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ABSTRACT

Capitalizing on the intuitive premise that shape characteristics are more robust to
perturbations, we bridge adversarial graph learning with the emerging tools from
computational topology, namely, persistent homology representations of graphs.
We introduce the concept of witness complex to adversarial analysis on graphs,
which allows us to focus only on the salient shape characteristics of graphs, yielded
by the subset of the most essential nodes (i.e., landmarks), with minimal loss of
topological information on the whole graph. The remaining nodes are then used
as witnesses, governing which higher-order graph substructures are incorporated
into the learning process. Armed with the witness mechanism, we design Witness
Graph Topological Layer (WGTL), which systematically integrates both local
and global topological graph feature representations whose impact are in turn
automatically controlled by the robust regularized topological loss. We derive the
important stability guarantees of both local and global topology encodings and
the associated robust topological loss, given the attacker’s budget. We illustrate
versatility of WGTL by its integration with GNNs and existing non-topological
defense mechanisms. Our extensive experiments demonstrate that WGTL boosts
the robustness of GNNs against a wide spectrum of adversarial attacks, leading to
relative gains up to 18%.

1 INTRODUCTION

Graphs are ubiquitous data structures with applications in numerous knowledge domains: from
structural representation of molecules in chemistry and material science to cryptocurrency transaction
networks in finance. With their prevalence, it is important to learn effective graph representations and
then apply them to solve downstream learning tasks. In present, the most widely adopted machinery
for graph learning tasks is arguably Graph Neural Networks (GNNs) (Zhou et al., 2022). However,
similar to the deep neural networks (DNN), GNNs exhibit vulnerability to adversarial attacks (Jin
et al., 2021), i.e. small, often unnoticeable perturbations to the input graph might result in substantial
degradation of GNN’s performance in downstream tasks. In turn, compared to non-graph data,
adversarial analysis of graphs is still in its infancy (Sun et al., 2022). Hence, developing robust GNN
models that can resist a wide spectrum of adversarial attacks is of significant practical importance.

Presently, the three main strategies to defend GNNs against adversarial attacks are graph purifica-
tion, adversarial training, and adversarial defense based neural architectures (Günnemann, 2022;
Mujkanovic et al., 2022). These existing methods largely rely on the information at a node level
while ignoring the higher-order, multi-scale properties of the graph structure, which are often the key
behind the success of the learning task (Benson et al., 2018; Torres et al., 2021). These approaches
also do not explicitly explore how to robustify GNNs by encoding adversarially resistant features.

In turn, in the last few years, we observe a spike of interest in the synergy of graph learning and
Persistent Homology (PH) representations of graphs (Zhao & Wang, 2019; Carrière et al., 2020; Horn
et al., 2022; Yan et al., 2022; Chen et al., 2022; Hajij et al.; Chen & Gel, 2023). PH representations
enable us to glean intrinsic information about the inherent object shape. By shape here, we broadly
understand properties which are invariant under continuous transformations such as twisting, bending,
and stretching. This phenomenon can be explained by the important higher-order information, which
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PH-based shape descriptors deliver about the underlying graph-structured data. This leads to an
enhanced GNN performance in a variety of downstream tasks, such as link prediction, node and graph
classification (Hofer et al., 2020; Carrière et al., 2020; Chen et al., 2021; Yan et al., 2021; Horn et al.,
2022). Furthermore, in view of the invariance with respect to continuous transformations, intuitively
we can expect that shape characteristics are to yield higher robustness to random perturbations
and adversarial attacks. While this intuitive premise of robustness and its relationship with DNN
architectures has been confirmed by some recent studies (Chen et al., 2021; Gebhart et al., 2019;
Goibert et al., 2022), to the best of our knowledge, there yet exists no topological adversarial defense
for GNNs.

In this work, we bridge this gap by merging adversarial graph learning with PH representations of
graph-structured data. Our key idea is to leverage the concept of witness complex for graph learning.
This allows us to enhance computational efficiency of the proposed topological defense, which is one
of the primary bottlenecks on the way of wider adoption of topological methods, as well to reduce the
impact of less important or noisy graph information. In particular, the goal of witness complex is to
accurately estimate intrinsic shape properties of the graph using not all available graph information,
but only a subset of the most representative nodes, called landmarks. The remaining nodes are then
used as witnesses, governing which higher-order graph substructures shall be incorporated into the
process of extracting shape characteristics and the associated graph learning task. Intuitively, the
idea can be compared with focusing only on the shape of the object skeleton, which is invariant
under deformations. This mechanism naturally results in the two main benefits. First, it allows
us to drastically reduce the computational costs. Second, to extract only the most essential shape
characteristics (i.e., skeleton shape). Our topological defense takes a form of the Witness Graph
Topological Layer (WGTL) with three novel components: local and global witness complex-based
topological encoding, topology prior aggregation, and robustness-inducing topological loss.

The local witness complex-based features encapsulate graph topology within the local node neigh-
borhoods, while the global witness complex-based features describes global graph topology. Using
only local topology prior to the loss function might be vulnerable to local attacks, while only global
topology prior might be more susceptible to global attacks. To defend against both types of attacks,
both local and global topology prior needs to be combined, thus motivating the design of the topology
prior aggregator. Inspired by the results (Hu et al., 2019; Carriere et al., 2021), we use the robust
topological loss as a regularizer to a supervised loss for adversarially robust node representation
learning. This allows to control which shape features are to be included into the defense mechanism.
Furthermore, given an attacker’s budget, we theoretically derive the stability guarantees of both local
and global topology encodings, and the associated topological loss. Figure 2 shows the schematic of
the proposed components. The proposed WGTL is versatile as the proposed shape features can be
readily integrated with any GNN architecture. Our extensive numerical experiments in conjunction
with node classification tasks demonstrate that WGTL enhances performance of GNNs on clean
graphs, as well as substantially improves their robustness again a broad range of adversarial attacks.
Furthermore, we also demonstrate that WGTL can be incorporated to boost the robustness capabilities
of existing graph defense mechanisms such as Pro-GNN (Jin et al., 2020).

Significance of our contributions can be summarized as follows:

• We propose the first approach that systematically bridges adversarial graph learning with persistent
homology representations of graphs.

• We introduce a novel topological adversarial defense for graph learning, i.e. the Witness Graph
Topological Layer (WGTL), based on the notion of the witness complex. WGTL systematically
integrates both local and global higher-order graph characteristics. Witness complex enables us to
focus only on the most essential shape characteristics delivered by the landmark nodes, thereby
reducing the computational costs and minimizing the impact of noisy graph information.

• We derive the stability guarantees of both local and global topology encodings and the robust
topological loss, given an attacker’s budget. These guarantees show that local and global encodings
are stable to external perturbations, while the stability depends on the goodness of the witness
complex construction.

• Our extensive experiments indicate that WGTL boosts robustness capabilities of GNNs across a
wide range of local and global adversarial attacks, resulting in relative gains up to 18%. Furthermore,
WGTL is smoothly integrable with other existing defenses, such as Pro-GNN, improving the relative
performance up to 4.95%.
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2 RELATED WORKS

Adversarial Defenses for GNNs. There are broadly three types of defenses: graph purification-based,
adversarially robust training and adversarially robust architecture (Günnemann, 2022). Notable
defenses that purify the input graph include Pro-GNN (Jin et al., 2020)(supervised) and SVD-
GCN (Entezari et al., 2020)(unsupervised). The adversarially robust training methods, train by
augmenting node features with gradients Kong et al. (2020), or datasets by generating worst-case
perturbations (Xu et al., 2019). The goal is to train with the worst-case adversarial perturbations
such that the learnt model weights become more robust against worst-case perturbation (Günnemann,
2022). However, adversarial training can not defend against more severe perturbation than the ones
they were trained with. Better architectures such as VAE (Zhang & Ma, 2020), Bayesian uncertainty
quantification (Feng et al., 2021), and Attention (Tang et al., 2020) have also been proposed for
adversarial defense. However, none of these tools have explored the use of robust, graph topological
features as prior knowledge for improved defense. Gabrielsson et al. (2020) designed a topology-
driven attack on images and topological loss. However, this approach does not consider graph data
and no adversarial defense is proposed. Among topology-driven defenses, GNNGuard (Zhang &
Zitnik, 2020) considers graphlet degree vectors to encode node structural properties such as triangles
and betweenness centrality. However, unlike the PH features used in WGTL, the graphlet approach is
empirical, without theoretically guaranteed robustness properties.

Persistent Homology with Witness Complexes. While PH gets increasingly popular in ML
applications, such as link prediction, classification, forecasting (Barannikov, 1994; Carlsson &
Vejdemo-Johansson, 2021), the primary bottleneck to its wider adoption is its computational com-
plexity. This has motivated the adoption of approximate simplicial representations such as the witness
complexes (De Silva & Carlsson, 2004b). However, despite some initial promising results, including
theoretical guarantees Arafat et al. (2019; 2020); Schönenberger et al. (2020); Poklukar et al. (2021);
Chen & Gel (2023), application of witness complex in machine learning remains in its infancy. By
capitalizing on the computational efficiency and robustness capabilities of witness complex, this
paper opens a path toward new witness complex-based adversarially robust learning on graphs.

3 BACKGROUND: GRAPHS, PERSISTENT HOMOLOGY, WITNESS COMPLEXES

Topology of Graphs. G ≜ (V, E ,X) denotes an attributed graph. V is a set of N nodes. E is a set
of edges. X ∈ RN×F is a node feature matrix, where each node corresponds to an F dimensional
feature. The adjacency matrix of G is a symmetric matrix A ∈ RN×N such that Auv ≜ ωuv, i.e.,
edge weight, if nodes u and v are connected and 0, otherwise. For unweighted graphs, we observe
ωuv = 1. Furthermore, D represents the degree matrix of G, such that Duu ≜

∑
v∈V Auv and 0,

otherwise.

The central ideas leveraged in this paper are the local and global topology of a graph. The topology
of a graph is defined by corresponding geodesic distance. The geodesic distance dG(u, v) between a
pair of vertices u and v ∈ V is defined as the length of the shortest path between u and v. The path
length is defined as the sum of weights of the edges connecting the vertices u and v. Endowed with
the canonical metric induced by the geodesic distance dG : V × V → R≥0, a weighted simple graph
G transforms into a metric space (V, dG). For a given positive real number ϵ > 0, the set of nodes
that are no more than geodesic ϵ away from a given node determines the local topology of that node.
When ϵ = Diam(G), i.e. the diameter of G, we retrieve the global topology of the graph. Increasing
ϵ from 1 to Diam(G) allows us to retrieve the evolution of the inherent graph features, like connected
components, cycles, voids, etc. (Edelsbrunner et al., 2002; Zomorodian, 2005).

