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ABSTRACT

Diffusion models (DMs) have demonstrated exceptional performance across vari-
ous generative tasks, yet they also face significant security and privacy concerns,
such as Membership Inference Attacks (MIAs), where adversaries attempt to de-
termine whether specific images were part of the DM’s training set. These threats
present serious risks, particularly as pre-trained DMs are increasingly accessi-
ble online. To address these privacy concerns, we begin by investigating how
fine-tuning DMs on a manipulated self-synthesized dataset affects their genera-
tive privacy risks, and have the following observations: (1) DMs fine-tuned solely
on self-synthesized clean images are more vulnerable to privacy attacks (2) DMs
fine-tuned on perturbed self-synthesized images become more robust against pri-
vacy attacks but exhibit degraded image generation quality. Based on the observa-
tions, we propose MixSyn, a simple and effective framework designed to mitigate
privacy risks by fine-tuning DMs on a mixed self-synthesized dataset, which is a
mixture of clean and perturbed synthetic images. Extensive experimental results
demonstrate that our method significantly mitigates the generative privacy risks of
DMs while preserving their original image generation quality.

1 INTRODUCTION

Text-to-Image Diffusion Models (DMs), such as Stable Diffusion (Rombach et al., 2022), DALL-E
3 (Ramesh et al., 2022), and Imagen (Saharia et al., 2022), have demonstrated outstanding perfor-
mance in generating high-quality images. With the rapid advancements in DMs, their usage has
significantly expanded across individuals and organizations for various applications. For instance,
Stable Diffusion v1.4 has been downloaded more than 8 million times from the Huggingface repos-
itory, while Midjourney currently serves over a million users (Fatunde & Tse, 2022).

While diffusion models (DMs) demonstrate impressive capabilities in generating high-quality im-
ages, their deployment raises serious privacy concerns and copyright issues. Recent studies (Duan
et al., 2023; Kong et al., 2023; Abascal et al., 2023) have identified that DMs are vulnerable to
privacy leakage, particularly through Membership Inference Attacks (MIAs) (Shokri et al., 2016).
MIAs attempt to determine whether a given data sample was part of the model’s training set (mem-
ber sample) or came from the hold-out set (non-member sample). When MIAs target DMs, they
can potentially expose sensitive or private images used during pretraining, such as personal profile
photos, medical images, or proprietary data from commercial entities. As artists increasingly form
unions to combat the unauthorized use of their works by commercial generative models, the need
for thorough security assessments and risk evaluations prior to the public release of these models
becomes ever more pressing. Unfortunately, to make things worse, recent work S2L (Li et al., 2024)
reveal that fine-tuning DMs on clean self-synthesized images could further amplify the power of
MIA and make DMs more vulnerable to privacy attacks. Their findings show that the privacy risk
with diffusion models is even more severe than previously recognized, and it is even more challeng-
ing to develop a robust defense framework against privacy attacks.

To address the above concerns, we aim to develop a defense framework that protects DMs from these
privacy attacks. Our key motivation is that fine-tuning DMs on a manipulated self-synthesized
dataset could affect their privacy risks. Despite the finding that fine-tuning DMs on clean self-
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synthesized images could increase the privacy risks (Li et al., 2024), it is still under-explored how
fine-tuning DMs on a manipulated self-synthesized dataset will affect their privacy risks. We hy-
pothesize that it is possible to construct a manipulated self-synthesized dataset such that fine-tuning
on it will mitigate the generative privacy risk of DMs. Therefore, in this work, we aim to take a
further step by asking the following research questions:

• RQ1: How does fine-tuning DMs on a manipulated self-sythesized dataset affect their
generative privacy risks?

• RQ2: How to utilize the observations in RQ1 to develop a defense framework that protects
DMs from these privacy attacks?

To answer RQ1, we examine the generative privacy risks of DMs under two settings: (1) fine-tuning
DM on a clean self-synthesized dataset and (2) fine-tuning on a fully perturbed self-synthesized
dataset. We observe that when DMs are fine-tuned solely on self-synthesized clean images, they
become more vulnerable to privacy attacks, which is in line with the conclusion in S2L (Li et al.,
2024). In contrast, when DMs are fine-tuned on perturbed self-synthesized images become more
robust against such attacks but exhibit degraded image generation quality. Motivated by these ob-
servations, we answer RQ2 and propose a simple and effective framework designed to mitigate
privacy risks by fine-tuning DMs on a mixed self-synthesized dataset. This dataset is constructed by
first generating clean images using domain-specific prompts from the DM, followed by the introduc-
tion of adversarial noise to a subset of the images. Furthermore, we develop two mixing strategies:
Mixup-I and Mixup-P, which introduce perturbations to images at image-level and pixel-level, re-
spectively. Extensive experimental results demonstrate that our method significantly reduces the
efficacy of privacy attacks on DMs while preserving the original image generation quality. To sum
up, our contributions are as follows:

• We comprehensively examine how does fine-tuning DMs on a manipulated self-sythesized
dataset affect their generative privacy risks, and have the following observations: (1) DMs
fine-tuned solely on self-synthesized clean images are more vulnerable to privacy attacks
(2) DMs fine-tuned on perturbed self-synthesized images become more robust against pri-
vacy attacks but exhibit degraded image generation quality.

