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ABSTRACT

Adversarially robust generalization of Graph Convolutional Networks (GCNs) has
garnered significant attention in various security-sensitive application areas, driven
by intrinsic adversarial vulnerability. Albeit remarkable empirical advancement,
theoretical understanding of the generalization behavior of GCNs subjected to
adversarial attacks remains elusive. To make progress on the mystery, we establish
unified high-probability generalization bounds for GCNs in the context of node clas-
sification, by leveraging adversarial Transductive Rademacher Complexity (TRC)
and developing a novel contraction technique on graph convolution. Our bounds
capture the interaction between generalization error and adversarial perturbations,
revealing the importance of key quantities in mitigating the negative effects of
perturbations, such as low-dimensional feature projection, perturbation-dependent
norm regularization, normalized graph matrix, proper number of network layers,
etc. Furthermore, we provide TRC-based bounds of popular GCNs with `r-norm-
additive perturbations for arbitrary r ≥ 1. A comparison of theoretical results
demonstrates that specific network architectures (e.g., residual connection) can
help alleviate the cumulative effect of perturbations during the forward propagation
of deep GCNs. Experimental results on benchmark datasets validate our theoretical
findings.

1 INTRODUCTION

Node classification, which aims at predicting a particular class for each unlabeled node in an attributed
graph given the class labels of a few nodes, has attracted tremendous attention due to its wide real-
world applications (Zhou et al., 2019; Hang et al., 2021; Cao et al., 2021). As one of the predominant
models for processing graph-structured data, Graph Convolutional Networks (GCNs) (Wu et al.,
2020) have demonstrated superior prediction performance on node classification tasks. However,
GCNs have been recently shown to be vulnerable to adversarial nodes, where the attacker injects
imperceptible perturbations into node features, leading to incorrect predictions (Dai et al., 2018;
Zügner et al., 2020; Ju et al., 2023). This has led to a proliferation of research aimed at enhancing
the adversarial robustness of the trained models, built upon the min-max optimization principle of
adversarial training (Madry et al., 2018; Wang et al., 2019; Kong et al., 2022; Tao et al., 2023; Li
et al., 2022). Despite the empirical success, theoretical aspects of adversarially robust generalization
of GCNs are not well understood yet. In this paper, we make progress on this goal by developing the
generalization analysis of GCNs under node attacks.

Adversarial generalization problems have been widely investigated in recent years via the lens of
statistical learning theory, ranging from uniform convergence analysis associated with hypothesis
space capacity (e.g., VC-dimension (Cullina et al., 2018; Attias et al., 2022), Rademacher complexity
(Awasthi et al., 2020; Yin et al., 2019), covering numbers (Tu et al., 2019; Mustafa et al., 2022)) to
algorithmic stability analysis (Xiao et al., 2022; Xing et al., 2021). However, all the aforementioned
work is primarily confined to supervised learning with individual samples as input, with extension
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to the graph learning remaining unexplored to the best of our knowledge. The significant challenge
in analyzing the adversarial generalization of GCNs is that the feature information of each node is
aggregated from its neighbors through the ‘message-passing’ mechanism rather than being taken
only from itself, leading to the interaction of perturbations between different nodes. The joint
effect of different perturbations in a message-passing network invalidates the classic estimation
methods in (Yin et al., 2019; Awasthi et al., 2020; Mustafa et al., 2022), resulting in the analytical
intractability of the adversarial loss over graph-structured data. Furthermore, the learning approach
for node classification no longer corresponds to the supervised learning setting, where the nodes to
be predicted are unlabeled and available during training (Li et al., 2018; Oono & Suzuki, 2020; Song
et al., 2022). This paradigm is typically formulated within a transductive learning framework.

To overcome these obstacles, we derive strict upper bounds on the original adversarial loss, and then
analyze the generalization properties of the surrogate by leveraging the novel contraction technique
on graph convolution, which can yield tighter generalization guarantees. The main contributions of
this paper are summarized as follows.

• We provide the high-probability generalization bounds of GCNs for adversarially robust
binary and multi-class node classification tasks, through the lens of adversarial TRC. The
derived bounds establish the connection between adversarial perturbations and generaliza-
tion error, revealing the role of key factors (e.g., feature dimension, network architecture,
graph matrix, etc.) in mitigating the negative impact of perturbations and improving the
generalization ability. When the perturbation value is zero, we can recover the generalization
bounds for the non-adversarial case, improving the dependence on the number of layers
from exponential to the square root term compared to the existing TRC-based bounds.
• Our analysis enjoys broad applicability across a wide range of models and loss functions,

necessitating only the characterization of adversarial TRC. As application examples of
theoretical analysis, we provide explicit generalization bounds for popular GCN models,
encompassing SGC, Residual GCN, and GCNII, demonstrating the importance of specific
network architectures for achieving adversarially robust generalization of deep GCN models.
• Extensive experimental results on benchmark datasets demonstrate the effectiveness of

our theoretical findings in reducing generalization error and achieving good generalization
performance.

2 RELATED WORK

Adversarial attack and defense on GCNs Recent research has shown that node features with
carefully crafted perturbations can induce GCNs towards making incorrect predictions with high
confidence (Dai et al., 2018; Zügner et al., 2020; Ma et al., 2020). To counter such attacks, various de-
fense mechanisms have been developed to enhance the adversarial robustness, including regularizing
the input gradient (Jia et al., 2023; Zhang et al., 2024), designing robust network architectures (Cisse
et al., 2017; Abbahaddou et al., 2024), adversarial data augmentation (Suresh et al., 2021; Wu et al.,
2022; Dong et al., 2024), and adversarial training (Feng et al., 2019; Li et al., 2022; Gosch et al.,
2024). Among them, adversarial training has been validated to be the most effective defense strategy,
which trains the robust model jointly with clean data and their adversarial counterparts. The resulting
robust GCN models have been successfully applied in various fields (Sun et al., 2022). Despite the
excellent performance, the generalization properties of GCNs under adversarial attacks are poorly
understood.

Generalization analysis of GCNs Scarselli et al. (2018) study the generalization ability of graph
neural networks by leveraging the VC-dimension, which grows polynomially with the number of pa-
rameters and the number of nodes. Garg et al. (2020) establish the first data-dependent generalization
bounds for message passing neural networks through the lens of the Rademacher complexity. Verma
& Zhang (2019) develop stability-based generalization bounds and reveal the relationship between
the graph size and algorithmic stability. Different from the above work under supervised learning
settings, Esser et al. (2021) consider the semi-supervised graph learning setting and provide the
generalization bounds by using the transductive Rademacher complexity. Deng et al. (2022) establish
generalization guarantees for GCN-based recommendation models under inductive and transductive
learning. Tang & Liu (2023) derive high probability bounds of generalization gap for popular graph
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models in the transductive setting. Although the aforementioned work cannot be directly extended to
adversarial settings due to the outer maximization w.r.t. adversarial perturbations, it provides valuable
insights into the generalization analysis of GCNs under adversarial settings.

3 NOTATIONS AND PRELIMINARIES

Notations. Let [L] = {1, . . . , L}. We denote vectors as lowercase bold letters (e.g.,w). The vector
elements are denoted by lowercase letters (e.g., w = (w1, . . . , wn) ∈ Rn). We denote matrices
by boldface uppercase letters (e.g., W ). For a matrix W ∈ Rm×n, the (p, q)-norm is defined as
‖W ‖p,q = ‖(‖W∗1‖p, . . . , ‖W∗n‖p)‖q, where W∗i is the column of W . We use the shorthand
notation ‖ · ‖p ≡ ‖ · ‖p,p, and write Hölder conjugates by a star (e.g., r∗).

Preliminaries. Let G = (A,X) be an attributed graph with n nodes, whereX = [x1, . . . ,xn] ∈
Rn×d denotes the node feature matrix, andA ∈ Rn×n denotes the adjacency matrix. In this work,
we focus on node classification tasks in a transductive manner, where the goal is to complete node
labeling of the given graph with randomly sampled labels (Deng et al., 2022). Let S = {xi, yi}ni=1
be the set of samples. Without loss of generality, we assume that the selected labels y1, . . . , ym ∈ R
are known, and aim at finding the best predictor f to predict the class labels ym+1, . . . , yn by
minimizing the training error Lm(f) := 1

m

∑m
i=1 `(f(A,X)i, yi), where f(·)i ∈ R represents the

prediction of node i, and ` : R → R+ denotes a given loss function. The test error is defined as
Lu(f) := 1

n−m
∑n
i=m+1 `(f(A,X)i, yi). In the transductive learning setting, the training and test

nodes are typically determined by a random partition (Ciano et al., 2021; Esser et al., 2021).

However, in the presence of adversaries, imperceptible perturbations on node features can deceive
the model to make wrong predictions (Dai et al., 2018; Bojchevski & Günnemann, 2019). Following
the previous empirical work (Sun et al., 2020; Jaeckle & Kumar, 2021), we assume that the set of
adversarial nodes is generated from the neighborhood Bεr(X) = {X̃ = [x̃1, . . . , x̃n] : ‖x̃i−xi‖r ≤
ε, r ≥ 1, i ∈ [n]}, where ε denotes the maximum perturbation bound. Given ε > 0, an attributed
graph (A,X), the label yi of node i, and the loss function ` : R → R+, the adversary selects the
effective adversarial nodes X̃∗ = [x̃1∗, . . . , x̃n∗] by

X̃∗ = arg max
X̃∈Bε

r(X)
`(f(A, X̃)i, yi),

and the adversarial loss of f at node i is defined by˜̀(f(A,X)i, yi) := max
X̃∈Bε

r(X)
`(f(A, X̃)i, yi).