Persistent Homology. In order to study the evolution of graph features, we take a Persistent
Homology (PH)-based approach. Persistent homology is a method of computational topology that
quantifies topological features by constructing simplicial complexes, i.e. a generalised graph with
higher-order connectivity information such as cliques, over the dataset. For example, a unweighted
subgraph of G, say Gα, consisting of only edges with length more than α is a simplicial complex. The
d-th homology group of a simplicial complex Gα consists of its d-dimensional topological features,
such as connected components (d = 0), cycles (d = 1), and voids (d = 2). Now, as we increase α,
we observe that more and more edges are removed from G. Thus, we obtain a nested sequence of
simplicial complexes Gα1

⊆ . . . ⊆ Gαn
= G for α1 ≤ α2 ≤ . . . ≤ αn. This nested sequence of

simplicial complexes is called a graph filtration and αi’s denote the filtration values. To make the
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process more systematic and informative, often an abstract simplicial complex K (Gαj
) is constructed

on each Gαj
, resulting in a filtration of complexes K (Gα1

) ⊆ . . . ⊆ K (Gαn
). For a more detailed

discussion on graph filtration, we refer to Hofer et al. (2020).

The key idea of PH is to choose multiple scale parameters α and study changes in topological features
that occur to G, which evolves with respect to α. Equipped with the filtration of complexes, we
can trace data shape patterns, i.e. the d homology groups, such as independent components, holes,
and cavities which appear and merge as scale α changes. For each topological feature ρ, we record
the indices bρ and dρ of K (Gbρ) and K (Gdρ

), where ρ is first and last observed, respectively. We
say that a pair (bρ, dρ) represents the birth and death times of ρ, and (dρ − bρ) is its corresponding
lifespan (or persistence). In general, topological features with longer persistence are considered
valuable, while features with shorter persistence are often associated with topological noise. The
extracted topological information over the filtration {Kαj

} is then represented in R2 as a Persistence
Diagram (PD), such that PD = {(bρ, dρ) ∈ R2 : dρ > bρ} ∪ ∆. ∆ = {(t, t)|t ∈ R} is the
diagonal set containing points counted with infinite multiplicity. Another useful representation of
persistent topological features is Persistence Image (PI) that vectorizes the persistence diagram with
a Gaussian kernel and a piece-wise linear weighting function (Adams et al., 2017). Persistence
images are deployed to make a classifier “topology-aware” and are known to be helpful in graph
classification (Zhao & Wang, 2019; Rieck et al., 2020). Our methodology and experimental results
shows topology-awareness can improve both the robustness and accuracy of graph classification.

Witness Complexes. There are multiple ways to construct an abstract simplicial complex
K (Zomorodian, 2005). Due to its computational benefits, one of the widely adopted approaches is a
Vietoris-Rips complex (VR). However, the VR complex uses the entire observed data to describe the
underlying topological space, and thus, does not efficiently scale to large and noisy datasets (Zomoro-
dian, 2010). In contrast, a witness complex captures the data shapes using only on a significantly
smaller subset L ⊆ V , called a set of landmarks (De Silva & Carlsson, 2004a). In turn, all other points
in V are used as “witnesses” that govern the appearances of simplices in the witness complex. Arafat
et al. (2020) demonstrate algorithms to construct landmark sets, their computational efficiencies,
and stability of the induced witness complex. We leverage witness complex to scale to large graph
datasets.

Definition 1 (Weak Witness Complex (De Silva & Carlsson, 2004a)). We call w ∈ V to be a weak
witness for a simplex σ = [v0v1 . . . vl], where vi ∈ V for i = 0, 1, . . . , l and l ∈ N, with respect
to L if and only if dG(w, v) ≤ dG(w, u) for all v ∈ σ and u ∈ L \ σ. The weak witness complex
Wit(L,G) of the graph G with respect to the landmark set L has a node set formed by the landmark
points in L, and a subset σ of L is in Wit(L,G) if and only if there exists a corresponding weak
witness in the graph G.

4 LEARNING A ROBUST TOPOLOGY-AWARE GRAPH REPRESENTATION

The general idea is that encoding robust graph structural features as prior knowledge to a graph
representation learning framework should induce a degree of robustness against adversarial attacks.
Graph measures that capture global properties of the graph and measures that rely on aggregated
statistics are known to be robust against small perturbations. Examples include degree distribution,
clustering coefficients, average path length, diameter, largest eigenvalue and the corresponding
eigenvector, certain centrality measures, e.g., betweenness and closeness centralities. However, these
measures are not multiscale in nature. Therefore, they fail to encapsulate global graph structure at
multiple levels of granularity. Many of them, e.g., degree distribution, clustering coefficients, only
encode 1-hop or 2-hop information. Such information can be learned by a shallow GNN through
message passing, rendering such features less useful as a prior. Features such as average path
length and diameter are too coarse-scale (scalar-valued) and do not help a GNN to discern the nodes.
Since existing robust graph features can not encode both local and global topological information at
multiple scales, we introduce local and global topology encodings based on persistent homology as
representations to the GNNs (Section 4.1). We also propose to use a topological loss as regularizer to
learn topological features better (Section 4.2).

4.1 WITNESS GRAPH TOPOLOGICAL LAYER

Now, we describe the architecture of the Witness Graph Topological Layer (WGTL) (see Figure 1).
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Figure 1: The overall architecture of Witness Graph Topological Layer.

Component I: Local Topology Encoding. Local topology encoding component of WGTL (see
Figure 1) computes local topological features of every node in three steps. First, we choose a landmark
set L from the input graph G. An important hyperparameter of the local topology encoding is the
choice of the number of landmarks. Choosing too few landmarks would reduce the informativeness
of the latent embedding. Choosing too many landmarks (i.e., |V|), on top of being computationally
expensive, might be redundant because the topological features of a neighboring node are likely to be
the same. Secondly, we use the landmarks to construct an ϵ-net of G (Arafat et al., 2020), i.e. a set of
subgraphs {Gϵ

l }l∈L. Here, ϵ ≜ maxl1,l2∈L 0.5dG(l1, l2). We compute witness complex for each of
these Gϵ

l ’s, and the corresponding persistence images PI(Wit(Gϵ
l )). Finally, we attribute the PIs of the

landmarks to each node in its ϵ-cover and pass them through a vision transformer model to compute
the local topology encoding, i.e. ZTL

= Transformer(PI(Wit(Gϵ))1, . . . ,PI(Wit(Gϵ))N ). The
local topology encoding ZTL

is a latent embedding of local topological features of each node in G.

When the attack model poisons the adjacency matrix, especially in the cases of global attacks,
the local topological encodings are also implicitly perturbed. In Theorem 1, we show that local
topological encodings are stable w.r.t. perturbations in the input graph. Specifically, if an attacker’s
budget is O(δ), the encoded local topology is perturbed by O(Cϵ(δ + ϵ)). The bound indicates the
trade-off due to landmark selection. If we select less landmarks, computation becomes faster and we
encode topological features of a larger neighborhood. But increase in Cϵ yields less stable encoding.
Whereas if we select more landmarks, we get more stable encoding but we loose informativeness of
the local region and computational efficiency.

Theorem 1 (Stability of the encoded local topology). Let us denote the persistence diagram obtained
from local topology encoding of G as T(G) (Figure 2). For any p < ∞ and Cϵ being the maximum
cardinality of the ϵ-neighborhood created by the landmarks, we obtain that for any graph perturbation
∥G − G′∥1 = O(δ) the final persistence diagram representation changes by Wp(T(G),T(G′)) =
O(Cϵδ), if we have access to Cěch simplicial complexes, and Wp(T(G),T(G′)) = O(Cϵ(δ + ϵ)), if
Witness complex is used to compute the Local Persistence Images.

Component II: Graph Representation Learning. The component II of WGTL deploys in cascade
M GNN layers with ReLU activation function and weights {Θ(m)}Mm=1. The representation learned

at the m-th layer is given by Z(m+1)
G = ReLU(D̃

− 1
2 ÃD̃

1
2Z

(m)
G Θ(m)). Here, Z(0)

G = G, Ã = A+I ,
and D̃ is the corresponding degree matrix.

Component III: Global Topology Encoding. The global topological encoding represents the global
witness complex-based topological features of a graph (Component III in Figure 1). First, we use the
input adjacency matrix to compute the lengths of all-pair shortest paths (geodesics) among the nodes.
The topological space represented by the geodesic distance matrix is used to compute the global
witness complex-based persistence image PI(Wit(G)) of the graph (Arafat et al., 2020). Finally, the
persistence image representation is encoded by a Convolutional Neural Network (CNN)-based model
to obtain the global topological encoding ZTG

≜ ξmax(CNN(PI(Wit(G))). Here, ξmax(·) denotes
global max-pooling operation. The global topology encoding encapsulates the global topological
features, such as equivalent class of connected nodes, cycles and voids in the graph.

The stability of global persistence diagram representation is a well-known classical result in persis-
tence homology (Cohen-Steiner et al., 2005; Chazal et al., 2008). However, given an attacker’s budget
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Figure 2: Illustration of Witness Complex-based topological regularizer LTopo.

of δ, the stability of the encoded global topology is an important result for the practical purposes of
this paper. Theorem 1 shows that under a O(δ) perturbation of the input graph, the global topology
encoding is perturbed by O(δ + ϵ). Thus, the global topological encoding inherits the robustness
property of persistent homology and thus, induces robust learning under adversarial attacks.

Proposition 1 (Stability of the encoded global topology). If the landmarks selected for the witness
complex induce an ϵ-net of the graph with ϵ > 0, we obtain that for any graph perturbation
∥G − G′∥1 = O(δ) the global persistence image representation changes by

∥PI(Witglob(G))− PI(Witglob(G′))∥∞ = O(δ + ϵ),

and it reduces to O(δ), if we have access to the Cěch simplicial complexes for G.

WGTL: Aggregating Global and Local Encodings. We can aggregate the local and global topology
encodings with the latent embedding of graph convolution layers in different ways. Figure 1 shows
the approach that empirically provides the most effective defense against adversarial attacks (Ablation
studies are deferred to Appendix C).