• Based on the observations, we propose MixSyn, a simple and effective framework designed
to mitigate privacy risks by fine-tuning DMs on a mixed self-synthesized dataset.

• Extensive experimental results demonstrate that our method significantly reduces the effi-
cacy of privacy attacks on DMs while preserving the original image generation quality.

2 RELATED WORK

Diffusion Models (DMs). Ho et al. (2020) proposed a class of probabilistic generative models that
generate samples by initially drawing from a Gaussian distribution and iteratively removing noise
to approximate the target data distribution. Starting from an initial image x0 ∼ q(x), the forward
process sequentially adds noise at each time step t ∈ (0, T ), producing a series of progressively
noisier latent variables x0, x1, ..., xT . The reverse process involves training the model ϵθ(xt, t, c)
to estimate the noise present in xt and recover xt−1. The training objective minimizes the L2 loss
between the predicted and true noise during the denoising process, which is defined as:

Lcond(θ, x0) = Ex0,t,c,ϵ∼N (0,1)

[
∥ϵ− ϵθ(xt+1, t, c)∥22

]
(1)

Customization of DMs. Recent studies (Ruiz et al., 2023; Zhang et al., 2023; Hu et al., 2021) have
developed strategies to cutmoized DMs for personal preference. DreamBooth (Ruiz et al., 2023)is a
technique for fine-tuning text-to-image models, like Stable Diffusion, to generate personalized im-
ages of a specific subject using a small set of example images. It adjusts the model to incorporate
the new subject while preserving the model’s general capabilities, enabling the generation of novel
images of the subject in various contexts guided by new textual prompts. Instead of altering the
model’s weights, Textual Inversion (Zhang et al., 2023) learns new embeddings for these concepts,
allowing the model to generate personalized and novel images by referencing these embeddings
in text prompts. Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a technique used to fine-tune
large text-to-image models like Stable Diffusion with minimal computational resources. It works
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Prompt: ‘A photo of Taylor Swift’

Clean Synthetic Set

Full Set Adversarial NoisesClean-Perturbed Mixup Set

Generate Adversarial NoisesFine-tune

Generate Clean Set

Mixup-I / Mixup-P

⊕

Stable Diffusion

Figure 1: Overview of training pipeline. The first step is to generate a clean synthetic image set
with a specific prompt using SD model. The second step is to generate adversarial noises following
the procedure as described in Figure 2. The third step is to add the adversarial noises to part of the
clean synthetic image set to construct the clean-perturbed mixup set. We propose two ways to add
the noise: image-based (Mixup-I) and pixel-based (Mixup-P). Finally, the SD model is fine-tuned
on the mixup set to mitigate its generative privacy risks.

by adding low-rank learnable matrices to the model’s weights, which are then updated during train-
ing. This allows the model to adapt to new concepts or styles with a small number of parameters,
preserving the original model’s generalization ability while efficiently learning new visual informa-
tion. It can be integrated with DreamBooth. In our work, we utilize these customization methods to
mitigate the generative privacy risks of DMs by fine-tuning them on a specially designed dataset.

Privacy attacks against generative models. The privacy risks associated with large generative
models have become a significant concern, primarily due to their reliance on vast collections of web
images for training, which may inadvertently include sensitive information. Recent studies have
demonstrated that diffusion models are particularly susceptible to Membership Inference Attacks
(MIAs) (Shokri et al., 2017). In such attacks, an adversary aims to determine whether a given data
sample was included in the model’s training set (i.e., a member) or as part of the hold-out set (i.e., a
non-member). For example, Hu & Pang (2023) employs the loss function LDM to infer the mem-
bership status of input samples. Similarly, Wu et al. (2022) explores this vulnerability under the
assumption of distinct distributions for member and non-member samples, thereby simplifying the
inference task. Furthermore, Carlini et al. (2022) highlights that the privacy risks for diffusion mod-
els are substantially greater compared to GAN-based models. More recently, SecMI (Duan et al.,
2023) has been introduced as a query-based MIA that assesses membership by analyzing the con-
sistency of posterior estimates during the forward process at each timestep. Additionally, Proximal
Initialization Attack (PIA) (Kong et al., 2023) offers a more efficient query-based MIA, leveraging
the ground truth trajectory initialized at t = 0 and the predicted point to infer membership. These
advancements underscore the pressing need for improved privacy protections in diffusion models,
as these attacks pose significant concerns to the society.