One of the popular defense methods against adversarial perturbations is adversarial training (Madry
et al., 2018; Li et al., 2022), which aims to minimize the adversarial training error, i.e.,

L̃m(f) :=
1

m

m∑
i=1

˜̀(f(A,X)i, yi),

which measures the worst-case performance of the predictor under adversarial perturbations. We are
interested in the generalization behavior measured by the adversarial test error, i.e.,

L̃u(f) :=
1

n−m

n∑
i=m+1

˜̀(f(A,X)i, yi).

We denote the generalization gap by Gen(f) = L̃u(f)− L̃m(f), which could serve as an indicator
of the generalization performance of f ∈ F and often depends on the capability of the function class
F (Oono & Suzuki, 2020; Deng et al., 2022). This paper introduces the Transductive Rademacher
Complexity (TRC) (El-Yaniv & Pechyony, 2009) to quantity the complexity of hypothesis classes for
deriving the generalization bounds.

Definition 3.1 (Transductive Rademacher Complexity). Let F ⊆ Rn, p ∈ [0, 0.5], andm the number
of labeled samples. Let σ = (σ1, . . . , σn) be a vector of i.i.d. random variables, where σi takes
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the value +1 or −1 with probability p, and 0 with probability 1 − 2p. Transductive Rademacher
Complexity of F is defined as

Rm,n(F) ,

(
1

m
+

1

n−m

)
Eσ

[
sup
f∈F

σT f

]
.

It is noteworthy that the TRC degenerates to the standard Rademacher complexity (Bartlett &
Mendelson, 2002) if p = 1/2 and m = n/2. For p < 1/2, the TRC is beneficial to obtain tighter
generalization bounds, where some Rademacher variables will reach zero value. This paper thus
considers the probability p of Rademacher variable σi = ±1 to be m(n−m)

n2 (El-Yaniv & Pechyony,
2009).

We introduce the following classic result by directly applying Corollary 1 in (El-Yaniv & Pechyony,
2009) to adversarial settings, which shows that the generalization gap can be controlled by adversarial
TRC, i.e., Rm,n(˜̀◦ F).

Lemma 3.2. Suppose that the range of the loss function ` is [0, 1]. Let Q1 , ( 1
m + 1

n−m ), and
Q2 , n

(n−1/2)(1−1/(2 max(m,n−m))) . Then, with probability at least 1− δ for all f ∈ F ,

Gen(f) ≤ Rm,n(˜̀◦ F) + c0Q1

√
min(m,n−m) +

√
Q1Q2

2
ln

1

δ
,

where c0 < 5.05 is absolute constant.

It is noteworthy that TRC-based bounds inherently exhibit monotonic decrease at a rate of
O(max{ 1√

m
, 1√

n−m}) (El-Yaniv & Pechyony, 2009; Esser et al., 2021; Deng et al., 2022), re-
flecting the role of the number of labeled node m on the generalization. With Lemma 3.2 as a toolkit,
we can establish the generalization bounds for adversarial learning algorithms in the context of
transductive inference, and the explicit characterization of Rm,n(˜̀◦F) for various models will be the
focus of this paper. However, deriving an upper bound on Rm,n(˜̀◦F) is often intractable, due to the
maximization operator of the adversarial loss over the graph-structured data via the message-passing
network. Our approach is to derive a surrogate upper bound on the original adversarial loss, and
establish a new risk bound in terms of the TRC of the surrogate by developing the novel usage of
contraction inequality on graph convolution.

Let the hypothesis class of GCNs be defined as follows (Garg et al., 2020; Deng et al., 2022):

F =
{
H(L) = φ(g(A) · · ·φ(g(A)XW (1)) · · ·W (L)) : ‖W (l)‖2, ‖W (l)‖p ≤ ω, l ∈ [L]

}
, (1)

and the propagation procedure can be written as

H(0) = X, H(l) = φ(g(A)H(l−1)W (l)), l ∈ [L] (2)

where ω denotes the maximum bound over the ‖ · ‖2, ‖ · ‖p of W (l), W (l) ∈ Rdl−1×dl is a layer-
specific weight matrix, dl is the width of l-th layer, d0 = d, φ(·) is the ReLU function (Hahnloser
et al., 2000), i.e., φ(u) = max{0, u}, which is monotonically increasing 1-Lipschitz activation
function. The graph filter g(A) : Rn×n 7→ Rn×n is a function of the adjacency matrixA, such as

g(A) = A+ In the graph with self-loops (Xu et al., 2018)
g(A) = D−1A the random-walk graph (Zhang et al., 2019)
g(A) = D−1/2AD−1/2 the symmetric normalized graph (Kipf & Welling, 2017)

where In is the identity matrix, andD is the degree matrix defined byDi,i =
∑
j∈[n]Ai,j .

4 MAIN RESULTS

4.1 GENERAL ANALYSIS: BINARY CLASSIFICATION

Let the label y takes values in {−1,+1}, and F : Rn×d 7→ Rn be the function class of multi-
layer GCNs defined in (1). We predict the label of node i with the sign of f(A, X̃)i for any
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f ∈ F . Assume that the loss function `(f(A,X)i, yi) ≡ ˆ̀(yif(A,X)i) where ˆ̀ : R → R+ is
monotonically nonincreasing and L`-Lipschitz, the following equation holds:

˜̀(f(A,X)i, yi) = max
X̃∈Bε

r(X)
`(f(A, X̃)i, yi) = ˆ̀( min

X̃∈Bε
r(X)

yif(A, X̃)i).

Note that this assumption is a mild condition encompassing some common losses such as the hinge
loss and logistic loss, which has been widely used in adversarial learning literature (Awasthi et al.,
2020; Xiao et al., 2022) to derive the non-trivial bounds. According to the Ledoux-Talagrand
contraction inequality (Ledoux & Talagrand, 2013), we have

Rm,n(˜̀◦ F) ≤ L`Rm,n(F̃), (3)

where
F̃ :=

{
(A,X) 7→ min

X̃∈Bε
r(X)

yif(A, X̃)i : f ∈ F
}
. (4)

The above inequality allows us to bound the TRC of the adversarial loss class Rm,n(˜̀◦ F) by
controlling the adversarial TRC of function class Rm,n(F̃), which is presented in the following
theorem. The proof is provided in Appendix B.

Theorem 4.1. Let F : Rn×d → Rn be the L-layer GCN function class defined in (1), and F̃ be its
adversarial counterpart with the form of (4). We have

Rm,n(F̃) ≤ Qm,n(
√

2 log(2)L+ 1)‖g(A)‖L∞ωL
(
Bp∗‖X‖2,p∗ + εs(r∗, p, d)

)
,

where Bp∗ =
√

2 log(2d), if p = 1; Bp∗ =
√

2[
Γ( 1+p∗

2 )√
π

]
1
p∗ , if p ∈ (1, 2]; Bp∗ = 1, if p ∈ [2,+∞),

Qm,n =
√

2n
m(n−m) , and s(r∗, p, d) = dmax{0, 1

r∗−
1
p}.

Remark 4.2. The adversarial TRC bound above has an unavoidable polynomial dimension depen-
dency, i.e., s(r∗, p, d) as compared to its natural counterpart, which arises from the mismatch between
the p-norm on the weightW (1) and the r-norm in the adversarial node set Bεr(X). One could avoid
such a dimension dependency by applying a perturbation-dependent norm regularizer on the weight
matrix. Namely, for arbitrary `r-norm perturbations and r ≥ 1, the `p-norm regularizer that satisfies
p ∈ [1, r∗] should be chosen such that s(r∗, p, d) ≡ 1, where 1

r + 1
r∗ = 1. In contrast with related

work on adversarial learning (Yin et al., 2019; Awasthi et al., 2020; Mustafa et al., 2022), our theory
is the first touch for the generalization analysis of graph-structured data with the `r-norm additive
perturbations for r ≥ 1.

Remark 4.3. For a L-layer GCN, the generalization gap might increase exponentially with the
number of layers L leading to a vacuous bound, which explains why stacking too many layers tends to
deteriorate the performance of GCN models (Kipf & Welling, 2017; Li et al., 2018). It is worth noting
that if ω = O(1/‖g(A)‖∞) or selecting an appropriate graph filter, one can significantly weaken
depth dependency and tighten the bound. For the graph with self-loops, ‖g(A)‖∞ = 1 + Dmax,
while ‖g(A)‖∞ has a maximum value

√
Dmax/Dmin for the symmetric normalized graph, and can

be equal to 1 for the random-walk graph, where Dmax and Dmin denote the maximum and minimum
degrees, respectively. This also demonstrates the benefit of normalized graph filters for reducing
generalization error (Kipf & Welling, 2017; Zhang et al., 2019).

Remark 4.4. Taking ε = 0 and applying Lemma 4.5 yield the upper bound of the generalization gap
in the non-adversarial setting:

O
(

max{ 1√
m
,

1√
n−m

} ×
(√

2 log(2)L+ 1
)
‖g(A)‖L∞ωLBp∗‖X‖2,p∗

)
,

which has comparable convergence rate of O(max{ 1√
m
, 1√

n−m}) to the existing TRC-based bound
(Esser et al., 2021; Tang & Liu, 2023). Notably, our bound improves the existing exponential
dependency of the number of layers to a logarithmic term O(

√
2 log(2)L), facilitating the tighter

bound than (Esser et al., 2021; Tang & Liu, 2023), which benefit from the usage of the contraction
technique.