The aggregation of the three encodings is computed in two steps. First, to adaptively learn the
intrinsic dependencies between learnt node embedding and latent local topological encodings, we
utilize the attention mechanism to focus on the importance of task relevant components in the learnt
representations, i.e. (αG, αTL

) ≜ Att(ZH ,ZTL
). In practice, we compute attention coefficients as

αi = softmaxi(ΥAtt tanh (ΞZi)) =
exp (ΥAtt tanh (ΞZi))∑

j∈{G,TL} exp (ΥAtt tanh (ΞZj))
,

where ΥAtt ∈ R1×dout is a linear transformation, Ξ is the trainable weight matrix, and the softmax
function is used to normalize the attention vector. Then, we obtain the final embedding by combining
two embeddings ZAGG = αG × ZG + αTL

× ZTL
. Finally, we combine the learnt embedding

ZAGG with the latent global topological representation ZTG
, such that ZWGTL = ZAGGZTG

. The
node representation ZWGTL encapsulates both global and local topology priors. We call ZWGTL

the aggregated topological priors. We feed ZWGTL into a graph convolutional layer and use a
differentiable classifier (here we use a softmax layer) to make node classification. In the following,
we show the stability of the aggregated topological priors.

Proposition 2 (Stability of the aggregated topological encoding). If the landmarks selected for the
witness complex induce an ϵ-net of the graph with ϵ > 0 and LGNN is the Lipschitz constant of the
GNNs in Component II, then for a perturbation ∥G −G′∥1 = O(δ), the encoding ZWGTL changes by

∥ZWGTL(G)−ZWGTL(G′)∥1 = O((Cϵ + LGNN)(δ + ϵ)2).

Proposition 2 shows that the final representations computed by WGTL is stable under adversarial
attacks. The stability depends on the approximation trade-off induced by the landmark set and the
Lipschitz stability of the GNN layers (Jia et al., 2023).

4.2 TOPOLOGICAL LOSS AS A REGULARIZER

In Section 4.1, we propose using the aggregated topology encodings to predict node labels for
downstream node classification tasks through a GNN backbone. In this case, we use a supervised
loss Lsupv that facilitate learning the aggregated topology priors for classification. We empirically
observe that our topology encoding already provides a certain degree of robustness (Appendix C).

However, the supervised loss function only explicitly enforces misclassification constraints on the
defense model. It does not explicitly enforce any topological constraint such that the topological
encodings themselves iteratively become more robust while training. Hence, for increased robustness,
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we propose to use topological loss Ltopo that explicitly encodes the birth and death of the topological
features in the auxiliary graph (ref. Figure 2) reconstructed from the transformer output. Specifically,

Ltopo,k(T(G)) ≜
m∑
i=1

(di − bi)
p

(
di + bi

2

)q

, (1)

where m is the number of points in the persistence diagram of the auxiliary graph reconstructed from
the transformer output and k = max{p, q}. In practice, we use k = 2. Use of such topological loss
was first proposed for image segmentation (Hu et al., 2019). Gabrielsson et al. (2020) uses it as a
regularizer in designing GAN and adversarial attacks on images.

In contrast, we use it to induce stability in the encoding and to defend against adversarial attacks.
The benefits of using the topological loss are two-fold: (i) Persistent and stable feature selection:
Minimising Ltopo,k causes removal of topological features with smaller persistence, i.e., (di − bi).
Thus, the regularizer acts as a sparsity-inducing feature selector. Thus, by minimising Ltopo, we are
training to learn latent representation such that only the most persistent features remain in the encoded
local topology. Such features are known to be more stable and represent more robust structures of
the graph, and (ii) Robustness to local perturbations: A localized attack perturbing certain nodes
or edges is expected to appear as topological noise in the final persistent diagram, and thus, should
exhibit a small persistence. Since minimizing Ltopo forces the local topology encodings to eliminate
features with small persistence, using Ltopo as a regularizer with Lsupv induces robustness to local
perturbations in final classification tasks.

Proposition 3 quantifies the stability of the topological regularizer Ltopo,k under any attack with
perturbation budget O(δ). Specifically, it shows that the stability depends on a trade-off between
the maximum persistence of the final graph representation, AΦ(G), in Figure 2, and the number of
non-zero persistent features in the final encoding. Hence, it reflects our discussion above.
Proposition 3 (Stability of Ltopo). Let us assume that the cardinality of any ϵ-neighborhood of G
grows polynomially, i.e. Cϵ = O(ϵ−M ) for an M > 0. If m is the number of points in the persistence
diagram, 2k = 2max{p, q} > M , and A(G) is the auxiliary graph constructed from the local
topology encodings (Fig. 2), Ltopo,k(T(G)) is stable w.r.t. a perturbation of G, i.e. ∥G − G′∥1 = δ.∣∣Ltopo,k(T(G))− Ltopo,k(T(G′))

∣∣ = O
(
k
(
ϵ−4kMDiam(A(G)) +mϵ−2kDiam(G)2k

)
δ
)
.

5 EXPERIMENTAL EVALUATION

We now evaluate the WGTL utility in the node classification tasks for clean and attacked graphs
under a range of perturbation rates. Following Zügner & Günnemann (2019); Zügner et al. (2018);
Jin et al. (2020), we validate the proposed approach on four benchmark datasets, namely Citeseer,
Cora, Pubmed, and Polblogs. Our results show that using WGTL enhanced with the topological
loss as regularizer improves node classification performance across all considered scenarios, thereby,
validating the utility of robust topological features as priors. We also perform a one-sided two-sample
t-test between the best result and the best performance achieved by the baseline, where * denote a
significant, result. Note that, throughout our experiments, we use 0-dimensional topological features.
We defer the dataset descriptions and implementation details to Appendix A.

Adversarial Attacks: Local and Global. We deploy four local and global poisoning attacks, with
perturbation rate, i.e., the ratio of changed edges, from 0% to 25%, to evaluate the robustness of
WGTL. We consider a fixed GCN without weight re-training as the surrogate for all attacks. As a local
attack, we deploy nettack (Zügner et al., 2018). Nettack is a targeted attack that selects nodes without
violating the degree distribution and feature co-occurrence of the original graph, and then, perturb
the edges around them. Due to the stability of WGTL and topological regularizer, we expect to be
robust to such local attacks. As global (non-targeted) poisoning attacks, we deploy mettack (Zügner
et al., 2019), and two topological attacks, namely PGD (Xu et al., 2019) and Meta-PGD (Mujkanovic
et al., 2022). Mettack treats the graph as a hyperparameter and greedily selects perturbations based
on meta-gradient for node pairs until the budget is exhausted. PGD attack (Xu et al., 2019) adapts the
well-known Projected Gradient Descent-based attack in adversarial ML to graphs. Recently, Meta-
PGD is proposed (Mujkanovic et al., 2022) by applying PGD on the meta-gradients. It combines the
effectiveness of mettack and PGD, and is shown to be the most effective topological attack at present.
Though global attacks are expected to be more challenging while using topological features, we
demonstrate that WGTL still yields significant robustness. Further details on attack implementations
and attackers’ budgets are in Appendix B.
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Table 1: Performance (Accuracy±Std)under nettack.

Dataset Model Number of perturbations per node

0 1 2 3 4 5

Cora-ML GCN 82.87±0.93 82.53±1.06 82.08±0.81 81.69 ±0.59 81.26±0.88 80.69±0.81
GCN + WGTL (ours) ∗83.83±0.55 ∗83.41±0.87 ∗82.74±0.65 82.06±0.82 81.64±0.55 80.98±0.67

Citeseer GCN 71.56±0.63 71.37±0.46 71.14±0.47 70.49±0.59 70.05±0.35 69.77±0.50
GCN + WGTL (ours) ∗72.56±0.82 ∗72.27±0.72 ∗72.10±0.78 ∗71.81±0.88 ∗70.95±0.64 ∗70.95±1.05

Pubmed GCN 81.70±0.30 81.64±0.33 81.50±0.29 81.48±0.29 81.29±0.43 81.03±0.27
GCN + WGTL (ours) ∗83.93±0.06 ∗83.91±0.12 ∗83.84±0.11 ∗83.70±0.11 ∗83.68±0.09 ∗83.55±0.13

Polblogs GCN 94.40±1.48 88.91±1.06 85.39±0.86 83.03±0.87 81.20±1.63 79.39±0.96
GCN + WGTL (ours) ∗95.95±0.15 ∗91.47±0.33 ∗89.10±0.69 ∗88.98±0.83 ∗88.63±1.20 ∗87.14±0.70

Table 2: Performance (Accuracy±Std) under mettack.

Dataset Model Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML GCN 82.87±0.83 76.55±0.79 70.39±1.28 65.10±0.71 52.30±1.43 47.53±1.96
GCN + WGTL (ours) ∗83.83±0.55 ∗78.63±0.76 ∗73.41±0.82 ∗68.87±0.89 ∗57.47±1.00 ∗53.71±1.81

Citeseer GCN 71.56±0.56 67.28±0.61 62.49±0.88 55.70±1.2 49.23±1.06 49.00±1.67
GCN + WGTL (ours) ∗72.56±0.82 ∗71.40±0.93 ∗67.95±0.43 ∗65.97±0.40 ∗55.84±1.44 ∗57.95±0.70

Pubmed GCN 81.70±0.30 77.36±0.30 74.76±0.61 71.55±0.68 69.03±0.75 66.21±0.89
GCN + WGTL (ours) ∗83.93±0.06 ∗80.35±0.07 ∗78.53±0.17 ∗76.03±0.31 ∗74.30±0.14 ∗71.95±0.26

Polblogs GCN 94.40±1.47 71.41±2.42 69.16±1.86 64.66±2.59 56.05±2.18 48.59±1.44
GCN + WGTL (ours) ∗95.95±0.15 ∗74.62±0.42 ∗72.84±0.86 ∗68.65±0.31 ∗62.44±1.51 ∗58.24±0.14

Table 3: Performance (Accuracy±Std) under PGD-attack.