3 HOW DOES FINE-TUNING DMS ON A MANIPULATED SELF-SYNTHESIZED
DATASET AFFECT THEIR GENERATIVE PRIVACY RISKS?

In this section, we aim to investigate how could fine-tuning DMs on a manipulated self-synthesized
dataset affect their generative privacy risks. First, we introduce the attacking setting for the red team.
Next, we introduce the fine-tuning settings. Finally, we examine the generative privacy risks of DMs
under two settings: (1) fine-tuning DM on a clean self-synthesized dataset and (2) fine-tuning on a
fully perturbed self-synthesized dataset.

3
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DreamBooth
Finetuning

Clean Synthetic Set

Stable Diffusion

PGD
Attack

Adversarial Noises

Figure 2: Illustration of the process to generate adversarial noises to the clean synthetic set. We
follow a similar procedure as Anti-DreamBooth (Le et al., 2023). We craft the adversarial noise
δ using Projected Gradient Descent (PGD) to maximize the reconstruction loss Lcond of the SD
model. The PGD optimization is guided by the process of fine-tuning a fixed SD model on the clean
synthetic image set XA.

3.1 ATTACK SETTING

Threat Model The threat model assumes the presence of an adversary A who interacts with a pre-
trained diffusion model G designed for text-to-image synthesis, with the objective of extracting
private information embedded within its training dataset D.

Victim Model A conditional diffusion models G. The details of the victim model are elaborated in
Appendix A.1.

Adversary Goal The adversary uses the target prompts {pz} as input, aiming to extract private
information linked to the target domains Dz from the pre-training set D of G. We use Membership
Inference Attack (MIA) as the attack objective. Given an image xi, the adversary seeks to determine
whether xi is part of the training set D. The details of the adversary goal is elaborated in Appendix
A.1.

Adversary Capability We assume that the adversary possesses the capability to manipulate the
dataset used for fine-tuning the diffusion model. This assumption is plausible in two scenarios.
First, when the diffusion model is publicly accessible, adversaries can execute various operations on
the model, including arbitrary fine-tuning. Second, there is a growing trend among model vendors
to keep the model parameters confidential while allowing users to upload their own datasets for fine-
tuning purposes. For example, OpenAI enables fine-tuning of DALL-E models through an API1.

Attack Methods We use two state-of-the-art Membership Inference Attack (MIA) methods against
diffusion models. The detailed introduction of these methods are elaborated in Appendix A.1.

• Step-wise Error Comparing Membership Inference (SecMI) (Duan et al., 2023) is a
query-based Membership Inference Attack (MIA) that determines membership by evaluat-
ing the consistency of forward process posterior estimates at each timestep.

• Proximal Initialization Attack (PIA) Kong et al. (2023) is an efficient query-based mem-
bership inference attack (MIA) that utilizes the ground truth trajectory obtained by ϵ ini-
tialized at t = 0 and the predicted point to infer memberships.

3.2 FINE-TUNING SETTING

Models: We use the Stable Diffusion v1.4 in our experiment, which is pre-trained on the LAION-
Aesthetics subset of LAION-5B. The details can be found in Appendix A.2.

Datasets: The SD v1.4 is trained on a subsets of LAION-5B We assume that celebrity pictures
represent private domains and investigate whether the SD v1-4 model memorizes these pictures in
its pre-training set. As many of the celebrities are also presented in CelebA (Mirjalili et al., 2018;
Bortolato et al., 2020; Gupta et al., 2021; Isik & Weissman, 2022), we consider the images in CelebA
as the non-private samples. Following the setting in S2L (Li et al., 2024), we construct 40 private

1https://platform.openai.com/docs/guides/fine-tuning
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Ratio = 0.5
Mixup-I

Mixup-P

Add Noises

Add Noises
Full Set Noises

Perturbed Region Clean Region

Figure 3: Illustration of two different strategies to add adversarial noises to the clean synthetic set.
The strategies are Mixup-I, whose minimum perturbation unit is an image, and Mixup-P, whose
minimum perturbation unit is a pixel. In this example, the mixup ratio is set to be 0.5. Therefore,
for Mixup-I, the noises will be added to the first three images, whereas for Mixup-P, the noises will
be added to half part of every image.

domains corresponding to 40 celebrities with the largest sample sizes in the CelebA dataset. The
details can be found in Appendix A.2.

Evaluation Metrics Following prior work (Li et al., 2024), we employ AUC and TPR@1%FPR as
evaluation metrics for MIA. The higher the AUC and TPR@1%FPR, the more effective the attack is.
We utilize the CLIP-R Precision Score (CLIP) as a utility metric to evaluate the alignment between
generated images and their corresponding text prompts. We also use BRISQUE (?) as image quality
metric.