5



Published as a conference paper at ICLR 2025

4.2 GENERAL ANALYSIS: MULTI-CLASS CLASSIFICATION

We turn to the multi-class classification with the standard margin bound framework. In K-category
classification problems, we define the label y ∈ [K] and consider the hypothesis class F : Rn×d 7→
Rn×K . For a given f ∈ F , we carry out prediction for node i by arg maxy′i∈[K][f(A,X)i]y′i . The
quality of prediction is measured by the ramp loss defined by

`γ(v, y) =

{
1 M(v, y) ≤ 0
1−M(v, y)/γ 0 < M(v, y) < γ
0 M(v, y) ≥ γ,

where M(v, y) := vy −maxj 6=y vj denotes the margin operator. It is worth noting that `γ(v, y) is
‖ · ‖∞-Lipschitz with constant 1

γ and is an upper bound on the zero-one loss (Mustafa et al., 2022).
The corresponding adversarial loss is defined by˜̀(f(A,X)i, yi) = max

X̃∈Bε
r(X)

`γ(f(A, X̃)i, yi).

Previous work (Yin et al., 2019) considers a surrogate margin loss based on a semidefinite program-
ming (SDP) based relaxation (Raghunathan et al., 2018) to address the outer maximization problem
of adversarial losses for multi-class classification. Since the SDP-based approach essentially derives
an upper bound of the surrogate of adversarial loss rather than the upper bound on the original adver-
sarial loss, the resulting surrogate often overestimates the adversarial loss, potentially leading to the
meaningless bound. In addition, this surrogate is only applicable to one-hidden-layer neural networks.
Unlike the aforementioned work, we consider pairwise margin-bound analysis w.r.t. adversarial
perturbations, yielding a tighter upper bound on the original adversarial loss and enabling multi-layer
network architectures.
Lemma 4.5. Let the robust surrogate loss be defined bŷ̀(f(A,X)i, yi) = `γ(M(f(A,X)i, yi)−Ψ(f(A,X)i)),

where the worst-case error is

Ψ(f(A,X)i) = 2 max
k∈[K]

εs(r∗, p, d)‖g(A)‖L∞‖W
(L)
∗k ‖1

L−1∏
l=2

‖W (l)‖2‖W (1)‖p,

where s(r∗, p, d) = dmax{0, 1
r∗−

1
p}. Then, we have

max
X̃∈Bε

r(X)
1{yi 6= arg max

y′∈[K]
[f(A, X̃)i]y′}

≤˜̀(f(A,X)i, yi) ≤ ̂̀(f(A,X)i, yi) ≤ 1{M(f(A,X)i, yi)−Ψ(f(A,X)i) ≤ γ}.
Remark 4.6. The proof is provided in Appendix C. The robust surrogate loss explicitly characterizes
the standard errorM(f(A,X)i, yi) regarded as an optimization objective in the standard training and
the worst-case error Ψ(f(A,X)i) incurred by adversarial perturbations that should be suppressed.
The proposed robust loss can thus be used to adversarially train robust models to withstand adversarial
perturbations. It is noteworthy that the magnitude of the perturbation applied during training should
be controlled such that the worst-case error term is smaller than the standard error term.

With the Ledoux-Talagrand contraction inequality and Lemma 4.5, we obtain the following structural
result

Rm,n(˜̀◦ F) ≤ Rm,n(̂̀◦ F) ≤ 1

γ
(Rm,n(M ◦ F) + Rm,n(Ψ ◦ F)).

In the following theorem, we present the TRC-based generalization bound of GCNs for multi-class
node classification tasks by applying Lemma 3.2. The proof is provided in Appendix C.
Theorem 4.7. Let F : Rn×d 7→ Rn×K be the class of L-layer GCNs as defined in (1). Consider the
robust surrogate loss defined in Lemma 4.5. For any fixed γ > 0, with probability at least 1− δ,

1

n−m

n∑
i=m+1

1{∃X̃ ∈ Bεr(X) s.t. yi 6= arg max
y′∈[K]

[f(A, X̃)i]y′}

≤ 1

m

m∑
i=1

1{[f(A,X)i]y′i ≤ γ + max
y′i 6=y′

[f(A,X)i]y′ + Ψ(f(A,X)i)}+ Rm,n(̂̀◦ F) +Om,n,
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where Om,n = O(max{ 1√
m
, 1√

n−m}),

Rm,n(̂̀◦ F) ≤ Qm,n
4K

γ
(
√

log(2)L+ 1)‖g(A)‖L∞ωL (Bp∗‖X‖2,p∗ + εs(r∗, p, d)) ,

and Qm,n, Bp∗ , s(r∗, p, d) are as given in Theorem 4.1.

Remark 4.8. Similarly, the upper bound above suffers from an additional perturbation-relevant term
as compared to its non-adversarial counterpart, that is, O(εs(r∗, p, d)). As discussed in Remark
4.2 and 4.3, one could confine this complexity term and narrow the generalization gap by applying
p-norm regularizer on the weight to avoid polynomial dimension dependency in s(r∗, p, d), where
p ∈ [1, r∗] and 1

r∗ + 1
r = 1, and choosing the factor ω = O(1/‖g(A)‖∞) or the appropriate graph

filter to mitigate depth dependency.
Remark 4.9. The convergence rate of O(K) in the number of classes K is comparable with the
existing generalization bounds for traditional multi-class classification tasks (Yin et al., 2019; Tu
et al., 2019). In particular, when K = 2, the above bound can be viewed as a special case of Theorem
4.1, in which the loss function is fixed to the ramp loss. Letting ε = 0, we obtain the high-probability
generalization bound of GCNs for multi-class classification, which fills a theoretical gap in the
multi-class node classification task to our knowledge.

5 GENERALIZATION GAP FOR GCN VARIANTS

Recently, various variants of GCNs have achieved tremendous success in improving the generalization
ability of deep GCNs, encompassing SGC, Residual GCN, and GCNII. In this section, we provide
explicit generalization bounds for these popular variants through the extension of our theoretical
analysis, elucidating the role of network architectures on the generalization performance of deep
GCNs in adversarial settings. Here, we consider the case of the K-category classification task.

SGC. Wu et al. (2019) propose Simple Graph Convolution (SGC) by removing nonlinearities in
Vanilla GCNs (Kipf & Welling, 2017). The resulting linear model is

f(A,X) = Softmax(g(A)LXW (1) · · ·W (L)),

whereW (l) ∈ Rdl−1×dl for l ∈ [L], and dl is the width of l-th layer (d0 = d and dL = K).
Proposition 5.1. For any δ ∈ (0, 1), with probability 1− δ,

Gen(f) ≤ O(max{ 1√
m
,

1√
n−m

}) +Qm,n
2K

γ
‖g(A)L‖∞ωL(Bp∗‖X‖2,p∗ + εs(r∗, p, d)),

where Qm,n, Bp∗ , and s(r∗, p, d) are as given in Theorem 4.1.

Remark 5.2. The proof is provided in Appendix D. It is worth noting that ‖g(A)L‖∞ ≤ ‖g(A)‖L∞,
thereby alleviating the negative impact of perturbation-relevant term and leading to a tighter general-
ization bound in Proposition 5.1 than in Theorem 4.7. This provides the theoretical understanding of
why linear models can achieve comparable and even better generalization performance than nonlinear
models. It is natural that if a linear GCN has a small training error, it will also perform well on
test samples based on the small generalization gap. Furthermore, for L-layer SGC, the aggregated
information can contain the feature information of all L-hop-away neighbor nodes, thereby signifi-
cantly improving the representation power of deep GCNs while avoiding over-smoothing (i.e., as
depth increases, the representations of nodes are inclined to converge to a certain value, resulting in
performance degradation) (Chen et al., 2020a).

Residual GCN. Kipf & Welling (2017) facilitate the training of deep GCNs by adding residual
connections (He et al., 2016) between hidden layers that carry information from the previous layer.
The forward propagation is defined by

H(l) = φ(g(A)H(l−1)W (l)) +H(l−1), H(0) = φ(XW (0)),

whereW (l) ∈ Rd′×d′ for l ∈ [L− 1],W (0) ∈ Rd×d′ . The final output of the model is expressed by
f(A,X) = Softmax(H(L−1)W (L)), whereW (L) ∈ Rd′×K .
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Table 1: Dataset statistics.
Dataset Classes Nodes Edges Features Training Validation Test

Citeseer 6 3,327 4,732 3,703 20 per class 500 1000
Cora 7 2,708 5,429 1,433 20 per class 500 1000
Pubmed 3 19,717 44,338 500 20 per class 500 1000
CS 15 18,333 81,894 6,805 20 per class 30 per class Rest
Physics 5 34,493 247,962 8,415 20 per class 30 per class Rest
ogbn-arxiv 40 169,343 1,166,243 128 20 per class 30 per class Rest

Proposition 5.3. For any δ ∈ (0, 1), with probability 1− δ,

Gen(f) ≤O
(

max{ 1√
m
,

1√
n−m

}
)

+Qm,n
4K

γ
(
√

log(2)L+ 1)‖g(A)‖L∞ω(ω + 1)L(Bp∗‖X‖2,p∗ + εs(r∗, p, d)).

where Qm,n, Bp∗ , and s(r∗, p, d) are as given in Theorem 4.1.
Remark 5.4. The proof is provided in Appendix E. The generalization bound above has a similar
dependency on the number of network layers as Theorem 4.7. This implies that as the depth increases,
the perturbation term will become the dominant factor and may lead to larger generalization errors.
Our analysis thus provides the theoretical understanding that residual connections partially alleviate
over-smoothing while degrading performance with increasing depth (Kipf & Welling, 2017).