Dataset Model Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML GCN 82.87±0.93 82.45±0.92 77.33±0.27 77.56 ±0.79 73.44±0.88 68.73±0.81
GCN + WGTL (ours) ∗83.83±0.55 ∗83.30±0.99 ∗80.00±1.15 77.97±1.90 ∗77.19±0.91 ∗73.10±1.47

Citeseer GCN 71.56±0.63 69.58±0.48 65.56±0.45 66.34±1.28 63.48±1.75 60.23±1.72
GCN + WGTL (ours) ∗72.56±0.82 ∗72.33±0.33 ∗71.00±1.59 ∗71.52±1.40 ∗71.08±1.20 ∗71.09±0.74

Pubmed GCN 81.70±0.30 81.64±0.18 81.01±0.21 79.46±0.15 77.97±0.05 75.77±0.08
GCN + WGTL (ours) ∗83.93±0.06 ∗82.14±0.12 ∗81.74±0.25 ∗80.74±0.09 ∗80.20±0.06 ∗79.86±0.09

Polblogs GCN 94.40±1.48 91.17±2.27 89.92±1.43 72.17±5.06 69.20±5.74 62.33±3.89
GCN + WGTL (ours) ∗95.95±0.15 91.45±0.51 90.02±1.16 ∗77.09±1.32 ∗72.00±4.68 ∗64.66±4.32

Table 4: Performance (Accuracy±Std) under Meta-PGD attack.

Dataset Model Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML GCN 82.87±0.93 79.30±0.86 76.26±0.92 74.09± 0.54 72.37±0.63 70.15±0.72
GCN + WGTL (ours) ∗83.83±0.55 79.57±1.10 76.52±0.81 74.32±1.00 72.84±0.85 ∗71.06±0.76

Citeseer GCN 71.56±0.63 67.89±0.59 66.80±0.79 65.13±0.60 61.48±0.53 60.60±0.27
GCN + WGTL (ours) ∗72.56±0.82 ∗69.38±0.27 ∗67.57±0.67 65.98±0.76 ∗62.94±0.55 ∗61.08±0.57

Pubmed GCN 81.70±0.30 77.24±0.14 73.56±0.17 70.89±0.21 68.25±0.31 65.92±0.34
GCN + WGTL (ours) ∗83.93±0.06 ∗78.97±0.20 ∗75.22±0.16 ∗72.84±0.12 ∗70.50±0.31 ∗68.37±0.12

Polblogs GCN 94.40±1.48 83.46±2.13 78.08±0.73 74.89±0.83 70.35±1.40 70.65±1.97
GCN + WGTL (ours) ∗95.95±0.15 ∗85.52±0.70 ∗81.28±0.31 ∗79.43±0.50 ∗73.37±0.85 ∗71.64±1.78

5.1 RESULTS: NODE CLASSIFICATION PERFORMANCE ON CLEAN AND ATTACKED GRAPHS

Performance Evaluation of GCN + WGTL. First, we evaluate the node classification accuracy
of WGTL deployed with GCN as a classifier (Jia et al., 2023) against a local poisoning attack, i.e.,
nettack. Table 1 compares performance, i.e., mean and standard deviation of accuracies over 10
runs, of GCN with our GCN + WGTL, i.e., we use the GCN as a GNN backbone architecture. The
best performance is highlighted in bold. Note that, despite being local, nettack preserves the degree
distribution. Hence, the graph topology is expected to go through minimal change. Hence, intuitively
nettack should diminish the informativeness of the local and global topology priors on the perturbed
graphs. Despite that, we observe that GCN + WGTL still consistently outperforms the GCN across
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different numbers of perturbations. Now, we compare performance of GCN against GCN+WGTL
(i.e., we use the GCN as a GNN backbone architecture) against three global attacks, i.e. mettack, PGD-
attack and Meta-PGD, and illustrate the results in Tables 2, 3 and 4, respectively. From these tables,
we observe that: (i) GCN+WGTL consistently outperforms GCN, which proves the effectiveness of
our proposed WGTL (for instance, our method achieves a relative gain of up to 13.00% on Cora-ML
dataset under mettack), (ii) GCN+WGTL is often better or comparable to the backbone GCN in terms
of standard deviation, indicating that the proposed components in WGTL do not affect the stability
of the backbone model, (iii) The performance of our method, including that of the backbone GCN,
deteriorates faster on Polblogs than on other datasets. This phenomenon can be explained by the fact
that unlike other graph datasets, Polblogs does not have node features. That is, having informative
node features can help GNN to differentiate between nodes and to learn meaningful representations
despite changes in the graph structure. With node features lacking, the Polblogs has comparatively
less resilience against graph structural perturbations injected by the various attacks. Such results
were also observed by Jin et al. (2020), and (iv) WGTL is the most effective against mettack and the
least effective against Meta-PGD. For instance, against mettack on Polblogs (25% perturbation rate),
WGTL improves the accuracy by 20%, while against Meta-PGD, the accuracy gain is only 1.4%.

Table 5: Node classification performance (Accuracy±Std) under met-
tack. Pro-GNN is used as a backbone GNN architecture.

Dataset Model Perturbation Rate

0% 5% 10%

Cora-ML Pro-GNN 82.98±0.23 80.14±1.34 71.59±1.33
Pro-GNN + WGTL (ours) ∗83.85±0.38 ∗81.90±0.73 ∗72.51±0.76

Citeseer Pro-GNN 72.34±0.99 68.96±0.67 67.36±1.12
Pro-GNN + WGTL (ours) ∗72.83±0.94 ∗71.85±0.74 ∗70.70±0.57

Pubmed Pro-GNN 87.33±0.18 87.25±0.09 87.20±0.12
Pro-GNN + WGTL (ours) ∗87.90±0.30 ∗87.77±0.08 ∗87.67±0.22

The main reasons are two-
fold: (i) Meta-PGD is a
stronger attack than the met-
tack (Mujkanovic et al.,
2022), and (ii) global poi-
soning attacks target graph
topology and are supposed
to be more challenging
for the proposed topology-
based defense WGTL. Fur-
thermore, we have per-
formed ablation studies and refer to Appendix C for details.

Performance Evaluation of Pro-GNN+WGTL. Table 5 illustrates the comparative performance of
Pro-GNN (Jin et al., 2020) and Pro-GNN+WGTL on three citation networks under mettack. Similarly,
Table 5 indicates that our Pro-GNN+WGTL is always better than the baseline on all datasets. For
instance, we gain 0.68% - 4.96% of relative improvements on Cora-ML and Citeseer. The results
reveal that WGTL enhances not only model expressiveness but also improves the robustness of the
GNN-based model.

Results: Computational Complexity. Landmark selection (top-|L| degree nodes) has complexity
O(N log(N)). To compute witness topological features, one needs to compute (1) landmarks-to-
witness distances costing O(|L|(N + |E|)) due to BFS-traversal from landmarks, (2) landmark-
to-landmark distances costing O(|L|2), and finally (3) persistent homology via boundary matrix
construction and reduction (Edelsbrunner et al., 2002). Matrix reduction algorithm costs O(ζ3),
where ζ is the number of simplices in a filtration. Overall, the computational complexity of computing
witness topological feature on the graph is O(|L|(N + |E|)+ |L|2+ ζ3). We observe that the average
running times (i.e., training time per epoch) of WGTL (using GCN as the backbone architecture) on
Cora-ML, Citeseer, Pubmed, and Polblogs are 3.86 s, 2.72 s, 6.97 s, and 0.78 s, respectively.

6 CONCLUSION

By harnessing the strengths of witness complex to efficiently learn topological representations based
on the subset of the most essential nodes as skeleton, we have proposed the novel topological defense
against adversarial attacks on graphs, WGTL. WGTL is versatile and can be readily integrated with
any GNN architecture or another non-topological defense, leading to substantial gains in robustness.
We have derived theoretical properties of WGTL, both at the local and global levels, and have
illustrated its utility across a wide range of adversarial attacks. In the future, we plan to explore
the utility of WGTL with respect to adversarial learning of time-evolving graphs and hypergraphs.
Another interesting research direction is to investigate the linkage between the attacker’s budget,
number of landmarks, and topological attacks targeting the skeleton shape, that is, topological
properties of the graph induced by the most important nodes (landmarks).

9



Under review as a conference paper at ICLR 2024

REFERENCES

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A
stable vector representation of persistent homology. JMLR, 18, 2017.
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A EXPERIMENTAL DETAILS

Experimental Setup. All experiments are run on a server with 32 Intel(R) Xeon(R) Sil-
ver 4110 CPU @ 2.10GHz processors, 256 GB RAM, and three NVIDIA V100 GPU cards
with 32GB memory. All models are trained on a single GPU. The source code is ava-
iable at https://www.dropbox.com/scl/fo/0oavxaw0vz2fjdtg1j76c/h?rlkey=
b524wsqs60eci9zbryk91rj4a&dl=0.

Datasets. Following Zügner & Günnemann (2019); Zügner et al. (2018); Jin et al. (2020), we validate
the proposed approach on four benchmark datasets, including three citation graphs: Citeseer, Cora,
and Pubmed, and one blog graph: Polblogs. For each graph, we randomly choose 10% of nodes
for training, 10% of nodes for validation and the remaining 80% of nodes for testing. For each
experiment, we report the average accuracy of 10 runs. Note that in the Polblogs graph node features
are not available. Following Jin et al. (2020), we set the attribute matrix to N ×N identity matrix.

Table 6: Dataset statistics: only the largest connected component (LCC) is considered.
Dataset #nodes (LCC) #edges (LCC) #classes #features

Cora-ML 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703
Pubmed 19,717 44,338 3 500
Polblogs 1,222 16,714 2 None

Landmark Selection for Local and Global Topology Encodings. There are several approaches to se-
lecting landmarks, e.g., random selection (De Silva & Carlsson, 2004a), max-min selection (De Silva
& Carlsson, 2004a), ϵ-net (Arafat et al., 2020) based and centrality-based selection (Chen & Gel,
2023). In our experiments, we select landmarks based on degree centrality. As shown by Chen &
Gel (2023), doing so helps to improve the classification performance. On Cora-ML, Citeseer and
Polblogs, we select 5% nodes, while on Pubmed, we select 2% nodes as landmarks. Each landmark
creates its own cover consisting of a subset of nodes. A node u belongs to the cover of a landmark l
if l is nearest to u among all the landmarks. Due to such landmark selection, the maximum values of
ϵ are 2 for Citeseer and 3 for Cora-ML, Polblogs and Pubmed, and thus ensuring good stability of the
encoded local and global topology.
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B DETAILS OF ADVERSARIAL ATTACKS: CONFIGURATIONS AND BUDGETS

In this paper, we focus on four different local and global poisoning attacks to evaluate the robustness
of our proposed WGTL, and consider a fixed GCN without weight re-training as the surrogate for
all attacks. All attacks are considered under a non-adaptive setting, meaning it is assumed that the
attacker can not adapt or interact with the model during the attack process. In all the poisoning
attacks, we vary the perturbation rate, i.e., the ratio of changed edges, from 0% to 25% with a step of
5%.

