑
i2=1

Eθ

[
ωiωj1fℓ−1

ϕi
(x)>01fℓ−1

ϕj
(x)>0∇xf

ℓ−1
ϕi1

(x)∇xf
ℓ−1
ϕi2

(x)⊤
]

=σ2
ω

n∑
i=1

Eϕi

[
1fℓ−1

ϕi
(x)>0∇xf

ℓ−1
ϕi

(x)∇xf
ℓ−1
ϕi

(x)⊤
]
.

So we need to prove that:

Eϕi

[
1fℓ−1

ϕi
(x)>0∇xf

ℓ−1
ϕi

(x)∇xf
ℓ−1
ϕi

(x)⊤
]
=c·I.

First note that since the weights of the last layer (i.e., the classification layer) are zero-mean and Gaussian,
the model w.r.t. these weights is symmetric at 0, which means we have:

Eϕi

[
1fℓ−1

ϕi
(x)>0∇xf

ℓ−1
ϕi

(x)∇xf
ℓ−1
ϕi

(x)⊤
]
=
1

2
Eϕi

[
∇xf

ℓ−1
ϕi

(x)∇xf
ℓ−1
ϕi

(x)⊤
]

So in order to prove this theorem, we need to use induction. For the case with ℓ=2, we can write the
model as:

f2
θ (x)=

n∑
i=1

ωi1ϕ⊤
i x>0ϕ

⊤
i x,
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where both ωis and ϕis are i.i.d. Gaussian variables with variances equal to σ2
ω and σ2

ϕ, respectively. This
gives us the following gradient w.r.t. the input:

∇xf
2
θ (x)=

n∑
i=1

ωi1ϕ⊤
i x>0ϕi.

So we have:

Eθ

[
∇xf

2
θ (x)∇xf

2
θ (x)

⊤]=σ2
ω

n∑
i=1

Eθ

[
1ϕ⊤

i x>0ϕiϕ
⊤
i

]
(38)

=
1

2

n∑
i=1

Eϕi

[
ϕiϕ

⊤
i

]
(39)

=
nσ2

ϕ

2
I, (40)

where (39) follows from ϕis being zero-mean i.i.d. Gaussian variables. The rest of the proof follows from
induction.

A.11.5 PROOF FOR THEOREM A.3

Proof. Let fθ(x) be the model described:

fθ(x)=
1

k

k∑
j=1

θ⊤M⊤
j x,

where θ is a i.i.d. random Gaussian variable with zero mean and variance σ2
θ , and Mj is a binary matrix

mimicking the convolution operation. The derivative of fθ(x) w.r.t. x is:

∇xfθ(x)=
1

k

k∑
j=1

1

σj(θ)
Mjθ.

So we can write:

GF=
1

k2

k∑
j1=1

k∑
j2=1

Mj1Eθ

[
θθ⊤

]
M⊤

j2

=
σ2
θ

k2

k∑
j1=1

k∑
j2=1

Mj1M
⊤
j2

=
σ2
θ

k2

k∑
j1=1

k∑
j2=1

Ij1,j2,

which completes the proof.

A.11.6 PROOF FOR COROLLARY A.4

Proof. Let fθ(x) be the model described:

fθ(x)=
1

k

k∑
j=1

1

σj(θ)
θ⊤M⊤

j x,

where θ is a i.i.d. random Gaussian variable with zero mean and variance σ2
θ , and Mj is a binary matrix

mimicking the convolution operation. The derivative of fθ(x) w.r.t. x is:

∇xfθ(x)=
1

k

k∑
j=1

1

σj(θ)
Mjθ.
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So we can write:

GF=
1

k2

k∑
j1=1

k∑
j2=1

Mj1Eθ

[
θθ⊤

σj1(θ)σj2(θ)

]
M⊤

j2.

Note that we can write σj(θ) for some j as:

σj(θ)=
1

D
θ⊤M⊤

j SMjθ

=
1

D
θ⊤Sjθ,

which can be bounded as:
λjmin∥θ∥

2
2≤D·σj(θ)≤λjmax∥θ∥22.

This gives us the following bounds:

1√
λj1minλ

j2
min

Eθ

[
θθ⊤

∥θ∥22

]
⪰Eθ

[
θθ⊤

σj1(θ)σj2(θ)

]
⪰ 1√

λj1maxλ
j2
max

Eθ

[
θθ⊤

∥θ∥22

]
.