Finetuning methods We use three commonly used methods to fine-tune DMs. The detailed intro-
duction of these methods is elaborated in Appendix A.2.

• Dreambooth (Ruiz et al., 2023) adjusts the model to incorporate the new subject while
preserving the model’s general capabilities, enabling the generation of novel images of the
subject in various contexts guided by new textual prompts.

• Textual Inversion (Zhang et al., 2023) fine-tunes SD by learning new embeddings for these
concepts, allowing the model to generate personalized and novel images by referencing
these embeddings in text prompts.

• LoRA (Hu et al., 2021) is a technique used to fine-tune large text-to-image models like
Stable Diffusion with minimal computational resources. It can be integrated with Dream-
Booth.

3.3 FINETUNING ON CLEAN SELF-SYNTHESIZED IMAGES

In this section, we investigate the first setting where we fine-tune DM on a clean self-synthesized
dataset. Follow a similar procedure to prior work (Li et al., 2024), we conduct the following steps:

• Step 1: Generating Fine-tuning Datasets. The initial step involves creating a domain-
specific fine-tuning dataset by generating a synthetic dataset directly from a pre-trained
model G using a target prompt pz from a private domain Dz .

• Step 2: Fine-tuning. We fine-tune the models using standard algorithms on the synthesized
set.

• Step 3: Privacy attacks. After the model is fine-tuned, we employ MIA (Membership In-
ference Attack) to attack the model. Given that the adversary focuses on a specific domain,
the number of duplicated images in that domain is typically small.

The results in Table 1 show that the pre-trained SD model, without fine-tuning, has the lowest attack
success rates for both SecMI (AUC: 0.715, TPR: 0.165) and PIA (AUC: 0.712, TPR: 0.162), indi-
cating lower vulnerability to privacy attacks. Fine-tuning on synthetic data, however, significantly
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Table 1: Results on fine-tuning DM on a clean self-synthesized image set. This table shows the
effects of perturbation on privacy protection (SecMI and PIA metrics) and image quality (CLIP and
BRIS scores).

Method SecMI PIA

AUC ↓ TPR ↓ CLIP ↑ BRIS ↑ AUC ↓ TPR ↓ CLIP ↑ BRIS ↑

Pre-trained 0.715 0.165 51.9 38.2 0.712 0.162 51.9 38.4

DreamBooth 0.752 0.170 51.8 38.3 0.749 0.169 51.7 38.1
Textual Inversion 0.735 0.168 51.9 38.5 0.733 0.167 51.6 38.3

LoRA 0.741 0.167 51.7 38.0 0.738 0.166 51.9 38.2
DreamBooth+LoRA 0.761 0.174 51.9 38.1 0.758 0.172 51.9 38.4

Table 2: Results on fine-tuning DM on a perturbed self-synthesized image set. This table shows the
effects of perturbation on privacy protection (SecMI and PIA metrics) and image quality (CLIP and
BRIS scores).

Method SecMI PIA

AUC ↓ TPR ↓ CLIP ↑ BRIS ↑ AUC ↓ TPR ↓ CLIP ↑ BRIS ↑

Pre-trained 0.715 0.165 51.9 38.2 0.712 0.162 51.6 38.4

DreamBooth 0.451 0.102 29.9 12.3 0.448 0.101 29.5 12.1
Textual Inversion 0.441 0.101 31.0 11.8 0.438 0.100 30.8 11.9

LoRA 0.445 0.100 30.1 12.0 0.442 0.099 30.4 12.2
DreamBooth+LoRA 0.457 0.105 30.3 12.1 0.453 0.104 30.7 12.0

increases these risks. This observation is in line with the conclusion in Li et al. (2024). For example,
DreamBooth fine-tuning raises SecMI AUC to 0.752 and PIA AUC to 0.749, showing the highest
privacy vulnerabilities. Textual Inversion and LoRA also increase risks, with LoRA performing
slightly better. Combining DreamBooth and LoRA leads to the highest privacy risks (SecMI AUC:
0.761, PIA AUC: 0.758), highlighting that fine-tuning with synthetic data substantially elevates pri-
vacy vulnerabilities.

3.4 FINETUNING ON PERTURBED SELF-SYNTHESIZED IMAGES

Next we conduct experiments on perturbed self-synthesized images. Specifically, it takes the fol-
lowing steps:

• Step 1: Generating Clean Fine-tuning Datasets. This step is the same as Step 1 in
Section 3.3.