GCNII. Chen et al. (2020b) effectively enhance the prediction performance of deep GCNs by
building an initial residual connection to the first layer, motivated by (He et al., 2016; Kipf & Welling,
2017). The propagation process is

H(l) = φ(((1− α)g(A)H(l−1) + αH(l))((1− β)In + βW (l))), H(0) = φ(XW (0))

where α, β ∈ (0, 1),W (l) ∈ Rd′×d′ for l ∈ [L− 1], andW (0) ∈ Rd×d′ . The final output is defined
by f(A,X) = Softmax(H(L−1)W (L)), whereW (L) ∈ Rd′×K .
Proposition 5.5. For any δ ∈ (0, 1), with probability 1− δ,

Gen(f) ≤O(max{ 1√
m
,

1√
n−m

}) +Qm,n
4K

γ
(
√

log(2)L+ 1)(Bp∗‖X‖2,p∗ + εs(r∗, p, d))

× ω2
(
(1− α)‖g(A)‖L∞(1− β + βω)L + α(1− α)

L∑
l=0

‖g(A)‖l∞(1− β + βω)l
)
.

where Qm,n, Bp∗ , and s(r∗, p, d) are as given in Theorem 4.1.
Remark 5.6. The proof is provided in Appendix F. A comparison of Proposition 5.3 and Proposition
5.5 indicates that the product term of multiple norm bounds can be confined to the sum term via
a tunable parameter α. This implies that as α increases, the perturbation term will significantly
weaken the dependency on depth and be well suppressed, thereby reducing the generalization error.
Additionally, it is noteworthy that if β approaches zero and ‖g(A)‖∞ ≤ 1, the upper bound in
Proposition 5.5 is independent of the number of layers and can be considerably narrowed. The reason
behind this behavior is that as α increases and β decreases, the network architecture is close to the
shallow model, which prevents the layer-by-layer propagation of adversarial perturbations. Hence,
we posit that initial residual connection confers greater benefits to the generalization ability of deeper
GCNs, being corroborated by certain empirical observations (Chen et al., 2020b; Liu et al., 2021).

6 EXPERIMENTS

In this section, we evaluate the impact of some key quantities on the generalization performance
of GNC in adversarial settings, such as feature dimension, regularizer, graph filters, the number of
layers, etc. Extensive experimental results validate our theoretical findings in Sections 4&5.
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Figure 1: The empirical generalization error (mean value and standard deviation) with different
feature dimensions. ε denotes the maximum allowable perturbation.

6.1 EXPERIMENTAL SETUP

We adopt several widely-used benchmark datasets, including Citeseer, Cora, Pubmed, CS, Physics,
and ogbn-arxiv (Sen et al., 2008; Yang et al., 2016; Hu et al., 2020). Statistics of the datasets are
summarized in Table 1. We adversarially train a robust model by leveraging the following objective:

min
f∈F

max
X̃∈Bε

r(X)

m∑
i=1

`(f(A, X̃)i, yi) + λ‖W ‖1, (5)

where `(·) is cross-entropy loss,W denotes the weight parameter of the first layer, λ ≥ 0 denotes the
regularization coefficient, and ε denotes the maximum allowable perturbation. The training iterations
is fixed to 600. During training and testing, the adversarial nodes are generated by the `∞-PGD
algorithm (Madry et al., 2018) with the step size ε/128, where adversarial perturbations are added
to test nodes after training to avoid a biased evaluation through memorization of the transductive
learning setting (Gosch et al., 2024). Similar to previous work (Xiao et al., 2022; Zou & Liu, 2023),
we consider an empirical proxy for the generalization gap:∣∣Adversarial Training Accuracy − Adversarial Test Accuracy

∣∣
that is, the absolute value of the difference between the accuracy on adversarial training and test
nodes. Each experiment is independently repeated 10 times and reported with the mean value and
standard deviations. We default to present the experimental results of two-layer GCN proposed by
(Kipf & Welling, 2017). Please refer to Appendix I for more detailed experimental configurations
and experimental results, including different attack methods, SGC, GCNII, and Residual GCN.

6.2 NUMERICAL DISCUSSION

Feature dimension. We compare the empirical generalization error with different dimensions,
including the original dimension d, dd/2e, and dd/4e. For convenience, we use a single-layer neural
network with ReLU activation to learn a low-dimensional representation of the node features. As
shown in Figure 1, the empirical generalization error decreases steadily with the dimension, which
implies that low-dimensional feature projection can help reduce the generalization error.

Regularization. Following the theoretical findings in Theorem 4.1&4.7, we apply `1-norm regular-
izer on the weight matrix, since `∞-norm attack is used to generate adversarial perturbations. We
evaluate the effect of norm regularization on the generalization ability by comparing the empirical
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Figure 2: The empirical generalization error (mean value and standard deviation) of models trained
with `1 regularization for different regularization parameters (i.e., λ). ε denotes the maximum
allowable perturbation.

generalization error with different regularization coefficients λ. As shown in Figure 2, the empirical
generalization error of the regularized model is smaller than that without (i.e., λ = 0), which is con-
sistent with our theoretical analysis. Experimental results demonstrate the importance of appropriate
regularizer to achieve good generalization performance.

Graph filter. We present the empirical generalization error with different graph filters in Figure 3,
where the number of layers is set to 6. As shown in Figure 3, the graph with self-loops has larger
empirical generalization errors than the normalized graphs. Hence, we argue that normalizing the
graph matrix can facilitate the adversarial generalization of GCNs.

Model depth. We compare the empirical generalization error with different depths in Figure
4. The experimental results show that the generalization error increases as the number of layers
increases and tends to be stable or even decreases due to the over-smoothing issue. This suggests
that the appropriate number of layers should be determined to balance the representation power and
generalization capability.

Network architecture. We investigate the generalization ability of popular GCNs with adversarial
perturbations, including Vanilla GCN, SGC, Residual GCN, and GCNII, where the number of
layers is set to 6. Figure 5 presents the empirical generalization error of different models with
`∞ PGD attacks. Emiprical observations show that GCNII with initial residual connection tends
to have smaller generalization error, which demonstrates the effectiveness of the specific network
structure in enhancing adversarial robustness. Furthermore, we evaluate the role of the parameter
α on the generalization ability of GCNII. As shown in Figure 6, the larger α, the smaller empirical
generalization error, which is consistent with our theoretical findings in Proposition 5.5.

Labeled node size. We study the effect of the number of labeled nodes on the generalization
ability of the learned model in the node classification task. Specifically, we compare the empirical
generalization error with different label rates m/n, where m/n denotes the number of labeled nodes
used for training divided by the total number of nodes. As shown in Figure 7, when label rete m/n is
too large or too small, the generalization gap will be at a large level, which is aligned with the general
consensus (El-Yaniv & Pechyony, 2009; Esser et al., 2021). This implies that the amount of labeled
data should be taken into consideration to achieve excellent prediction performance.
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7 CONCLUSION

In this paper, we provide a comprehensive generalization analysis for GCNs under perturbation
attacks through the lens of the adversarial TRC. The derived bounds provide a theoretical char-
acterization of the interplay between the generalization error, node perturbations, and adversarial
robustness. Theoretical results reveal how graph-structured data and model parameters can help
improve adversarially robust generalization of GCNs. Furthermore, we develop the generalization
bounds for popular variants of GCNs, which implies that specific network architecture (e.g., initial
residual connection) is beneficial for enhancing adversarial robustness. Extensive experimental results
on benchmark datasets validate our theoretical findings. Interesting directions for future work include
analyzing the generalization properties for GCNs under topology attacks.
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Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks
on graph neural networks: Perturbations and their patterns. ACM Transactions on Knowledge
Discovery from Data (TKDD), 14(5):1–31, 2020.

15



Published as a conference paper at ICLR 2025

A NOTATION

For a matrix W ∈ Rm×n, the (p, q)-norm is defined as ‖W ‖p,q = ‖(‖W∗1‖p, . . . , ‖W∗n‖p)‖q,
where W∗i is the i-column of W . We use the shorthand notation ‖ · ‖p ≡ ‖ · ‖p,p. We denote
the infinity norm of the matrix by ‖W ‖∞ = max1∈[m]

∑n
j=1 |Wi,j |. For ease of exposition, we

summarize the notations in Table 2.

Table 2: Summary of notations involved in this paper.

Notations Meaning

xi The feature of node i, xi ∈ Rd.

yi The label of node i.

X The feature matrix of all nodes X = [x1, . . . ,xn] ∈ Rn×d.

y The vector of labels, i.e., y = (y1, y2, . . . , yn) ∈ Rn.

g(A) The graph filter, i.e., a function of the adjacency matrix A.

ε The adversarial perturbation.

Bε
r(X) The set of adversarial node {X̃ = [x̃1, . . . , x̃n] : ‖x̃i − xi‖r ≤ ε, r ≥ 1, i ∈ [n]}.

f(A,X) The function of L-layer GCNs.

f(A,X)i The i-th element of the hypothesis f .

H(l) The feature representation of all nodes at l-th layer.

H̃(l) The feature representation of all adversarial nodes at l-th layer.

W (l) The weight matrix of l-th layer.

ω The norm bounds of the weight matrix.

Rm,n(F) The TRC of the function class F .

` The loss function.

L` The Lipschitz constant of function `.