And from Lemma A.7, we have:

1√
λj1minλ

j2
min

I⪰Eθ

[
θθ⊤

σj1(θ)σj2(θ)

]
⪰ 1√

λj1maxλ
j2
max

I,

which completes our proof.

A.12 EXPERIMENTAL SETTING

A.12.1 HYPERPARAMETERS

All of our experiments are performed on the following models:

• MLP: A multi-layer perception with 2 hidden layers of size 100 and ReLU non-linearity.
• LeNet: We use the model introduced in (LeCun et al., 1998).
• ResNet18: We use the model introduced in (He et al., 2016).
• VGG11: We use the model introduced in (Simonyan & Zisserman, 2015).
• ViT. We use the architecture introduced in (Dosovitskiy et al., 2021) with the settings provided

by (Lee et al., 2021) for small-scale data.

Similar to (Ortiz-Jiménez et al., 2021), we observed much better and accurate value for GF when using
GELU non-linearity (Hendrycks & Gimpel, 2016) compared to ReLU, which we also attribute to numerical
problems caused by ReLU. In this case, we observed lower variance when computing GF with a probing
function with a smaller standard deviation, which we attribute to the saturation of the GELU function
for standard Gaussian input. Specifically, in our experiments we set P =N

(
0,σ2

PI
)

with σP working
best in range of 10−3 and 10−5 in terms of correlation between generalization gap and eigenvalues of
GF in the experiment presented in App. A.7. However, similar to (Ortiz-Jiménez et al., 2021), we observe
that a first-order approximation of GF in the form of GF(0) is also a relatively good approximation.

The experiments provided in Figure 2 are performed using gradient-descent with the learning rate equal
to 0.1 and momentum set to 0.9, and for 100 epochs. The experiments provided in Figure 8 are performed
using the Adam variant of gradient descent with default parameters due to slower convergence and for
100 epochs. The weight decay in all these experiments is set to 0.

For the experiments in Figure 4 and Figure 5, we use the experiment settings of (Ortiz-Jiménez et al.,
2020) for the synthetic data, except for the experiments in Figure 4 performed on a sinusoidal decision
boundary, for which we train all models with 50 epochs.

The experiments in Figure 3 are performed using stochastic gradient-descent with a batch size of 128 and
learning rate of 0.1. We train the model for 100 epochs for the experiment involving LeNet and 50 epochs
for the experiments involving ResNet18 and ViT. We set the momentum to 0.9 and the weight decay to 0.
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The experiments in Figure 6 are performed using stochastic gradient-descent with a batch size of 128,
learning rate of 0.1, and momentum set to 0.9 and 50 epochs. The weight decay in all these experiments
is set to 0. The experiments in Table 1 and Table 2 are performed using stochastic gradient-descent with
a batch size of 128, learning rate of 0.2, and momentum set to 0.9 and 50 epochs. The weight decay in
all these experiments is set to 5×10−4.

In all experiments, we estimate GF on 10000 models and Gt
F for t>0 on 25 models.

A.12.2 STATISTICAL INFORMATION

For the experiments in Figure 2, Figure 8, and Figure 3 we only report the average of test/train accuracy
since we mainly aim to show the trend of the changes in these values. However, the experiments in
Figure 4, Figure 5, Figure 6, Table 1, and Table 2 are all performed 5 times. We report the average along
with the 68% confidence interval for all these experiments.

A.12.3 HARDWARE AND FRAMEWORK

All experiments are performed on a single Nvidia GTX 1080 Ti, and implemented on Python using
PyTorch 2.1.1. We base our implementation on the code provided by (Ortiz-Jiménez et al., 2020).

A.13 LIMITATIONS

We consider two main limitations to our work: theoretical limitations and experimental limitations. In
the case of the theoretical limitation, we note that our theoretical results are mainly focused on simple
models (i.e., models with one or two hidden layers, and ReLU or linear activation functions) and based
on approximation (i.e., correct for large input space size and model width). The reason for this approach is
that in theoretical results, we’re mainly concerned with insight as opposed to completeness. Consequently,
we omit providing proofs with minimum assumptions and more realistic models in order to keep the
message of the paper focused and the content concise.

In the case of experimental limitation, we note that our experiments are mainly concerned with
over-parameterized settings and small-scale image classification datasets (i.e., models with a few million
parameters and datasets with about 5000 samples for each class). This decision is mainly due to our lack of
computational resources. As a result, we do not make any claims about more complex settings involving,
for instance, foundation models or large-scale datasets. Furthermore, we do not extend our results to other
aspects of machine learning, such as regression or reinforcement learning.
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