• Step 2: Generating Perturbed Fine-tuning Datasets. In this step, we add full perturba-
tion masks to the clean fine-tuning datasets. Specifically, we follow a similar procedure as
Anti-Dreambooth (Le et al., 2023). The whole process is shown in Figure 2. Denote P as
the clean set of synthetic images generated in the previous step. For each image p ∈ P , we
add an adversarial perturbation δ to the image p′ = p + δ. Then P is used to finetune a
text-to-image generator ϵθ, following the DreamBooth algorithm, to get the optimal hyper-
parameters θ∗. The general objective is to optimize the adversarial noise ∆db = {δ(i)}Ndb

i=1
that minimizes the personalized generation ability of that DreamBooth model:

∆∗
db = argmin

∆db

A(ϵθ∗ ,P),

s.t. θ∗ = argmin
θ

Ndb∑
i=1

Ldb(θ, p
(i) + δ(i)),

and ∥δ(i)∥p ≤ η ∀i ∈ {1, 2, .., Ndb},

(2)

where Ldb is defined in Eq. 6 and A(ϵθ∗ ,X ) is some personalization evaluation function
that assesses the quality of images generated by the DreamBooth model ϵθ∗ and the identity
correctness based on the synthetic image set P .
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The the perturbation δ∗(i) can be calculated with the following objective

δ∗(i) =argmax
δ(i)

Lcond(θ
∗, p(i)),∀i ∈ {1, .., Ndb},

s.t. θ∗ = argmin
θ

Ndb∑
i=1

Ldb(θ, p
(i) + δ(i)),

and ∥δ(i)∥p ≤ η ∀i ∈ {1, .., Ndb},

(3)

where Lcond is defined in as Equation 1 and Ldb are defined as:
Ldb(θ, x0) = Ex0,t,t′∥ϵ− ϵθ(xt+1, t, c)∥22 + λ∥ϵ′ − ϵθ(x

′
t′+1, t

′, cpr)∥22 (4)

Note that, unlike traditional adversarial attacks, the loss functions are computed only at a
randomly chosen timestep in the denoising sequence during training. Then we derive our
perturbed synthetic image set P ′, such that for each image p′ ∈ P ′,

p′ = p+ δ (5)

• Steps 3: Fine-tuning on perturbed datasets. This step is the same as Step 2 in Section
3.3. The only difference is that we are fine-tuning on a fully perturbed dataset P ′ instead
of P .

• Step 4: Privacy attack This step is the same as Step 3 in Section 3.3.

Table 2 highlights a trade-off between reducing privacy risks and maintaining image quality, mea-
sured by the CLIP metric. Fine-tuning with noise perturbation from Anti-DreamBooth significantly
lowers privacy attack success rates compared to models fine-tuned on clean synthetic data. For ex-
ample, DreamBooth on the perturbed set achieves SecMI AUC of 0.451 and PIA AUC of 0.448,
a major improvement from 0.752 and 0.749 in the unperturbed case. Similar reductions in vulner-
ability are seen with other methods like Textual Inversion and LoRA. However, this reduction in
privacy risks comes with a drop in image quality; DreamBooth’s CLIP score drops to 29.9 from
49.8, with similar declines for other methods. This shows a clear trade-off: reducing privacy risks
via perturbation noise lowers image quality due to introduced artifacts or distortions.

Fine-tuning on synthetic data perturbed by Anti-DreamBooth successfully reduces privacy risks, as
demonstrated by lower SecMI and PIA scores. However, this comes at the cost of a significant
drop in image quality, as shown by the lower CLIP scores. The results underscore the need for
privacy-preserving methods that balance privacy protection with maintaining high-quality outputs
in generative models, as will be discussed in the next section.

4 METHOD

The motivation behind our proposed framework, MixSyn, is to mitigate the increased vulnerability
to Membership Inference Attacks (MIA) that arise when diffusion models (DMs) are fine-tuned on
clean, self-synthesized datasets. From our earlier observations in Table 1 and Table 2, DMs fine-
tuned on clean datasets exhibit higher risks to MIAs, while fine-tuning on fully perturbed datasets
significantly reduces privacy risks but at the cost of image quality. Our approach aims to strike a
balance by mixing clean and perturbed datasets, preserving image quality while mitigating privacy
vulnerabilities.

4.1 MIXUP-I AND MIXUP-P

We propose two novel methods, Mixup-I and Mixup-P, to combine clean and perturbed images in
a way that minimizes privacy risks while maintaining the generative quality of DMs:

• Mixup-I (Image-based Mixing): This method applies perturbations at the image level. In
this approach, a fixed ratio of images in the dataset is perturbed, while the remaining images
are left unaltered. This introduces randomness in terms of which images are perturbed,
making it harder for MIAs to infer training data while preserving the quality of the non-
perturbed images. For instance, with a mixup ratio of 0.5, half of the images in the dataset
will be perturbed, reducing overall privacy risks without heavily distorting the generated
image set.