φ(·) The non-decreasing 1-Lipschitz activation function, e.g. ReLU activation.

p∗ The Hölder conjugates by a star, e.g. p∗, satisfying 1
p
+ 1

p∗ = 1.

[L] The set of positive integers, i.e., [L] = {1, . . . , L}.
‖ · ‖p, ‖ · ‖r The `p-norm and the `r-norm, p, r ≥ 1.

Before proceeding to prove main results, we introduce some necessary inequalities.

Lemma A.1. (Awasthi et al., 2020) Let 1 ≤ p, r ≤ ∞ and d be the dimension. Then,

sup
‖w‖p≤1

‖w‖r∗ = s(r∗, p, d),

where s(r∗, p, d) = dmax{0, 1
r∗−

1
p}.

Lemma A.2. Let φ be a 1-Lipschitz positive-homogeneous activation function. Then for any class of
vector-valued functions F , and any convex and monotonically increasing function ψ : R→ [0,∞),

Eσ sup
f∈F,‖W ‖2≤ω,j∈[n]

ψ

(∥∥∥ n∑
i=1

σiφ
( ∑
k∈[n]

g(A)j,kf(A,X)kW
)∥∥∥)

≤2Eσ sup
f∈F,j∈[n]

ψ

(
‖g(A)‖∞ω

∥∥∥ n∑
i=1

σif(A,X)j

∥∥∥)
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Proof of Lemma A.2. LetW∗1,W∗2, . . . ,W∗n be the columns of the matrixW , we have

max
j∈[n]

∥∥∥ n∑
i=1

σiφ
( ∑
k∈[n]

g(A)j,kf(A,X)kW
)∥∥∥2

≤max
t∈[n]

∥∥∥ n∑
i=1

σiφ
(

(max
j∈[n]

∑
k∈[n]

g(A)j,k)f(A,X)tW
)∥∥∥2

≤max
j∈[n]

∥∥∥ n∑
i=1

σiφ
(
‖g(A)‖∞f(A,X)jW

)∥∥∥2

= max
j∈[n]

n∑
l=1

‖W∗l‖2
(

n∑
i=1

σiφ
(
‖g(A)‖∞

〈
f(A,X)j ,

W∗l
‖W∗l‖

〉))
.

The supremum of this over allW∗1,W∗2, . . . ,W∗n such that ‖W ‖22 =
∑n
l=1 ‖W∗l‖2 ≤ ω2 must

be obtained when ‖W∗l‖ = ω for some l, and ‖W∗h‖ = 0 for all h 6= l. Therefore

Eσ sup
f∈F,‖W ‖2≤ω,j∈[n]

ψ

(∥∥∥ n∑
i=1

σiφ
( ∑
k∈[n]

g(A)j,kf(A,X)kW
)∥∥∥)

≤Eσ sup
f∈F,‖W ‖2≤ω,k∈[n]

ψ

(
n∑
l=1

‖W∗l‖2
(

n∑
i=1

σiφ
(
‖g(A)‖∞

〈
f(A,X)k,

W∗l
‖W∗l‖

〉)))

=Eσ sup
f∈F,‖W∗l‖2=ω,j∈[n]

ψ

(∣∣∣∣∣
n∑
i=1

σiφ
(
‖g(A)‖∞ 〈f(A,X)j ,W∗l〉

)∣∣∣∣∣
)

≤2Eσ sup
f∈F,‖W∗l‖2=ω,j∈[n]

ψ

(
n∑
i=1

σiφ
(
‖g(A)‖∞ 〈f(A,X)j ,W∗l〉

))
(6)

where the last inequality follows from ψ(|u|) ≤ ψ(u) + ψ(−u) and the symmetry in the distribution
of the random variables σi. For inequality (6), having

2Eσ sup
f∈F,‖W∗l‖2=ω,j∈[n]

ψ

(
n∑
i=1

σiφ
(
‖g(A)‖∞ 〈f(A,X)j ,W∗l〉

))

≤2Eσ sup
f∈F,‖W∗l‖2=ω,j∈[n]

ψ

(
n∑
i=1

σi‖g(A)‖∞ 〈f(A,X)j ,W∗l〉

)

≤2Eσ sup
f∈F,‖W∗l‖2=ω,j∈[n]

ψ

(
‖g(A)‖∞‖W∗l‖2

∥∥∥ n∑
i=1

σif(A,X)j

∥∥∥)

=2Eσ sup
f∈F,j∈[n]

ψ

(
‖g(A)‖∞ω

∥∥∥ n∑
i=1

σif(A,X)j

∥∥∥) .

B PROOF OF THEOREM 4.1 [BINARY CLASSIFICATION]

Proof of Theorem 4.1. Let the function class of L-layer GCNs be defined by

F =
{
f(A,X) = g(A)H(L−1)W (L) : ‖W (l)‖2, ‖W (l)‖p ≤ ω, l ∈ [L]

}
: Rn×d → Rn

with the update rule:

H(l) = φ(g(A)H(l−1)W (l)) ∈ Rn×dl , H(0) = X,
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where the graph filter g(A) : Rn×n 7→ Rn×n,W (l) ∈ Rdl−1×dl , dl is the width of l-th layer, d0 = d,
dL = 1, and φ(·) is ReLU activation. The corresponding adversarial counterpart is defined by

F̃ =

{
inf

X̃∈Bε
r(X)

yif(A, X̃)i : f ∈ F , yi ∈ {±1}

}
.

Let the set of adversarial nodes of F̃ be defined by X̂ = [x̂1, . . . , x̂n], where each x̂i is chosen by

x̂i = arg inf
X̃∈Bε

r(X)
yif(A, X̃)i,

for i = 1, . . . , n and any f ∈ F . Denote Q = 1
m + 1

n−m . With the definition above, we have the
following inequality

QEσ
[

sup
f∈F

n∑
i=1

σi inf
X̃∈Bε

r(X)
yif(A, X̃)i

]
≤ QEσ

[
sup
f∈F̂

n∑
i=1

σif(A, X̂)i

]
:= Rm,n(F̂), (7)

where
F̂ =

{
f(A, X̂) = g(A)Ĥ(L−1)W (L) : ‖W (l)‖2, ‖W (l)‖p ≤ ω, l ∈ [L]

}
with update rule:

Ĥ(l) = φ(g(A)Ĥ(l−1)W (l)), Ĥ(0) = X̂,

where g(A) ∈ Rn×n,W (l) ∈ Rdl−1×dl for l ∈ [L− 1], andW (L) ∈ RdL−1×1.

We thus turn to bound Rm,n(F̂). By the definition of TRC,

Rm,n(F̂) =QEσ sup
‖W (L)‖2≤ω

[ n∑
i=1

σi

( ∑
j∈[n]

g(A)i,jĤ
(L−1)
j∗ W (L)

)]

≤QEσ sup
‖W (L)‖2≤ω

[ n∑
i=1

σi
(

max
i∈[n]

∑
j∈[n]

g(A)i,j
)

max
t∈[n]

〈
Ĥ

(L−1)
t∗ ,W (L)

〉]

≤QEσ sup
‖W (L)‖2≤ω,j∈[n]

‖g(A)‖∞
[ n∑
i=1

σi

〈
Ĥ

(L−1)
j∗ ,W (L)

〉]

≤Q 1

λ
logEσ sup

‖W (L)‖2≤ω,j∈[n]

exp

(
λ‖g(A)‖∞

( n∑
i=1

σi

〈
Ĥ

(L−1)
j∗ ,W (L)

〉))

≤Q 1

λ
logEσ sup

j∈[n]

exp

(
λ‖g(A)‖∞ω

∥∥∥∥ n∑
i=1

σiĤ
(L−1)
j∗

∥∥∥∥
)
. (8)

We rewrite inequality (8) as

Q
1

λ
logEσ sup

‖W (L−1)‖2≤ω,j∈[n]

exp

(
λ‖g(A)‖∞ω

∥∥∥∥ n∑
i=1

σiφ
( ∑
k∈[n]

g(A)j,kĤ
(L−2)
k∗ W (L−1)

)∥∥∥∥
)

≤Q 1

λ
log

(
2Eσ sup

j∈[n]

exp

(
λ‖g(A)‖2∞ω2

∥∥∥∥ n∑
i=1

σiĤ
(L−2)
j∗

∥∥∥∥)
)

where the last inequality follows from Lemma A.2 with ψ(u) = exp{λ‖g(A)‖∞ω ·u}. By recursion
steps, we obtain

Rm,n(F̂) ≤Q 1

λ
log

(
2LEσ sup

‖W (1)‖p≤ω,j∈[n]

exp

(
λ‖g(A)‖L∞ωL−1

∥∥∥∥ n∑
i=1

σiX̂j∗W
(1)

∥∥∥∥)
)

≤Q 1

λ
log

(
2LEσ sup

j∈[n]

exp

(
λ‖g(A)‖L∞ωL

∥∥∥ n∑
i=1

σix̂j

∥∥∥
p∗

))
. (9)
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Let M = ‖g(A)‖L∞ωL and define a random variable

Z = M · sup
j∈[n]

∥∥∥ n∑
i=1

σix̂j

∥∥∥
p∗

where random as a function of the random variables σ1, . . . , σn. Then,

1

λ
log
{

2LE expλZ
}

=
L log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ.