Global Poisoning Attacks. Among global (non-targeted) poisoning attacks, we consider met-
tack (Zügner et al., 2019) and two different topological attacks: PGD (Xu et al., 2019) and its more
recent adaptation Meta-PGD (Mujkanovic et al., 2022). Mettack treats the graph as a hyperparameter
and greedily selects perturbations based on meta-gradient for node pairs until the budget is exhausted.
PGD attack (Xu et al., 2019) uses the Projected Gradient Descent algorithm with the constraint
∥S∥0 ≤ δ to minimise attacker loss. Here, S is a binary symmetric matrix with Sij = 1 if the (i, j)-
th entry of the Adjacency matrix is flipped by the attacker, and 0 otherwise. Recently, Mujkanovic
et al. (2022) proposes to apply PGD on the meta-gradients to design attacks stronger than the greedy
mettack. Meta-PGD has been shown to be more effective than mettack in many cases (Mujkanovic
et al., 2022). Hence, we consider it a more challenging poisoning attack for the proposed method.

To perform mettack, we keep all the default parameter settings (e.g., λ = 0) following the original
implementation (Zügner et al., 2019). For Cora-ML, Citeseer and Polblogs, we apply the Meta-Self
variant of mettack since it is the most effective mettack variant, while for Pubmed, the approximate
version of Meta-Self, A-Meta-Self, is applied to save memory and time (Jin et al., 2020). We perform
the PGD attack with the CE-type attacker loss function. Following the implementation (Xu et al.,
2019), we keep their default parameter settings, i.e., the number of iterations T = 200 and learning
rate ηt = 200/

√
t. For Meta-PGD, we keep the same parameter settings as Mujkanovic et al. (2022),

i.e., a learning rate of 0.01 and gradient clipping threshold of 1.

Local Poisoning Attack. Among local attacks, we use nettack (Zügner et al., 2018). Nettack is a
targeted attack which first selects possible perturbation candidates not violating degree distribution
and feature co-occurrence of the original graph. Then, it greedily selects, until the attacker’s budget
is exhausted, the perturbation with the largest score to modify the graph. The score function is the
difference in the log probabilities of a target node.

Following Zügner et al. (2018), we vary the number of perturbations made on every targeted node
from 1 to 5 with a step size of 1. Following Jin et al. (2020), the nodes in the test set with a degree
> 10 are treated as target nodes. We only sample 10% of them to reduce the running time of nettack
on Pubmed, while for other datasets, we use all the target nodes.
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C ABLATION STUDIES

To evaluate the contributions of the different components in our WTGL, we perform ablation
studies on Cora-ML and Polblogs datasets under a global attack, i.e., mettack, and a local attack,
i.e., nettack. We use GCN as the backbone architecture and consider three ablated variants: (i)
GCN+Local Topology Encoding (LTE), (ii) GCN+Global Topology Encoding (GTE), and (iii)
GCN+LTE+GTE+Topological Loss (TopoLoss) (i.e., GCN + WTGL).

The experimental results for mettack are shown in Tables 7 and 8. The experimental results for
nettack are shown in Tables 9 and 10.

Consistent improvement from the backbone GCN while using GTE, LTE, and topological loss
together suggest their importance in an individual as well as in an aggregated manner.

Table 7: Performance (Accuracy±Std) on Cora-ML under mettack.

Model Cora-ML

0% 5% 10% 15% 20% 25%

GCN 82.87±0.83 76.55±0.79 70.39±1.28 65.10±0.71 52.30±1.43 47.53±1.96
GCN + LTE 83.26±0.43 77.35±0.38 71.27±0.81 66.65±0.83 54.01±1.03 48.55±0.99
GCN + GTE 83.37±1.12 77.78±0.59 70.66±1.76 66.51±0.81 55.64±1.47 49.80±1.97
GCN + LTE + GTE + TopoLoss 83.83±0.55 78.63±0.76 73.41±0.82 68.87±0.89 57.47±1.00 53.71±1.81

Table 8: Performance (Accuracy±Std) under on Polblogs mettack.

Architecture Polblogs

0% 5% 10% 15% 20% 25%

GCN 94.40±1.47 71.41±2.42 69.16±1.86 64.66±2.59 56.05±2.18 48.59±1.44
GCN + LTE 95.34±0.73 72.27±1.07 72.02±0.97 68.14±0.99 59.37±2.72 56.16±1.71
GCN + GTE 95.07±0.09 72.78±0.57 73.14±1.59 68.22±0.11 61.37±1.13 58.24±1.13
GCN + LTE + GTE + TopoLoss 95.95±0.15 72.84±0.86 74.62±0.42 68.65±0.31 62.44±1.51 58.24±0.14

Table 9: Performance (Accuracy±Std) on Cora-ML under nettack.

Model Cora-ML

0 1 2 3 4 5

GCN 82.87±0.93 82.53±1.06 82.08±0.81 81.69 ±0.59 81.26±0.88 80.69±0.81
GCN + LTE 82.88±0.24 82.56 ±0.13 82.33±0.33 82.06±0.26 81.43±0.21 80.76±0.17
GCN + GTE 83.15±0.43 82.42±0.66 82.29 ±0.48 82.03±0.31 81.53±0.53 80.73±0.40
GCN + LTE + GTE + TopoLoss 83.83±0.55 83.41±0.87 82.74±0.65 82.06±0.82 81.64±0.55 80.98±0.67

Table 10: Performance (Accuracy±Std) on Polblogs under nettack.

Model Cora-ML

0 1 2 3 4 5

GCN 94.40±1.48 88.91±1.06 85.39±0.86 83.03±0.87 81.20±1.63 79.39±0.96
GCN + LTE 95.42±0.58 91.45±0.56 88.40±0.94 88.43±0.59 88.02±0.73 86.95±0.55
GCN + GTE 95.07±0.11 91.47 ±0.68 89.10±0.70 89.38 ±0.78 88.61±1.38 87.04±0.51
GCN + LTE + GTE + TopoLoss 95.95±0.15 91.47±0.33 89.10±0.69 88.98±0.83 88.63±1.20 87.14±0.70
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D THEORETICAL ANALYSIS

D.1 NOTATIONS

We dedicate this section to index all the notations used in this paper. Note that every notation is
defined when it is introduced as well.

Table 11: Notations

G ≜ A graph with a vertex set V , an edge set E , and features X

N ≜ Cardinality of V , i.e. the number of nodes

F ≜ Dimension of features corresponding to each node

A ≜ Adjacency matrix of G
D ≜ Degree matrix of G
dG(u, v) ≜ Geodesic distance between nodes u and v in graph G
Diam(G) ≜ The diameter of the graph G
L ≜ The set of landmark nodes

ϵ ≜ Radius of the ϵ-net induced on G by L

Gϵ
l ≜ The ϵ-neighborhood of the landmark l in graph G

Cϵ ≜ Maximum cardinality of the ϵ-neighborhoods induced by the landmarks L

dH(G1,G2) ≜ Hausdroff distance between graphs G1 and G2

Wp(·, ·) ≜ p-Wasserstein distance

PD(K (G)) ≜ Persistence diagram of the K simplicial complexes computed on a graph G.

K can be Cěch, Vietoris-Rips or Witness complex of dimension d ∈ Z≥0.

PI(K (G)) ≜ Persistence image of the K simplicial complexes computed on a graph G.

In our analysis, K can be Cěch, Vietoris-Rips or Witness complex of d ∈ Z≥0.

A(G) ≜ The adjacency matrix constructed from the local topology encoding ZTL
of the nodes

T(G) ≜ Persistence diagrams of dimension d ∈ Z≥0 constructed from A(G)
Aglob(G) ≜ The adjacency matrix constructed from the global topology encoding ZTG

of the nodes

D.2 PROPERTIES OF THE LOCAL WITNESS COMPLEXES

Theorem 2 (Properties of Local Witness Complexes (Arafat et al., 2020)). .

1. Finiteness of the landmark set. The cardinality of the landmark set L is(
Diam(G)

ϵ

)O(log |V|
ϵ )

. Here, ϵ ≜ maxu,v∈L
1
2d(u, v), and is a tunable parameter.

2. Stability of the landmark set. The Hausdorff distance denoted as dH(V,L) between
connected weighted graph (V, dG) and its ϵ-net induced subspace (L, dL) is at most ϵ,
where L ⊆ V is the set of landmarks.

3. 3-approximation of Vietoris-Rips. For any α > 2ϵ,

VRα/3(L) ⊆ Witα(V,L) ⊆ VR3α(L)

=⇒ W∞(PD>2ϵ(VR),PD>2ϵ(Wit)) ≤ 3 log 3

=⇒ W∞(PD(VR),PD(Wit)) ≤ 3 log 3 + 2ϵ
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D.3 STABILITY OF THE TOPOLOGICAL REPRESENTATIONS

Remark 1. Here, for building Persistence Images, we use Gaussian kernel with variance σ and a
weighting function w, such that |∇w| = 1 for graphs.

Theorem 1 (Stability of the Final PD in Figure 2). Let us assume p < ∞ and Cϵ is the maximum size
of the ϵ-neighbourhood created by the landmarks. Let us denote the persistence diagram obtained
from local topology encoding of G as T(G) (Figure 2).

(a) If Cěch complex is used to compute the local persistence images around each landmark, we obtain
that for any graph perturbation ∥G − G′∥1 = O(δ) the final persistence diagram representation
changes by

Wp(T(G),T(G′)) = O(Cϵδ). (2)

(b) If Witness complex is used to compute the local persistence images around each landmark, we
obtain that for any graph perturbation ∥G−G′∥1 = O(δ) the final persistence diagram representation
changes by

Wp(T(G),T(G′)) = O(Cϵ(δ + ϵ)). (3)

Proof. In the following, we prove the two parts of this theorem.

(a) Cěch Complex.