7
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Table 3: Performance of Mixup-I at ratio = 0.5. Lower AUC and TPR values represent better privacy
protection, while higher CLIP and BRIS scores indicate better image quality.

Method SecMI PIA

AUC ↓ TPR ↓ CLIP ↑ BRIS ↑ AUC ↓ TPR ↓ CLIP ↑ BRIS ↑

Pre-trained 0.715 0.165 51.9 38.2 0.712 0.162 51.6 38.4

DreamBooth 0.552 0.142 51.7 38.1 0.549 0.140 51.4 38.2
Textual Inversion 0.551 0.141 51.9 38.0 0.548 0.140 51.5 38.4

LoRA 0.550 0.140 51.6 38.0 0.547 0.139 51.7 38.2
DreamBooth+LoRA 0.553 0.143 51.7 38.1 0.550 0.142 51.6 38.2

• Mixup-P (Pixel-based Mixing): Unlike Mixup-I, Mixup-P introduces perturbations at the
pixel level within each image. This strategy ensures that no image is fully clean, mak-
ing it even more challenging for MIAs to differentiate between member and non-member
samples. However, because each image contains both clean and perturbed regions, the
overall image quality may degrade more noticeably compared to Mixup-I, especially at
higher mixup ratios. This method is particularly effective when the goal is to add finer, less
perceptible perturbations, but with a higher level of robustness against privacy attacks.

Figure 3 illustrates the differences between these two approaches. The overall training pipeline is
shown in Figure 1. By leveraging these two strategies, we can tune the trade-off between privacy
and image quality based on the application requirements.

5 EXPERIMENT

In this section, we conduct extensive experiments to evaluate the effectiveness of the proposed
MixSyn framework in mitigating privacy risks while maintaining high image quality. Specifically,
we focus on the performance of the two strategies, Mixup-I and Mixup-P, across various mixup
ratios. We also investigate which components of the model need fine-tuning to achieve optimal
trade-offs between privacy protection and image quality.

5.1 MIXUP-I

The first set of experiments evaluates Mixup-I, where complete images are perturbed. This approach
explores how different mixup ratios affect the trade-off between privacy risks and image quality.

As shown in Figure 4a and Table 3, increasing the mixup ratio reduces the vulnerability of diffusion
models (DMs) to Membership Inference Attacks (MIAs). At a 0.5 mixup ratio, the AUC score for
SecMI drops from 0.715 (pre-trained) to 0.552 (DreamBooth), highlighting Mixup-I’s effectiveness
in reducing privacy risks.

Despite the perturbations, image quality remains high, with the CLIP score for DreamBooth at
51.7, close to the pre-trained model’s 51.9. This demonstrates that Mixup-I maintains strong image
generation quality while reducing privacy risks.

The experiments show a trade-off: lower mixup ratios result in better image quality but higher
privacy risks, while higher ratios enhance privacy protection at the cost of image quality. A mixup
ratio of 0.5 offers an optimal balance, significantly reducing the AUC for SecMI while preserving
image quality close to the pre-trained model.

5.2 MIXUP-P

In Mixup-P, pixel-level perturbations ensure that no image is entirely clean, introducing finer granu-
larity compared to Mixup-I. This method aims to obscure membership information while maintain-
ing image quality across various mixup ratios.

As shown in Table 4, Mixup-P offers stronger privacy protection, especially at higher ratios. At
a 0.3 mixup ratio, the AUC score for SecMI drops to 0.498, significantly reducing privacy risks
compared to the pre-trained model (AUC of 0.715). The finer, distributed noise makes it harder for
Membership Inference Attacks (MIAs) to exploit membership information.
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Table 4: Performance of Mixup-P at ratio = 0.3. Lower AUC and TPR scores indicate stronger de-
fenses, and CLIP and BRIS scores for image quality, where higher scores represent better alignment
and perceptual quality.

Method SecMI PIA

AUC ↓ TPR ↓ CLIP ↑ BRIS ↑ AUC ↓ TPR ↓ CLIP ↑ BRIS ↑

Pre-trained 0.715 0.165 51.9 38.2 0.712 0.162 51.6 38.4

DreamBooth 0.498 0.153 51.8 38.1 0.523 0.149 51.5 38.3
Textual Inversion 0.465 0.132 51.9 38.0 0.482 0.128 51.7 38.4

LoRA 0.489 0.136 51.7 38.2 0.499 0.144 51.6 38.3
DreamBooth+LoRA 0.506 0.145 51.6 38.1 0.517 0.141 51.8 38.2
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Figure 4: Comparison of MIXUP-I and MIXUP-P for SecMI.