By Jensen’s inequality and triangle inequality, EZ can be bounded by

EZ =M · Eσ sup
j∈[n]

∥∥∥ n∑
i=1

σix̂j

∥∥∥
p∗

= M · Eσ sup
j∈[n]

∥∥∥ n∑
i=1

σi(x̂j − xj + xj)
∥∥∥
p∗

≤M · Eσ sup
j∈[n]

(∥∥∥ n∑
i=1

σixj

∥∥∥
p∗

+
∥∥∥ n∑
i=1

σi(x̂j − xj)
∥∥∥
p∗

)
≤M · Eσ sup

j∈[n]

(∥∥∥ n∑
i=1

σixj

∥∥∥
p∗

+ s(r∗, p, d)
∥∥∥ n∑
i=1

σi(x̂j − xj)
∥∥∥
r

)
≤M · Eσ

(∥∥∥ n∑
i=1

σixi

∥∥∥
p∗

+ εs(r∗, p, d)
∣∣∣ n∑
i=1

σi

∣∣∣)
≤M

√
2m(n−m)

n
(Bp∗‖X‖2,p∗ + εs(r∗, p, d)) ,

where s(r∗, p, d) = dmax{0, 1
r∗−

1
p}, Bp∗ =

√
2 log(2d) if p = 1 (Mohri et al., 2018), Bp∗ =

√
2[

Γ( 1+p∗
2 )√
π

]
1
p∗ if p ∈ (1, 2], Bp∗ = 1 if p ∈ [2,+∞) (Awasthi et al., 2020), the second inequality

follows from Lemma A.1, and the last inequality is due to the Rademacher variables (El-Yaniv &
Pechyony, 2009).

Note that Z is a deterministic function of the i.i.d. random variables σ1, . . . , σn, and satisfies

Z(σ1, . . . , σi, . . . , σn)− Z(σ1, . . . ,−σi, . . . , σn) ≤2M sup
j∈[n]

‖x̂j‖p∗

≤2M sup
j∈[n]

‖xj + x̂j − xj‖p∗

≤2M sup
j∈[n]

‖xj‖p∗ + sup
j∈[n]

‖x̂j − xj‖p∗

≤2M sup
j∈[n]

‖xj‖p∗ + εs(r∗, p, d),

where the last inequality follows from Lemma A.1. This means that Z is sub-Gaussian satisfying a
bounded-difference condition with a variance factor

υ =
1

4

n∑
i=1

(2MR)2 = nM2R2,

where R = supj∈[n] ‖xj‖p∗ + εs(r∗, p, d), and satisfies

1

λ
log{E expλ(Z − EZ)} ≤ 1

λ

λ2nM2R2

2
=
λnM2R2

2
.

Letting λ =

√
2L log(2)

MR
√
n

and combining the above, the inequality (9) can be upper bounded as follows:

Q
1

λ
log
{

2LE expλZ
}
≤Q(EZ +

√
2 log(2)LnMR)

≤Qm,nM(
√

2 log(2)L+ 1)(Bp∗‖X‖2,p∗ + εs(r∗, p, d))

=Qm,n‖g(A)‖L∞ωL(
√

2 log(2)L+ 1)(Bp∗‖X‖2,p∗ + εs(r∗, p, d))
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where Qm,n =
√

2n
m(n−m) , s(r∗, p, d) = dmax{0, 1

r∗−
1
p}, and Bp∗ =

√
2 log(2d) if p = 1, Bp∗ =

√
2[

Γ( 1+p∗
2 )√
π

]
1
p∗ if p ∈ (1, 2], Bp∗ = 1 if p ∈ [2,+∞). Combining inequalities (7) and (9), the proof

is completed.

C PROOFS OF LEMMA 4.5 AND THEOREM 4.7 [MULTI-CLASS
CLASSIFICATION]

Proof of Lemma 4.5. Let the function class F : Rn×d → Rn×K be defined in (1). Consider the
activation function of the output layer as φ(t) = Softmax(·). Let the pairwise class margin of
node i be defined as fuv(A,X)i = [f(A,X)i]u − [f(A,X)i]v, where [f(A,X)i]u denotes
prediction of the class u for node i. We would like to observe the relative change in error be-
tween any two classes. Specifically, we consider the difference between the set of pairwise margin
fuv(A, X̃)i − fuv(A,X)i. DefineH(l) and H̃(l) as the feature representation ofX and X̃ at l-th
layer, respectively. Then,

fuv(A, X̃)i − fuv(A,X)i

=
∑
j∈[n]

g(A)i,jH̃
(L−1)
j∗

(
W

(L)
∗u −W (L)

∗v
)
−
∑
j∈[n]

g(A)i,jH
(L−1)
j∗

(
W

(L)
∗u −W (L)

∗v
)

≤‖g(A)‖∞‖W (L)
∗u −W (L)

∗v ‖1 max
j∈[n]

∥∥∥φ( ∑
k∈[n]

g(A)j,k(H̃
(L−2)
k∗ −H(L−2)

k∗ )W (L−1)
)∥∥∥
∞

≤‖g(A)‖∞‖W (L)
∗u −W (L)

∗v ‖1 max
t∈[n]

∥∥∥(max
j∈[n]

∑
k∈[n]

g(A)j,k
)(
H̃

(L−2)
t∗ −H(L−2)

t∗
)
W (L−1)

∥∥∥
∞

≤‖g(A)‖2∞‖W
(L)
∗u −W (L)

∗v ‖1‖W (L−1)‖2 max
j∈[n]

‖H̃(L−2)
j∗ −H(L−2)

j∗ ‖

≤‖g(A)‖L∞‖W
(L)
∗u −W (L)

∗v ‖1‖W (L−1)‖2 · · · ‖W (2)‖2 max
j∈[n]

∥∥∥(X̃j∗ −Xj∗
)
W (1)

∥∥∥
≤‖g(A)‖L∞‖W

(L)
∗u −W (L)

∗v ‖1‖W (L−1)‖2 · · · ‖W (2)‖2‖W (1)‖p max
j∈[n]

‖x̃j − xj‖p∗

≤‖g(A)‖L∞‖W
(L)
∗u −W (L)

∗v ‖1
L−1∏
l=2

‖W (l)‖2‖W (1)‖ps(r∗, p, d)ε. (10)

According the definition of the ramp loss and the inequality above, we have

min
X̃∈Bε

r(X)
1(yi 6= arg max

y′i∈[K]
[f(A, X̃)i]y′i)

(a)

≤ `γ
(

min
X̃∈Bε

r(X)
M(f(A, X̃)i, yi)

)
(b)

≤`γ( min
y′i 6=yi

min
X̃∈Bε

r(X)
[f(A, X̃)i]yi − [f(A, X̃)i]y′i)

(c)

≤`γ( min
y′i 6=yi

[f(A,X)i]yi − [f(A,X)i]y′i

− max
y′i 6=yi

εs(r∗, p, d)‖g(A)‖L∞‖W
(L)
∗u −W (L)

∗v ‖1
L−1∏
l=2

‖W (l)‖2‖W (1)‖p)

(d)

≤ `γ(M(f(A,X)i, yi)− 2 max
k∈[K]

εs(r∗, p, d)‖g(A)‖L∞‖W
(L)
∗k ‖1

L−1∏
l=2

‖W (l)‖2‖W (1)‖p)

(e)

≤1(M(f(A,X)i, yi)− 2 max
k∈[K]

εs(r∗, p, d)‖g(A)‖L∞‖W
(L)
∗k ‖1

L−1∏
l=2

‖W (l)‖2‖W (1)‖p ≤ γ),
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where s(r∗, p, d) = dmax{0, 1
r∗−

1
p}, the inequality (a) is due to the property of ramp loss, the

inequality (b) is due to the definition of margin operator, the inequality (c) follows from inequality
(10), the inequality (d) comes from using triangle inequality, and the inequality (e) directly follows
from property of ramp loss. This completes the proof of Lemma 4.5.

Proof of Theorem 4.7. By the Ledoux-Talagrand contraction inequality, we know that

Rm,n(̂̀◦ F) ≤ 1

γ

(
Rm,n(M ◦ F) + Rm,n(Ψ ◦ F)

)
. (11)

For the right-hand side of the above inequality, Rm,n(Ψ ◦ F) can be bounded by

2εs(r∗, p, d)‖g(A)‖L∞ sup
‖W (l)‖2,‖W (l)‖p≤ω,l∈[L]

max
k∈[K]

‖W (L)
∗k ‖1

L−1∏
l=2

‖W (l)‖2‖W (1)‖p

×QEσ
∣∣∣ n∑
i=1

σi

∣∣∣
≤2Qm,nεs(r

∗, p, d)‖g(A)‖L∞ sup
‖W (l)‖2,‖W (l)‖p≤ω,l∈[L]

K‖W (L)‖1
L−1∏
l=2

‖W (l)‖2‖W (1)‖p

≤2KQm,n‖g(A)‖L∞ωLεs(r∗, p, d). (12)

where Qm,n =
√

2n
m(n−m) . We turn to prove the upper bound on Rm,n(M ◦ F). Analyzing

analogously to the proof of Theorem 4.1, Rm,n(M ◦ F) has the following upper bound

QEσ sup
‖W (L)‖2≤ω

[ n∑
i=1

σi

( ∑
j∈[n]

g(A)i,jH
(L−1)
j∗ W

(L)
∗yi

)]

≤QEσ sup
‖W (L)‖2≤ω

[ n∑
i=1

σi
(

max
i∈[n]

∑
j∈[n]

g(A)i,j
)

max
j∈[n]

〈
H

(L−1)
j∗ ,W

(L)
∗yi

〉]

≤Q 1

λ
logEσ sup

‖W (L)‖2≤ω,j∈[n]

exp

(
λ‖g(A)‖∞

( n∑
i=1

σi

〈
H

(L−1)
j∗ ,W

(L)
∗yi

〉))

≤Q 1

λ
logEσ sup

j∈[n]

exp

(
λ‖g(A)‖∞ω

∥∥∥∥ n∑
i=1

σiH
(L−1)
j∗

∥∥∥∥
)

=Q
1

λ
logEσ sup

‖W (L−1)‖2≤ω,j∈[n]

exp

(
λ‖g(A)‖∞ω

∥∥∥∥ n∑
i=1

σiφ
( ∑
k∈[n]

g(A)j,kH
(L−2)
k∗ W (L−1)

)∥∥∥∥
)

≤Q 1

λ
log

(
2Eσ sup

j∈[n]

exp

(
λ‖g(A)‖2∞ω2

∥∥∥∥ n∑
i=1

σiH
(L−2)
j∗

∥∥∥∥)
)
.