Wp(T(G),T(G′)) ≤
(a)

W∞(T(G),T(G′))

≤
(b)

∥A(G)−A(G′)∥∞

≤
(c)

∥A(G)−A(G′)∥1

≤
(d)

|V|∑
i=1

∥PI(Cech(Gi)− PI(Cech(G′
i)i∥1

=
(e)

|L|∑
l=1

|Gϵ
l | × ∥PI(Cech(Gϵ

l )− PI(Cech(G′ϵ
l )∥1

≤
(f)

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | × W1(PD(Cech(Gϵ

l ),PD(Cech(G′ϵ
l ))

≤

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | × W∞(PD(Cech(Gϵ

l ),PD(Cech(G′ϵ
l ))

≤
(g)

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | × ∥Gϵ

l − G′ϵ
l∥∞

≤

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | × ∥Gϵ

l − G′ϵ
l∥1

≤
(h)

(
√
5 +

√
10

π

1

σ

)
max

l
|Gϵ

l | ∥G − G′∥1

= O(Cϵ ∥G − G′∥1).

Step (a) is true due to the fact that Wp(x, y) ≤ Wq(x, y) for 0 < p ≤ q and for all x, y.

Step (b) is due to the stability theorem of persistence diagrams (Cohen-Steiner et al., 2005). Here,
A(G) represents the adjacency matrix constructed from the local topology encoding ZTL

of the nodes,
and T(G) is the persistence diagrams of a fixed dimension d ∈ Z≥0 constructed from A(G).
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Step (c) is true as l∞ norm is less than l1 norm between two vectors.

Step (d) is true due to 1-Lipschitzness of the transformation from the local persistence images to the
final adjacency matrices computed using Local Topology Encodings.

Equality (e) is due to the fact that the persistence images for all nodes i ∈ Gϵ
l are the same.

Inequality (f) is a direct consequence of the stability theorem of the persistence images (Adams et al.,
2017, Theorem 10). Here, for building Persistence Images, we use Gaussian kernel with variance σ
and a weighting function w, such that |∇w| = 1 for graphs.

Inequality (g) is an application of the stability theorem of persistence diagrams (Cohen-Steiner et al.,
2005) on each of the ϵ-neighborhoods of the landmarks.

Inequality (h) is true due to the fact that
∑m

i=1 aibi ≤
(

max
i∈{1,...,m}

ai

)∑m
i=1 bi if 0 ≤ ai, bi < ∞.

(b) Witness Complex.

Wp(T(G),T(G′)) ≤ W∞(T(G),T(G′))

≤ ∥A(G)−A(G′)∥∞

≤
|L|∑
l=1

|Gϵ
l | × ∥PI(Wit(Gϵ

l ))− PI(Wit(G′ϵ
l ))∥1

≤

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | × W1(PD(Wit(Gϵ

l )),PD(Wit(G′ϵ
l ))

≤

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | × W∞(PD(Wit(Gϵ

l )),PD(Wit(G′ϵ
l ))

≤
(i)

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | ×

(
W∞(PD(VR(Gϵ

l )),PD(VR(G′ϵ
l )) + 6 log 3 + 4ϵ

)
≤
(j)

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | ×

(
2∥Gϵ

l − G′ϵ
l∥∞ + 6 log 3 + 4ϵ

)
≤

(
√
5 +

√
10

π

1

σ

) |L|∑
l=1

|Gϵ
l | ×

(
2∥Gϵ

l − G′ϵ
l∥1 + 6 log 3 + 4ϵ

)
≤

(
√
5 +

√
10

π

1

σ

)
max

l
|Gϵ

l | (2∥G − G′∥1 + 6 log 3 + 4ϵ)

= O(Cϵ (∥G − G′∥1 + ϵ)).

Most of the calculations above follow similar rationale as the analysis for the Cěch complex except
steps (i) and (j).

Step (i) is a consequence of Theorem 2.3.

Step (j) holds true due to the stability theorem of persistence diagrams constructed from Vietoris-Rips
complex (Chazal et al., 2009).

Proposition 1 (Stability of the Global PD in Figure 1 with Witness Complex). If the landmarks
selected for the Witness complex induce an ϵ-net of the graph with ϵ > 0, we obtain that for any
graph perturbation ∥G − G′∥1 = O(δ) the global persistence image representation changes by

∥PI(Witglob(G))− PI(Witglob(G′))∥∞ = O(δ + ϵ), (4)

and ∥PI(Cechglob(G)) − PI(Cechglob(G′))∥∞ = O(δ), if we have access to the Cěch simplicial
complexes for G.
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Proof. PI(Witglob(G)) refers to the global persistence images computed from the witness complex
of G (ref. Figure 1).

∥PI(Witglob(G))− PI(Witglob(G′))∥∞
≤ ∥PI(Witglob(G))− PI(Witglob(G′))∥1

≤
(a)

(
√
5 +

√
10

π
σ

)
W1

(
PD(Witglob(G)),PD(Witglob(G′))

)
≤

(
√
5 +

√
10

π

1

σ

)
W∞

(
PD(Witglob(G)),PD(Witglob(G′))

)
≤
(b)

(
√
5 +

√
10

π

1

σ

)(
W∞

(
PD(VRglob(G)),PD(VRglob(G′))

)
+ 6 log 3 + 4ϵ

)
≤
(c)

(
√
5 +

√
10

π

1

σ

)
(2∥G − G′∥∞ + 6 log 3 + 4ϵ)

≤

(
√
5 +

√
10

π

1

σ

)
(2∥G − G′∥1 + 6 log 3 + 4ϵ)

= O(δ + ϵ).

Inequality (a) is due to the stability theorem of persistence images with Gaussian kernels (Adams
et al., 2017, Theorem 10).

Inequality (b) is due to the 3-approximation theorem of Vietoris-Rips complex with Witness complex
(Theorem 2.3., Arafat et al. (2020)).

Inequality (c) is due to the stability theorem of persistence diagram of Vietoris-Rips complex (Chazal
et al., 2009).

Proposition 2 (Stability of the attention-driven node representation in Figure 1). If the landmarks
selected for the Witness complex induce an ϵ-net of the graph with ϵ > 0, we obtain that for any
graph perturbation ∥G − G′∥1 = O(δ) the global persistence image representation changes by

∥ZWGTL(G)−ZWGTL(G′)∥1 = O((Cϵ + LGNN )(δ + ϵ)2). (5)

Proof. Step 1: Decomposition to three components.

We observe that

ZWGTL(G) =
(
αTL

A(G) + αGA
GNN(G)

)
Aglob(G),

where A(G) represents the adjacency matrix constructed from the local topology encoding ZTL
of

the nodes, Aglob(G) represents the adjacency matrix constructed from the global topology encoding
ZTG

of the nodes, AGCN represents the adjacency matrix constructed from the encoding Z
(m+1)
G

of the nodes obtained from GNNs, and αTL
and αG are non-negative attention weights in (0, 1) as

described in Section 4.1.

Step 2: Stability of the three individual components.

1. For the local PIs passing through transformer, we have

∥A(G)−A(G′)∥1 ≤
|L|∑
l=1

|Gϵ
l | × ∥PI(Wit(Gϵ

l ))− PI(Wit(G′ϵ
l ))∥1

≤

(
√
5 +

√
10

π

1

σ

)
Cϵ (∥G − G′∥1 + 6 log 3 + 4ϵ) .

The result follows the arguments in Theorem 1.
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2. For the global PIs passing through CNN, we have

∥Aglob(G)−Aglob(G′)∥∞ ≤ ∥Aglob(G)−Aglob(G′)∥1
≤ ∥PIglob(G)− PIglob(G′)∥1

≤

(
√
5 +

√
10

π

1

σ

)
(∥G − G′∥1 + 6 log 3 + 4ϵ) .

The result follows the arguments in Proposition 1.

3. For the graph passing through GNN, following Jia et al. (2023), we show that

∥AGNN(G)−AGNN(G′)∥1 ≤ LGNN∥G − G′∥1.

Step 3: Merging the pieces together.

∥ZWGTL(G)−ZWGTL(G′)∥1
= ∥

(
αTL

A(G) + αGA
GNN

)
Aglob(G)−

(
αTL

A(G′) + αGA
GNN(G′)

)
Aglob(G′)∥1

≤
(a)

∥
(
αTL

A(G) + αGA
GNN

)
−
(
αTL

A(G′) + αGA
GNN(G′)

)
∥1∥Aglob(G)−Aglob(G′)∥∞

≤
(b)

(
∥A(G)−A(G′)∥1 + ∥AGNN −AGNN(G′)∥1

)
∥Aglob(G)−Aglob(G′)∥∞

= O (Cϵ(δ + ϵ) + LGNNδ)Cϵ(δ + ϵ))

Step (a) is due to Hölder’s inequality and Step (b) is due to triangle inequality.

The final result is due to the results of Step 2.

D.4 STABILITY OF THE TOPOLOGICAL LOSS

Theorem 3 (Boundedness of Topological Loss). Let us define

Ltopo,k(T(G)) ≜
m∑
i=1

(di − bi)
p

(
di + bi

2

)q

. (6)

Let us assume that the cardinality of the ϵ-neighborhood of any node in G grows polynomially,
i.e. Cϵ = O(ϵ−M ) for an M > 0. If m is the number of points in the persistence diagram,
k = max{p, q} and 2k > M , Ltopo,k(T(G)) is bounded, such that

Ltopo,k(T(G)) ≤

(
√
5 +

√
10

π

1

σ

)2k

ϵ−2kMDiam(A(G)) + 2k−2mDiam(G)2k. (7)

Proof.

Ltopo,k(T(G)) =
m∑
i=1

(di − bi)
p

(
di + bi

2

)q

≤
(a)

m∑
i=1

(di − bi)
2p

2
+

1

2

(
di + bi

2

)2q

≤
(b)

m∑
i=1

(di − bi)
2p

2
+ 2q−1

(
b2qi +

(
di − bi

2

)2q
)

≤
m∑
i=1

(
1 +

1

2q

)
(di − bi)

max{2p,2q}

2
+ 2q−1

m∑
i=1

b2qi

=
1

2

(
1 +

1

2q

) m∑
i=1

(di − bi)
max{2p,2q} + 2q−1

m∑
i=1

b2qi
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≤
m∑
i=1

(di − bi)
2k + 2q−1

m∑
i=1

b2qi

≤
(c)

CA(G)Lip(A(G))2k + 2k−1mDiam(G)2k

≤
(d)

(
√
5 +

√
10

π

1

σ

)2k

C2k
ϵ Diam(A(G)) + 2k−1mDiam(G)2k

=
(e)

O

(√5 +

√
10

π

1

σ

)2k

ϵ−2kMDiam(A(G)) + 2k−1mDiam(G)2k


Step (a) is due to the fact that 2xy ≤ x2 + y2 for all x, y ∈ R.

