
Supplementary Materials: EPL-UFLSID: Efficient Pseudo
Labels-Driven Underwater Forward-Looking Sonar Images

Object Detection

1 Supplementary Materials
1.1 Datasets and Implementation Details
The effectiveness of the proposed method is demonstrated on two
main forward-looking sonar object detection datasets, marine-debris-
fls-dataset (MDFD) [9] and the underwater acoustic target detection
(UATD) [12] dataset.

MDFD is captured by Ocean Systems Lab (Heriot-Watt Univer-
sity) using a ARIS Explorer 3000 forward-looking sonar at 3.0
MHz frequency, which comprises 1868 sonar images across 11
categories of marine debris, including bottles, cans, chains, drink-
cartoons, hooks, propellers, shampoo-bottles, standing-bottles, tires
and valves. UATD is captured by Tritech 1200ik forward-looking
sonar in Weihai, China, which comprises 9200 sonar images of 10
categories, including cubes, balls, cylinders, human bodies, tyres,
circle cages, square cages, metal buckets, planes and rovs.

In terms of MDFD dataset, we’ve allocated 1681 images for train-
ing and 187 for testing object detection models. With regard to
UATD dataset, we’ve designated 8280 images for training and 920
for testing object detection models.

Experiments are conducted in Pytorch 1.2.0 on two NVIDIA
GeForce RTX 2080 SUPER GPUs with 8GB memory. GMMDIP is
trained via Adam optimizer for 900 iterations per image at an initial
learning rate of 1e-1. DFIQA undergoes 200 epochs of training with
Adam optimizer, starting at a learning rate of 2e-5, 5e-4 weight
decay, and a batch size of 16. EPL-UFLSID is trained for 50 epochs
using the Adam optimizer, with an initial learning rate of 1e-4 and a
batch size of 4. Subsequently, an additional 50 epochs are conducted
with an initial learning rate of 1e-5 and a batch size of 2. The overall
training process includes a linear learning rate decay of 0.96.

Table 1: Computational Overhead Comparison

Method Params(M) FLOPs(G)

SSD [4] 24.9 121.5
YOLOv3 [6] 61.6 77.7
YOLOv5 [2] 7.1 8.3
YOLOv7 [10] 37.2 52.6
MBSNN [11] 8.2 9.9

Faster R-CNN [7] 136.9 184.9
CenterNet [1] 32.7 49.2
RetinaNet [3] 36.5 74.2
UFIDNet [5] 34.3 71.3
EPL-UFLSID 37.1 76.1

1.2 Statistical distribution on the MDFD and
UATD datasets

To further exemplify the performance of Gaussian Mixture Model
(GMM) [8] in fitting the distribution of the original sonar image,
two images along with their statistical distributions are provided
in Figure 1, which shows that GMM basically fits the distribution

characteristics of the original sonar image. Therefore, GMM can be
reasonably selected as the input of GMMDIP to better denoise the
original sonar image.

(a) Original Image (b) Statistical Distribution Image

Figure 1: Fitted GMM distribution to the original image of
pixel value distribution on the MDFD and UATD datasets.

1.3 Computational Efficiency
Table 1 shows the computational overhead on a (3*600*600) image
of the proposed EPL-UFLSID and other 9 object detection methods.
EPL-UFLSID achieves the best performance with high computing
efficiency and moderte memory consumption. It needs to be men-
tioned that although EPL-UFLSID training involves the introduc-
tion of pseudo labels selected by DFIQA as additional supervision
information, the inference stage only requires the detection back-
bone (ResNet 50), adding no extra computational burden. Therefore,
EPL-UFLSID increases Params and FLOPs by only 0.6M and 1.9G
compared to the baseline (RetinaNet), which further demonstrates
that the performance advantage of EPL-UFLSID is not due to the
increase in computational complexity, but rather because we select
the pseudo-labels that are most detection-friendly to constrain the
detection network to extract clean features.
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1.4 Reconstructed Module of EPL-UFLSID
In order to make the detection backbone network optimized by
pseudo labels, we consider reconstructing the backbone features
into images through the reconstructed module, which is depicted in
Figure 2. Since the first three layers of the backbone network have
rich spatial and semantic information, which helps us reconstruct
images more easily, we choose to fuse the features of these three
layers through convolutional layers and average pooling layers, and
then upsample them to obtain a reconstructed image of the same
size as the pseudo-label, so as to achieve the effect of additional
constrained optimization of the detection network.

In other words, the reconstructed module is served as a medium
to allow the pseudo label to optimize the entire detection network
with the MSE loss and detection loss, enabling the backbone net-
work to extract features of the original input image that are sub-
merged by noises.
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Figure 2: The structure of Reconstructed Module.

1.5 Visualization of pseudo labels generated by
GMMDIP with different inputs at different
iterations on the MDFD and UATD datasets

To further illustrate the superior performance of GMMDIP, Figure 3
shows denoised sonar images generated by GMMDIP with different
inputs at different iterations on the MDFD and UATD datasets. It
can be found that the denoising effect of the denoised image with
GMM input is significantly better than the denoised image with
uniform noise input, especially at 200,300,400 iterations, which is
due to the fact that fitting a Gaussian mixture model of the original
image allows GMMDIP to obtain the general characteristics of the
distribution and structure of the original image, achieving bettter
quality of details. Consequently, DFIQA can more effectively select
the most detection-friendly pseudo labels generated by GMMDIP
for EPL-UFLSID, resulting in better detection performance.

1.6 Qualitative comparison of denoised images
on the MDFD and UATD datasets

Qualitative comparison of the selected denoised images by DFIQA
and the denoising method in UFIDNet [5] is shown in Figure 4.
It needs to be noted that UFIDNet denoises the sonar images by
characterizing the noise of sonar images as multiplicative speckle
noise, and sets them as pseudo labels to enhance the detection per-
formance. They simply model the sonar image noises like speckle
noise with a known and simple distribution. That is to say that the
denoising effect of the denoising method in UFIDNet is simplex, not
as diverse as the denoising images selected by DFIQA at different
iterations, which are more tailored for detection. At the same time,
we can find that the pseudo labels selected by DFIQA are not as
visually good as those of UFIDNet, as shown in the first row of
column (b) in Figure 4. This further illustrates that the pseudo labels
selected by DFIQA are targeted at machine vision and are therefore
more friendly to object detection tasks.
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Figure 3: : Pseudo labels generated by GMMDIP with different inputs at different iterations on the MDFD and UATD datasets.
The image is divided into two parts, the top half with blue background is the denoised image generated by GMMDIP when the
input is uniform noise, while the bottom half with gray background is the denoised image generated by GMMDIP when the
input is GMM.
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(a) Original Image (b) GMMDIP (c) UFIDNet [5] (d) Original Image (e) GMMDIP (f) UFIDNet [5]
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Figure 4: Qualitative comparison of denoised images generated by GMMDIP with GMM input and the denoising method in
UFIDNet. Columns (a), (b), (c) represent the images on the MDFD dataset. Columns (d), (e), (f) represent the images on the UATD
dataset. The denoised images from columns (b) and (d) have IterationX displayed in the upper right corner, representing the
iteration values of the efficient pseudo labels selected by DFIQA from iteration 0 to iteration 900.
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