However, this comes at a cost to image quality, with a slight decline in CLIP and BRIS scores. For
example, DreamBooth’s CLIP score at a 0.3 ratio is 51.8, slightly lower than Mixup-I. Pixel-level
perturbations introduce subtle artifacts that affect the overall image appearance.

Despite this minor decline, Mixup-P offers stronger privacy protection, making it suitable for sce-
narios prioritizing security. It strikes a balance, providing enhanced privacy at lower mixup ratios
like 0.3 while maintaining acceptable image quality.

5.3 WHICH PARAMETERS NEED TO BE FINE-TUNED?

To further optimize the trade-off between privacy protection and image quality, we conducted ex-
periments to determine which specific components of the diffusion model should be fine-tuned. We
focused on three key components: the Denoising Network, the Image Encoder, and the Embedding,
and evaluated their impact on privacy risks and image quality. Experiment results show that the De-
noising Network stands out as the most effective component to fine-tune for privacy protection while
fine-tuning the Embedding provides a well-balanced solution. Depending on the specific needs of
the application, choosing the right component to fine-tune can optimize the trade-off between pri-
vacy protection and image generation quality. All the detailed results and analysis are provided in
Appendix A.3

6 CONCLUSION

In this paper, We empirically examine the effect of self-synthesized data fine-tuning on DMs regard-
ing their privacy risks. We observe that DMs fine-tuned solely on self-synthesized clean images are
more vulnerable to privacy attacks, whereas DMs fine-tuned on perturbed self-synthesized images
become more robust against such attacks but exhibit degraded image generation quality. Based on
the observation, we propose MixSyn, a simple and effective framework designed to mitigate pri-
vacy risks by fine-tuning DMs on a mixed self-synthesized dataset. Extensive experimental results
demonstrate that our method significantly reduces the efficacy of privacy attacks on DMs while pre-
serving the original image generation quality. We believe our work takes a further step to the privacy
protection of DMs.
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A APPENDIX

A.1 MORE DETAILED ATTACK SETTING

Threat Model The threat model assumes the presence of an adversary A who interacts with a pre-
trained diffusion model G designed for text-to-image synthesis, with the objective of extracting
private information embedded within its training dataset D.

Victim Model Conditional diffusion models G for text-to-image synthesis are gaining increasing
popularity due to the accessibility of semantic text inputs, which allow individuals without spe-
cialized expertise to generate complex visual content easily. The details of the victim model is
elaborated in Appendix.

Adversary Goals. The adversary uses the target prompts {pz} as input, aiming to extract private
information linked to the target domains Dz from the pre-training set D of G. We consider two
primary attack objectives in the privacy literature: 182 Membership Inference: Given an image xi,
the adversary seeks to determine whether xi is part of the training set D. Membership leakage
can theoretically correspond to generic privacy leakage under the framework of Differential Privacy
Zanella-Béguelin et al. (2023). In certain scenarios, Membership Inference Attacks (MIA) can
directly result in a privacy breach. For example, a patient’s clinical record could be used to train
a disease-associated model. 183 Data Extraction: The adversary aims to retrieve training images
from G within a targeted domain Dz associated with a prompt pz .

Adversary Capabilities. We assume the attacker has the ability to manipulate the dataset used for
fine-tuning the diffusion model. This assumption can hold in two situations: First, if the diffusion
model is publicly available, attackers can perform any operations on the model, including arbitrary
fine-tuning. Second, there is a growing trend where many model vendors keep the model parameters
confidential but permit users to upload data for fine-tuning. For instance, OpenAI allows fine-tuning
of DALL-E models via an API2.

Attack Methods We use two state-of-the-art Membership Inference Attack (MIA) methods against
diffusion models.

2https://platform.openai.com/docs/guides/fine-tuning
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• Step-wise Error Comparing Membership Inference (SecMI) (Duan et al., 2023) is a
query-based Membership Inference Attack (MIA) that determines membership by evaluat-
ing the consistency of forward process posterior estimates at each timestep.

• Proximal Initialization Attack (PIA) Kong et al. (2023) is an efficient query-based mem-
bership inference attack (MIA) that utilizes the ground truth trajectory obtained by ϵ ini-
tialized at t = 0 and the predicted point to infer memberships.

A.2 FINE-TUNING SETTING

Models: We use the Stable Diffusion v1.4. SD v1.4 is pre-trained on a large-scale dataset, specif-
ically the LAION-Aesthetics subset of LAION-5B, which contains billions of image-text pairs
scraped from the internet. This extensive dataset provides a diverse range of semantic content,
enabling the model to generate highly detailed and varied images from textual prompts.