Step (b) holds true as
(
x+y
2

)2q
=
(
x−y
2 + y

)2q ≤ 2q−1
((

x−y
2

)q
+ yq

)2
≤ 2q

((
x−y
2

)2q
+ y2q

)
for x, y ≥ 0 and q ≥ 1.

Inequality (c) holds due to two facts:

i. degree 2k-total persistence for any Lipschitz function f over a triangulable compact metric
space Dom is upper bounded by CDomLip(f)2k for 2k > M (Cohen-Steiner et al., 2010),
and

ii. the birth and death of topological features on a graph G is upper bounded by the diameter of
the graph Diam(G), as mentioned in Section 3.

Inequality (d) is due to the Lipschitzness property of persistence images (Adams et al., 2017, Theorem
4) applied on the local persistence images calculated on an ϵ-neighborhood. Thus, Lip(A(G)) ≤(√

5 +
√

10
π

1
σ

)
Cϵ, where Cϵ is the maximum cardinality of the ϵ-neighborhoods induced by the

landmarks.

The last inequality (e) holds due to the assumption that the maximum cardinality of local subgraph
with ϵ diameter is O(ϵ−M ) (Cohen-Steiner et al., 2010).

Proposition 3 (Stability of Topological Loss). Let us define

Ltopo,k(T(G)) ≜
m∑
i=1

(di − bi)
p

(
di + bi

2

)q

.

Let us assume that the cardinality of the ϵ-neighborhood of any node in G grows polynomially,
i.e. Cϵ = O(ϵ−M ) for an M > 0. If m is the number of points in the persistence diagram,
k = max{p, q} and 2k > M , Ltopo,k(T(G)) is bounded, such that∣∣Ltopo,k(T(G))− Ltopo,k(T(G′))

∣∣
=O

kϵ−2k

(√5 +

√
10

π

1

σ

)2k

ϵ−2kMDiam(A(G)) + 2k−1mDiam(G)2k
 ∥G − G′∥1

 (8)

Proof.

|Ltopo,k(T(G))− Ltopo,k(T(G′))|

= |
m∑
i=1

(di − bi)
p

(
di + bi

2

)q

−
m∑
i=1

(d′i − b′i)
p

(
d′i + b′i

2

)q

|

≤ 2k

(√5 +

√
10

π

1

σ

)2k

ϵ−2kMDiam(A(G)) + 2k−1mDiam(G)2k
 ∥A(G)−A(G′)∥∞
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= O

kCϵ

(√5 +

√
10

π

1

σ

)2k

ϵ−2kMDiam(A(G)) + 2k−1mDiam(G)2k
 ∥G − G′∥1



The first inequality is a direct consequence of Theorem 3. The second inequality is due to the
ϵ-neighbourhood based construction of the topological loss from G (refer to Figure 2 and proof of
Theorem 1).
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E LANDMARK SELECTION ALGORITHM

The pseudocode for selecting landmarks for computing global witness topological features and local
witness topological features is presented in Algorithm 1. In order to compute global witness features,
we select a set of global landmark nodes. In order to compute local witness features, we select a set
of local landmark nodes for each node in the graph.

Algorithm 1 Greedy Landmark selection algorithm
Require: Graph G = (V, E), percentage of nodes as landmarks p ∈ (0, 1)
Ensure: Global landmark set Lg and Local landmark set L
1: Number of landmarks ng ← |V| · p
2: Sort V in decreasing order of node degrees.
3: Select Global Landmarks Lg ← V[1, 2, . . . , ng]
4: for all l ∈ Lg do
5: Compute cover Cl ← {u ∈ V : dG(u, l) < dG(u, l

′) ∀l′ ∈ Lg \ {l}}
6: Compute Subgraph Gl ← G[Cl]
7: Number of local landmarks nl ← |Cl| · p
8: Sort Cl in decreasing order of node degrees in Gl.
9: Select Local landmarks L[l]← Cl[1, . . . , nl]

return Lg,L

In Lines 1-3, we select the set of global landmarks Lg in order to construct Global witness filtration.
We select the top-most p% highest degree nodes in the graph G as landmarks.

In Lines 4-9, we select local landmarks corresponding to each global landmark in order to compute
the topological features local to each global landmark. A node u that is not a global landmark must
be in the cover of some landmark node l ∈ Lg . We say u is a witness node to the node l. We assume
the local topological signature does not change inside a cover. In other words, a witness node has
the same topological signature as its associated landmark. That is why, instead of computing local
landmarks for every node in V , we compute only for the global landmarks Lg ⊆ V (line 4). For each
global landmark l ∈ Lg, we construct its cover Cl in line 5 consisting of all its witness nodes. In
line 6, we construct the subgraph G[Cl] induced by the witness nodes. Finally, in lines 7-9, we select
the topmost p% of the witness nodes with the highest degrees in the induced subgraph G[Cl] as the
local landmark for l ∈ Lg .

E.1 IMPACT OF THE NUMBER OF LANDMARKS

It is well-known that the quality of the Witness complex-based topological features is dependent on the
number of landmarks (De Silva & Carlsson, 2004a; Arafat et al., 2019). Hence, the performance of the
proposed witness topological encodings, topological loss, and, finally, the downstream classification
quality is also dependent on the number of landmarks.

In order to study the accuracy and efficiency of WGTL under different numbers of landmarks, we use
Algorithm 1 to select 10%, 20%, 30% nodes as landmarks, and in Figure 3, we present the accuracy
and computation time of the local and global witness complex-based features on Cora-ML and
Citeseer datasets. We observe that increasing the number of landmarks indeed slightly increases
the accuracy, albeit with the expense of increased computation time. Due to this trade-off between
accuracy and efficiency, the selection of an optimal number of landmarks is dependent on how much
robustness is desired by a user within a given computation-time budget.

E.2 COMPARISON OF WGTL AND VIETORIS-RIPS BASED TOPOLOGY ENCODING (VRGTL)

Finally, we also observe that, on these datasets, the accuracy achieved by WGTL with 30% landmarks
is close to the accuracy achieved by adopting Vietoris-Rips-based topological feature encoding, as
indicated by the dotted line representing GCN+VRGTL. A more in-depth comparison among GCN,
GCN+WGTL and GCN+VRGTL is presented in Figure 3 where we compare their accuracy on
Cora-ML and Citeseer under mettack. We observe that the accuracy of GCN+VRGTL is comparable
to that of GCN+WGTL. These observations also highlight the flexibility of WGTL in adopting other
approximate topological features. However, computing Vietoris-Rips features is significantly more
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Figure 3: The trade-off between accuracy and Feature computation time of GCN+WGTL with
different numbers of landmarks. The figures are under mettack with 5% perturbation rate.

Table 12: Performance (Accuracy±Std) comparison with GCN+VRGTL under mettack.
GCN+VRGTL has a similar performance as GCN+WGTL as their mean±std coincide.

Dataset Model
Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML
GCN 82.87±0.83 76.55±0.79 70.39±1.28 65.10±0.71 52.30±1.43 47.53±1.96

GCN + VRGTL (ours) ∗84.02 ± 0.5 ∗78.70 ±0.65 73.07 ±0.74 67.77±0.52 56.93±0.58 52.39±0.77

GCN + WGTL (ours) 83.83±0.55 78.63±0.76 ∗73.41±0.82 ∗68.87±0.89 ∗57.47±1.00 ∗53.71±1.81

Citeseer
GCN 71.56±0.56 67.28±0.61 62.49±0.88 55.70±1.2 49.23±1.06 49.00±1.67

GCN + VRGTL (ours) ∗72.64 ± 0.6 ∗71.41 ±0.45 67.93 ±0.41 65.84±0.87 ∗57.00±0.80 ∗58.00 ± 0.72

GCN + WGTL (ours) 72.56±0.82 71.40±0.93 ∗67.95±0.43 ∗65.97±0.40 55.84±1.44 57.95±0.70

Table 13: Execution times for computing global and local topological features. Landmark selection
time is included.

Cora-ML Citeseer

VR feature comp. time (seconds) 23286 1698

Witness feature comp. time (seconds) 24 16.2

expensive than witness topological features (Arafat et al., 2020). As shown in Table 13, adopting
VRGTL on Cora-ML (Citeseer) incurs almost 1000x (100x) more computation time compared to
WGTL.

The results demonstrate that instead of incurring 2 to 3 order less computational time, deploying
WGTL leads to similar or better accuracy to those of VRGTL across a wide range of perturbations.
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 WGTL WITH DIFFERENT GNN BACKBONE ARCHITECTURES

In the main paper, we have deployed WGTL with two GNN backbone architectures: GCN Kipf &
Welling (2016) and Pro-GNN Jin et al. (2020). In order to test the versatility and flexibility of WGTL,
we adopt WGTL with two more recent GNN architectures, namely GAT (Veličković et al., 2017) and
GraphSAGE (Hamilton et al., 2017) as backbones. We adopt the experimental setup and landmark
selection scheme described earlier in Appendix A. For the attacks, we adopt the configurations and
budgets as described earlier in Appendix B.

We demonstrate the performance of the backbones with and without WGTL on two representative
datasets: Cora-ML and Polblogs, and under two different representative attacks, i.e., mettack and
nettack. We observe that incorporating WGTL into all of the backbones improve their corresponding
performances under a range of perturbation rates.

GAT backbone. Table 14 shows the performance of GAT and the proposed GAT+WGTL on the
Cora-ML and Polblogs datasets under mettack. We observe that GAT+WGTL improves robustness
with respect to the baseline GAT by 0.1% - 13.8% on Cora-ML and 0.6% - 50.2% on Polblogs.
Table 15 shows the performance under nettack. We observe that GAT+WGTL improves robustness
with respect to the baseline GAT by 0.7% - 1.1% on Cora-ML and 0.14% - 1.5% on Polblogs.