Repeating the process, having

Q
1

λ
log

(
2LEσ sup

‖W (1)‖p≤ω,j∈[n]

exp

(
λ‖g(A)‖L∞ωL−1

∥∥∥∥ n∑
i=1

σiXj∗,W
(1)

∥∥∥∥))

≤Q 1

λ
log

(
2LEσ sup

j∈[n]

exp

(
λ‖g(A)‖L∞ωL

∥∥∥ n∑
i=1

σixj

∥∥∥
p∗

))

≤Q 1

λ
log

(
2LEσ exp

(
λ‖g(A)‖L∞ωL

∥∥∥ n∑
i=1

σixi

∥∥∥
p∗

))
. (13)

Denote M = ‖g(A)‖L∞ωL and define the random function of the random variables σ1, . . . , σn as
follows

Z = M ·
∥∥∥ n∑
i=1

σixi

∥∥∥
p∗
.
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Then,
1

λ
log
{

2LE expλZ
}

=
L log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ.

According to well-known bounds on the Rademacher complexity (Haagerup, 1981; Mohri et al.,
2018; Awasthi et al., 2020), having

Eσ
∥∥∥ n∑
i=1

σixi

∥∥∥
p∗
≤


√

2 log(2d)‖X‖2,p∗ if p = 1
√

2[
Γ( 1+p∗

2 )√
π

]
1
p∗ ‖X‖2,p∗ if 1 < p ≤ 2

‖X‖2,p∗ if p ≥ 2

whereX = (x1, . . . ,xn) ∈ Rn×d. We thus have

EZ = M · Eσ
∥∥∥ n∑
i=1

σixi

∥∥∥
p∗
≤MBp∗‖X‖2,p∗ (14)

where Bp∗ =
√

2 log(2d) if p = 1; Bp∗ =
√

2[
Γ( 1+p∗

2 )√
π

]
1
p∗ if p ∈ (1, 2]; Bp∗ = 1 if p ∈ [2,+∞)

(Mohri et al., 2018; Awasthi et al., 2020). Since Z is a deterministic function of σ1, . . . , σn, and
satisfies

Z(σ1, . . . , σi, . . . , σn)− Z(σ1, . . . ,−σi, . . . , σn) ≤2M‖xi‖p∗ , (15)

then Z satisfies a bounded-difference property and is sub-Gaussian with the variance factor

υ =
1

4

n∑
i=1

(2M‖xi‖p∗)2 = M2
n∑
i=1

‖xi‖2p∗ ,

and satisfies

1

λ
log{E expλ(Z − EZ)} ≤ 1

λ

λ2M2
∑n
i=1 ‖xi‖2p∗
2

=
λM2

∑n
i=1 ‖xi‖2p∗
2

.

Letting λ =

√
2L log(2)

M
√∑n

i=1 ‖xi‖2p∗
and with the above, the inequality (13) can be upper bounded by

Q
1

λ
log
{

2LE expλZ
}
≤Q
(
EZ +

√
2 log(2)LM

√√√√ n∑
i=1

‖xi‖2p∗
)

≤Qm,nM(
√

2 log(2)L+ 1)Bp∗‖X‖2,p∗

=Qm,n‖g(A)‖L∞ωL(
√

2 log(2)L+ 1)Bp∗‖X‖2,p∗

where Q = 1
m + 1

u and Qm,n =
√

2n
m(n−m) . Combining the above, we obtain

Rm,n(M ◦ F) ≤ Qm,n‖g(A)‖L∞ωL(
√

2 log(2)L+ 1)Bp∗‖X‖2,p∗ . (16)

Putting inequalities (12) and (16) backs into (11), this completes the proof.

D PROOF OF PROPOSITION 5.1 [SGC]

Lemma D.1 (SGC). Let the robust surrogate loss be defined bŷ̀(f(A,X)i, yi) = `γ(M(f(A,X)i, yi)−Ψ(f(A,X)i)),

where the worst-case error is

Ψ(f(A, X̃)i) = 2 max
k∈[K]

εs(r∗, p, d)‖g(A)L‖∞‖W (L)
∗k ‖1

L−1∏
l=1

‖W (l)‖p,

and s(r∗, p, d) = dmax{0, 1
r∗−

1
p}. Then, we have˜̀(f(A,X)i, yi) ≤ ̂̀(f(A,X)i, yi) ≤ 1{M(f(A,X)i, yi)−Ψ(f(A, X̃)i) ≤ γ}.
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Proof of Lemma D.1. Analyzing analogously to the proof of Lemma 4.5. Consider the pairwise class
margin of node i be defined as fuv(A,X)i = [f(A,X)i]u − [f(A,X)i]v , we then have

fuv(A, X̃)i − fuv(A,X)i

=
( ∑
j∈[n]

g(A)Li,jX̃j∗W
(1) · · ·

(
W

(L)
∗u −W (L)

∗v
))
−
( ∑
j∈[n]

g(A)Li,jXj∗W
(1) · · ·

(
W

(L)
∗u −W (L)

∗v
))

≤
(

max
i∈[n]

∑
j∈[n]

g(A)Lij

)
max
j∈[n]

〈(
X̃j∗ −Xj∗

)
,W (1) · · ·

(
W

(L)
∗u −W (L)

∗v
)〉

≤‖g(A)L‖∞‖W (1) · · ·
(
W

(L)
∗u −W (L)

∗v
)
‖p max

j∈[n]
‖x̃j − xj‖p∗

≤‖g(A)L‖∞‖W (1) · · ·
(
W

(L)
∗u −W (L)

∗v
)
‖ps(r∗, p, d) max

j∈[n]
‖x̃j − xj‖r

≤‖g(A)L‖∞‖W (L)
∗u −W (L)

∗v ‖1
L−1∏
l=1

‖W (l)‖ps(r∗, p, d)ε, (17)

where the third inequality follows from Lemma A.2. According to the property of ramp loss, we have

`γ( min
X̃∈Bε

r(X)
M(f(A, X̃)i, yi))

≤`γ( min
y′i 6=yi

min
X̃∈Bε

r(X)
[f(A, X̃)i]yi − [f(A, X̃)i]y′i)

≤`γ( min
y′i 6=yi

[f(A,X)i]yi − [f(A,X)i]y′i

− max
y′i 6=yi

εs(r∗, p, d)‖g(A)L‖∞‖W (L)
∗u −W (L)

∗v ‖1
L−1∏
l=1

‖W (l)‖p)

≤`γ(M(f(A,X)i, yi)− 2 max
k∈[K]

εs(r∗, p, d)‖g(A)L‖∞‖W (L)
∗k ‖1

L−1∏
l=1

‖W (l)‖p)

≤1(M(f(A,X)i, yi)− 2 max
k∈[K]

εs(r∗, p, d)‖g(A)L‖∞‖W (L)
∗k ‖1

L−1∏
l=1

‖W (l)‖p ≤ γ).

Theorem D.2 (restate Proposition 5.1). For any γ > 0, with probability at least 1− δ, we have for
all f ∈ F ,

1

n−m

n∑
i=m+1

1{∃X̃ ∈ Bεr(X) s.t. yi 6= arg max
y′∈[K]

[f(A, X̃)i]y′}

≤ 1

m

m∑
i=1

1{[f(A,X)i]y′i ≤ γ + max
y′i 6=y′

[f(A,X)i]y′ + Ψ(f(A, X̃)i)}

+Qm,n
2K

γ
‖g(A)L‖∞ωL(Bp∗‖X‖2,p∗ + εs(r∗, p, d)) +O(max{ 1√

m
,

1√
n−m

}),

where s(r∗, p, d) = dmax{0, 1
r∗−

1
p},Bp∗ =

√
2 log(2d) if p = 1,Bp∗ =

√
2[

Γ( 1+p∗
2 )√
π

]
1
p∗ if p ∈ (1, 2],

Bp∗ = 1 if p ∈ [2,+∞), Qm,n =
√

2n
m(n−m) .