Datasets: The SD v1.4 is trained on a subsets of LAION-5B We assume that celebrity pictures
represent private domains and investigate whether the SD v1-4 model memorizes these pictures in
its pre-training set. As many of the celebrities are also presented in CelebA, we consider the images
in CelebA as the non-private samples. Following the setting in S2L, we construct 40 private domains
corresponding to 40 celebrities with the largest sample sizes in the CelebA dataset. We define the
private domain specified by a domain-specific substring cz as ”¡Celebrity Name¿”, and the prompt
pz associated with each private domain Dz is specified as “The face of ¡Celebrity Name¿” with 0.7
possibilities or “A photo of ¡Celebrity Name¿” with 0.3 possibilities.

Evaluation metrics In line with S2L, we employ AUC and TPR@1%FPR as evaluation metrics for
MIA. For data extraction, we use the count of samples identified as (10, l2, 0.1)-Eidetic memoriza-
tion within the target domain as the evaluation criterion. We also assess the true positive numbers
extracted and the precision values averaged across the private domains. Additionally, we utilize the
CLIP-R Precision Score (CLIP) as a utility metric to to evaluate the alignment between generated
images and their corresponding text prompts. We also use BRISQUE as image quality metric.

Finetuning methods

• Dreambooth (Ruiz et al., 2023) is a technique for fine-tuning text-to-image models, like
Stable Diffusion, to generate personalized images of a specific subject using a small set
of example images. It adjusts the model to incorporate the new subject while preserving
the model’s general capabilities, enabling the generation of novel images of the subject in
various contexts guided by new textual prompts. The training loss combines two objectives:

Ldb(θ, x0) = Ex0,t,t′∥ϵ− ϵθ(xt+1, t, c)∥22 + λ∥ϵ′ − ϵθ(x
′
t′+1, t

′, cpr)∥22 (6)

where ϵ, ϵ′ are both sampled from N (0, I), x′
t′+1 is noisy variable of class example x′

which is generated from original stable diffusion θori with prior prompt cpr, and λ empha-
sizes the importance of the prior term.

• Textual Inversion (Zhang et al., 2023) is a technique that fine-tunes pre-trained text-to-
image models, such as Stable Diffusion, by embedding new concepts into the model using
a few example images. Instead of altering the model’s weights, Textual Inversion learns
new embeddings for these concepts, allowing the model to generate personalized and novel
images by referencing these embeddings in text prompts. This approach provides a flexible
way to integrate new visual concepts without extensive retraining.

• LoRA (Hu et al., 2021) is a technique used to fine-tune large text-to-image models like Sta-
ble Diffusion with minimal computational resources. It works by adding low-rank learnable
matrices to the model’s weights, which are then updated during training. This allows the
model to adapt to new concepts or styles with a small number of parameters, preserving the
original model’s generalization ability while efficiently learning new visual information. It
can be integrated with DreamBooth.

A.3 DETAILS OF THE ABLATION STUDY.

As presented in Table 5, fine-tuning the Denoising Network results in a significant reduction in
privacy risks. The AUC for SecMI drops to 0.550, which is on par with fully fine-tuned models like
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Table 5: Which parameter to be finetuned? MIXUP-I at ratio=0.3

Method SecMI PIA

AUC ↓ TPR ↓ CLIP ↑ BRIS ↑ AUC ↓ TPR ↓ CLIP ↑ BRIS ↑
Pre-trained 0.715 0.165 51.9 38.2 0.712 0.162 51.6 38.4

DreamBooth 0.552 0.142 51.7 38.1 0.549 0.140 51.4 38.2
Denoising Network 0.550 0.140 51.6 38.0 0.547 0.139 51.7 38.2

Image Encoder 0.553 0.143 51.7 38.1 0.550 0.142 51.6 38.2
Embedding 0.551 0.141 51.9 38.0 0.548 0.140 51.5 38.4

DreamBooth. The Denoising Network also maintains relatively high image quality, with a CLIP
score of 51.6 and a BRIS score of 38.0. This suggests that the Denoising Network plays a crucial
role in mitigating privacy risks while preserving the generative capabilities of the model. Given
its ability to reduce privacy risks with minimal impact on image quality, fine-tuning the Denoising
Network offers a computationally efficient way to achieve robust privacy protection.

Fine-tuning the Image Encoder provides a slightly different trade-off. While the privacy risk re-
duction is less pronounced (AUC of 0.553 for SecMI), the Image Encoder preserves higher image
quality, particularly in terms of the CLIP score, which remains at 51.7. This makes fine-tuning the
Image Encoder a viable option for applications where image quality is a higher priority than privacy
protection.

Finally, fine-tuning the Embedding offers a balanced approach, with an AUC of 0.551 for SecMI
and a CLIP score of 51.9. This strategy is similar to Textual Inversion, which fine-tunes embeddings
to incorporate new concepts into the model. The results indicate that Embedding fine-tuning strikes
a good balance between privacy protection and image quality, making it a flexible option depending
on the application’s requirements.
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