GraphSAGE backbone. Table 16 shows the performance of GraphSAGE and the proposed Graph-
SAGE+WGTL on the Cora-ML and Polblogs datasets under mettack. We observe that Graph-
SAGE+WGTL improves robustness with respect to the baseline GraphSAGE by 3.2% - 42.6% on
Cora-ML and 1.5% - 40.8% on Polblogs. Table 17 shows the performance under nettack. We observe
that GraphSAGE+WGTL improves robustness with respect to the baseline GraphSAGE by 3% - 4%
on Cora-ML and 0.4% - 1.7% on Polblogs.

Table 14: Performance (Accuracy±Std) of GAT and GAT+WGTL under mettack.

Dataset Model
Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML
GAT 84.25±0.67 79.88±1.09 72.63±1.56 68.12±1.81 56.49±2.60 51.15±1.63

GAT + WGTL (ours) 86.07±2.10 80.80±0.87 75.80±0.79 69.86±1.77 64.29±1.59 51.21±1.19

Polblogs
GAT 95.28±0.51 75.83±0.90 73.11±1.20 68.98±1.48 53.21±12.13 46.48±9.09

GAT + WGTL (ours) 95.87±0.26 83.13±0.32 80.06±0.50 75.05±0.68 74.03±1.06 69.83±0.77

Table 15: Performance (Accuracy±Std) of GAT and GAT+WGTL under nettack.

Dataset Model
Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML
GAT 84.25±0.67 83.92±0.65 83.11± 0.42 82.94±0.59 82.34±0.55 81.72±0.56

GAT + WGTL (ours) 86.07±2.10 84.53±0.75 83.72±0.61 83.82±0.73 83.23±0.52 82.31±0.30

Polblogs
GAT 95.28±0.51 89.86±0.63 86.44±1.47 86.40±1.47 86.28±2.72 85.15±2.81

GAT + WGTL (ours) 95.87±0.26 90.69±0.51 87.73±0.38 87.22±0.31 86.63±1.12 85.27±0.29

F.2 COMPARISON WITH EXISTING DEFENSE MECHANISMS: GNNGUARD

Tables 18 shows the performance comparison between (1) GCN, (2) GCN+GNNGuard (Zhang
& Zitnik, 2020), (3) GCN+WGTL, and (4) GCN+GNNGuard+WGTL on Cora-ML and Polblogs
datasets under mettack. We can observe that (i) as expected, GCN+GNNGuard+WGTL always
outperforms all baselines, e.g., on Cora-ML, GCN+GNNGuard+WGTL yields more than 2.3%,
1.1%, and 1.9% relative improvements to GCN, GCN+GNNGuard, and GCN+WGTL respectively,
(ii) in general, GCN+WGTL is better than GCN+GNNGuard on both Cora-ML and Polblogs
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Table 16: Performance (Accuracy±Std) of GraphSAGE and GraphSAGE+WGTL under mettack.

Dataset Model
Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML
GraphSAGE 81.00±0.27 74.81±1.2 70.92±1.18 67.46±0.80 60.54± 2.08 53.48±0.74

GraphSAGE + WGTL (ours) 83.63±0.35 82.61±0.65 81.19±1.13 80.06±0.18 78.10±1.07 76.28±0.31

Polblogs
GraphSAGE 94.52±0.27 77.44 ± 1.71 74.66±0.85 68.77±1.83 59.65±1.77 54.15±2.10

GraphSAGE + WGTL (ours) 95.58±0.50 82.62±0.65 81.49±0.86 80.06±1.21 76.79±0.54 76.27±0.22

Table 17: Performance (Accuracy±Std) of GraphSAGE and GraphSAGE+WGTL under nettack.

Dataset Model
Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML
GraphSAGE 81.01±0.27 80.48±0.71 80.19±0.49 79.85±0.87 78.72±0.32 78.41±1.19

GraphSAGE + WGTL (ours) 83.63±0.35 83.23±0.21 82.79±0.36 82.23±0.61 81.88±0.40 81.49±0.59

Polblogs
GraphSAGE 94.54±0.27 90.20±0.30 89.57±0.62 89.28±0.82 88.30±1.0 87.06±2.15

GraphSAGE + WGTL (ours) 95.58±0.50 90.98±0.27 89.95±0.78 89.85±0.98 88.92±1.13 88.56±0.36

Table 18: Performance (Accuracy±Std) of WGTL, GNNGuard, and GNNGuard+WGTL with GCN
backbone under Mettack.

Dataset Model
Perturbation Rate

0% 5% 10% 15% 20% 25%

Cora-ML

GCN 82.87±0.83 76.55±0.79 70.39±1.28 65.10±0.71 52.30±1.43 47.53±1.96

GCN + WGTL (ours) 83.83±0.55 78.63±0.76 73.41±0.82 68.87±0.89 57.47±1.00 53.71±1.81

GCN + GNNGuard 83.21±0.34 76.57±0.50 69.13±0.77 65.29±0.84 55.85±0.67 51.51±1.0

GCN + GNNGuard + WGTL (ours) 84.78±0.43 83.23±0.82 79.96±0.49 79.90±0.94 76.07±0.89 75.35±0.78

Polblogs

GCN 94.40±1.47 71.41±2.42 69.16±1.86 64.66±2.59 56.05±2.18 48.59±1.44

GCN + WGTL (ours) 95.95±0.15 74.62±0.42 72.84±0.86 68.65±0.31 62.44±1.51 58.24±0.14

GCN + GNNGuard 95.03±0.25 73.25±0.16 72.76±0.75 69.18±0.20 61.57±0.65 57.14±0.82

GCN + GNNGuard + WGTL (ours) 96.22±0.25 75.25±0.81 73.04±1.46 70.14±0.62 63.19±0.76 61.60±0.81

Table 19: Performance (Accuracy±Std) of WGTL, GNNGuard, and GNNGuard+WGTL with GCN
backbone under nettack.

Dataset Model
Perturbation Rate

0 1 2 3 4 5

Cora-ML

GCN 82.87±0.93 82.53±1.06 82.08±0.81 81.69 ±0.59 81.26±0.88 80.69±0.81

GCN + WGTL (ours) 83.83±0.55 83.41±0.87 82.74±0.65 82.06±0.82 81.64±0.55 80.98±0.67

GCN + GNNGuard 83.21 ±0.34 82.81±0.43 82.51±0.26 82.03±0.30 81.61±0.25 80.79±0.26

GCN + GNNGuard + WGTL (ours) 84.78±0.43 84.25±0.73 83.74±0.96 83.70±1.01 84.05±0.60 83.84±0.26

Polblogs

GCN 94.40±1.48 88.91±1.06 85.39±0.86 83.03±0.87 81.20±1.63 79.39±0.96

GCN + WGTL (ours) 95.95±0.15 91.47±0.33 89.10±0.69 88.98±0.83 88.63±1.20 87.14±0.70

GCN + GNNGuard 95.03±0.25 91.43±0.36 89.45±0.46 90.04±0.06 89.16±0.36 88.94±0.72

GCN + GNNGuard + WGTL (ours) 96.22±0.25 91.89±0.57 90.35±0.81 90.13±1.92 89.86±0.83 89.19±0.57

datasets. Table 19 displays the performance comparison between (1) GCN, (2) GCN+GNNGuard, (3)
GCN+WGTL, and (4) GCN+GNNGuard+WGTL on Cora-ML and Polblogs datasets under nettack.
Similarly, the results of GCN +GNNGuard+WGTL are consistently better than all the other baselines.
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Table 20: Performance of the algorithms on a heterophilic graph: snap-patents under Mettack. We
compare H2GCN (Zhu et al., 2020) and H2GCN+WGTL for heterophilic graphs.

Dataset Models Perturbation Rate

0% 5% 10% 15% 20% 25%

snap-patents
H2GCN 27.71±0.86 27.55±0.19 28.62±0.38 28.40±1.38 27.77±0.30 27.45±0.89

H2GCN+WGTL 27.72±0.85 28.66±1.68 28.79±1.0 28.45±0.61 28.21 ±0.66 27.90±0.84

F.3 WGTL ON HETEROPHILIC GRAPHS

In the previous experiments, we have used four homophilic graph datasets: Cora-ML, Citeseer,
Pubmed, and Polblogs. In this section, we aim to test the performance of WGTL on a heterophilic
graph. Adopting the same attack configurations described in Appendix B, we generate different
perturbations (perturbation rates 0% to 25%) of snap-patents graph (Leskovec et al., 2005).

Heterophilic Graph Dataset. The snap-patents is a utility patent citation network. Node labels
reflect the time the patent was granted, and the features are derived from the patent’s metadata.
Following Zhu et al. (2022), for better computational tractability, we sample a subset of the snap-
patents data using a snowball sampling approach, where a random 20% of the neighbors for each
traversed node are kept. The snap-patents graph contains 4562 nodes, 12103 edges, 5 classes, and
269-dimensional node features. The homophily ratio for this dataset is as low as 0.134. Hence, Zhu
et al. (2022) used this dataset as a benchmark heterophilic graph to test the robustness of many GNN
architectures, including those proposed for heterophilic graphs.

Backbone GNN: H2GCN. Recently, it has been shown that GCN and other classical GNNs (e.g.
GAT) perform poorly on heterophilic graphs (Zhu et al., 2020; 2021). More recently, Zhu et al.
(2022) showed that these classical methods provide poor defence against adversarial attacks on
heterophilic graphs as well. Thus, instead of GCN, we adopt H2GCN (Zhu et al., 2020) as the
backbone architecture in this experiment. H2GCN is proposed and popularly deployed to conduct
classification on the heterophilic graphs. H2GCN proposes a set of key design techniques to improve
performance of GNNs on heterophilic graphs: (1) separation of ego- and neighbor-embedding, (2)
incorporation of higher-order neighborhoods, and (3) combination of intermediate representations
using skip-connections.

Results and Observations. For each perturbation rate, we run five experiments with H2GCN and
H2GCN+WGTL on the corresponding perturbed snap-patents dataset, and report the mean± standard
deviation of the final classification accuracy in Table 20. The results show that H2GCN+WGTL
robustly improves the accuracy over H2GCN by up to 4% across the perturbation rates. Note that the
best-performing method (APPNP (Gasteiger et al., 2018)) on this dataset has been shown to have an
accuracy of 27.76% under 20% perturbation (c.f. Table 3, Zhu et al. (2022). Improving on that, we
observe that H2GCN+WGTL achieves 28.21% average accuracy under 20% perturbation.
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