Proof of Theorem D.2. Let the hypothesis class of SGC be defined by

F =
{
f(A,X) = g(A)LXW (1) · · ·W (L) : ‖W (l)‖2, ‖W (l)‖p ≤ ω, l ∈ [L]

}
(18)

where W (l) ∈ Rdl−1×dl , and dl is the width of l-th layer with dL = K and d0 = d. According to
Lemma D.1 and the Ledoux-Talagrand contraction inequality, we have

Rm,n(̂̀◦ F) ≤ 1

γ

(
Rm,n(M ◦ F) + Rm,n(Ψ ◦ F)

)
. (19)
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Then, Rm,n(M ◦ F) can be bounded by

QEσ sup
‖W (l)‖p≤ω,l=1,...,L

n∑
i=1

σi

(
max
i∈[n]

∑
j∈[n]

g(A)Li,j

)
max
j∈[n]

〈
Xj∗,W

(1) · · ·W (L)
∗yi

〉

≤Q‖g(A)L‖∞ωL max
j∈[n]

Eσ
∥∥∥ n∑
i=1

σixj

∥∥∥
p∗

≤Q‖g(A)L‖∞ωLEσ
∥∥∥ n∑
i=1

σixi

∥∥∥
p∗

≤Qm,n‖g(A)L‖∞ωLBp∗‖X‖2,p∗ , (20)

where Qm,n =
√

2n
m(n−m) , Bp∗ =

√
2 log(2d) if p = 1; Bp∗ =

√
2[

Γ( 1+p∗
2 )√
π

]
1
p∗ if p ∈ (1, 2];

Bp∗ = 1 if p ∈ [2,+∞).

For the second term on the right side of the inequality (19), Rm,n(Ψ ◦ F) is bounded by

2 max
k∈[K]

εs(r∗, p, d)‖g(A)L‖∞ sup
‖W (l)‖p≤ω,l=1,...,L

‖W (L)
∗k ‖1

L−1∏
l=1

‖W (l)‖pQEσ
∣∣∣ n∑
i=1

σi

∣∣∣
≤2Kεs(r∗, p, d)‖g(A)L‖∞ωLQm,n. (21)

whereQm,n =
√

2n
m(n−m) . Combining Theorem 3.2 with inequality (19), we complete the proof.

E PROOF OF PROPOSITION 5.3 [RESIDUAL GCN]

Lemma E.1 (Residual GCN). Let the robust surrogate loss be defined bŷ̀(f(A,X)i, yi) = `γ(M(f(A,X)i, yi)−Ψ(f(A,X)i)),

where the worst-case error is

Ψ(f(A, X̃)i) = 2 max
k∈[K]

εs(r∗, p, d)‖g(A)‖L∞‖W
(L)
∗k ‖1

L−1∏
l=1

(‖W (l)‖2 + 1)‖W (0)‖p.

where s(r∗, p, d) = dmax{0, 1
r∗−

1
p}. Then, we have˜̀(f(A,X)i, yi) ≤ ̂̀(f(A,X)i, yi) ≤ 1{M(f(A,X)i, yi)−Ψ(f(A, X̃)i) ≤ γ}.

Proof of Lemma E.1. Recall the output of Residual GCNs: f(A,X) = Softmax(H(L−1)W (L))
with the update rule

H(l) = φ(g(A)H(l−1)W (l)) +H(l−1), H(0) = XW (0)

whereW (0) ∈ Rd×d′ ,W (L) ∈ Rd′×K ,W (l) ∈ Rd′×d′ for l = 1, . . . , L− 1.

Let H(l) and H̃(l) denote the feature representation of X and X̃ at l-th layer. We first ana-
lyze the difference between set of pairwise margin fuv(A, X̃)i − fuv(A,X)i for node i, where
fuv(A,X)i = [f(A,X)i]u − [f(A,X)i]v , having(

φ
( ∑
j∈[n]

g(A)i,jH̃
(L−2)
j∗ W (L−1)

)
+ H̃

(L−2)
j∗

)(
W

(L)
∗u −W (L)

∗v

)
−

(
φ
( ∑
j∈[n]

g(A)i,jH
(L−2)
j∗ W (L−1)

)
+H

(L−2)
j∗

)(
W

(L)
∗u −W (L)

∗v

)
≤
( ∑
j∈[n]

g(A)i,j(H̃
(L−2)
j∗ −H(L−2)

j∗ )(W (L−1) + In)
)(
W

(L)
∗u −W (L)

∗v

)
≤
(

max
i∈[n]

∑
j∈[n]

g(A)i,j

)
max
j∈[n]

〈
(H̃

(L−2)
j∗ −H(L−2)

j∗ )(W (L−1) + In),W
(L)
∗u −W (L)

∗v

〉
≤‖W (L)

∗u −W (L)
∗v ‖1‖g(A)‖∞(‖W (L−1)‖2 + 1) max

j∈[n]
‖H̃(L−2)

j∗ −H(L−2)
j∗ ‖
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where In denotes the Identity matrix and the second inequality is due to the Lipschitzness of the
activation function φ. Applying recursive steps, we further obtain

‖W (L)
∗u −W (L)

∗v ‖1‖g(A)‖L∞
L−1∏
l=1

(‖W (l)‖2 + 1) max
j∈[n]

∥∥∥(X̃j∗ −Xj∗
)
W (0)

∥∥∥
≤‖W (L)

∗u −W (L)
∗v ‖1‖g(A)‖L∞

L−1∏
l=1

(‖W (l)‖2 + 1)‖W (0)‖ps(r∗, p, d) max
j∈[n]

‖x̃j − xj‖r

≤‖W (L)
∗u −W (L)

∗v ‖1‖g(A)‖L∞
L−1∏
l=1

(‖W (l)‖2 + 1)‖W (0)‖ps(r∗, p, d)ε,

where s(r∗, p, d) = dmax{0, 1
r∗−

1
p} and the second inequality follows from Lemma A.2.

By the property of ramp loss, the following inequality holds:

`γ( min
X̃∈Bε

r(X)
M(f(A, X̃)i, yi))

≤`γ( min
y′i 6=yi

min
X̃∈Bε

r(X)
[f(A, X̃)i]yi − [f(A, X̃)i]y′i)

≤`γ( min
y′i 6=yi

[f(A,X)i]yi − [f(A,X)i]y′i

− max
y′i 6=yi

εs(r∗, p, d)‖W (L)
∗u −W (L)

∗v ‖1‖g(A)‖L∞
L−1∏
l=1

(‖W (l)‖2 + 1)‖W (0)‖p)

≤`γ(M(f(A,X)i, yi)− 2 max
k∈[K]

εs(r∗, p, d)‖g(A)‖L∞‖W
(L)
∗k ‖1

L−1∏
l=1

(‖W (l)‖2 + 1)‖W (0)‖p)

≤1(M(f(A,X)i, yi)− 2 max
k∈[K]

εs(r∗, p, d)‖g(A)‖L∞‖W
(L)
∗k ‖1

L−1∏
l=1

(‖W (l)‖2 + 1)‖W (0)‖p ≤ γ).

Theorem E.2 (restate Proposition 5.3). for any γ > 0, with probability at least 1− δ, we have for
all f ∈ F ,

1

n−m

n∑
i=m+1

1{∃X̃ ∈ Bεr(X) s.t. yi 6= arg max
y′∈[K]

[f(A, X̃)i]y′}

≤ 1

m

m∑
i=1

1{[f(A,X)i]y′i ≤ γ + max
y′i 6=y′

[f(A,X)i]y′ + Ψ(f(A, X̃)i)}+Om,n

+Qm,n
4K

γ
‖g(A)‖L∞ω(ω + 1)L(

√
log(2)L+ 1)(Bp∗‖X‖2,p∗ + εs(r∗, p, d)).

where Om,n = O(max{ 1√
m
, 1√

n−m}), s(r∗, p, d) = dmax{0, 1
r∗−

1
p}, Bp∗ =

√
2 log(2d) if p = 1,

Bp∗ =
√

2[
Γ( 1+p∗

2 )√
π

]
1
p∗ if p ∈ (1, 2], Bp∗ = 1 if p ∈ [2,+∞), Qm,n =

√
2n

m(n−m) .

Proof of Theorem E.2. With Lemma E.1 and the Ledoux-Talagrand contraction inequality, we have

Rm,n(̂̀◦ F) ≤ 1

γ

(
Rm,n(M ◦ F) + Rm,n(Ψ ◦ F)

)
. (22)

Let the hypothesis class of Residual GCNs be defined by

F =
{
f(A,X) = Softmax(H(L−1)W (L)) : ‖W (l)‖2, ‖W (l)‖p ≤ ω, l ∈ [L]

}
(23)
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with the update rule

H(l) = φ(g(A)H(l−1)W (l)) +H(l−1), H(0) = XW (0)

whereW (L) ∈ Rd′×K ,W (0) ∈ Rd×d′ ,W (l) ∈ Rd′×d′ for l = 1, . . . , L− 1.

Applying the triangle inequality and Lemma A.2, we have the following upper bound on Rm,n(M◦F)

QEσ sup
‖W (L)‖2≤ω

[ n∑
i=1

σi

〈
H

(L−1)
i∗ ,W

(L)
∗yi

〉 ]
≤QωEσ sup

‖W (L−1)‖2≤ω

∥∥∥ n∑
i=1

σi

(
φ
( ∑
j∈[n]

g(A)i,jH
(L−2)
j∗ W (L−1)

)
+H

(L−2)
i∗

)∥∥∥
≤QωEσ sup

‖W (L−1)‖2≤ω

∥∥∥ n∑
i=1

σiφ
( ∑
j∈[n]

g(A)i,jH
(L−2)
j∗ W (L−1)

)∥∥∥+ sup
∥∥∥ n∑
i=1

σiH
(L−2)
i∗

∥∥∥
≤Q 1

λ
log 2Eσ sup

j∈[n]

exp
(
λω(‖g(A)‖∞ω + 1)

∥∥∥ n∑
i=1

σiH
(L−2)
j∗

∥∥∥)
≤Q 1

λ
log

(
2LEσ sup

j∈[n]

exp

(
λω(‖g(A)‖∞ω + 1)L−1

∥∥∥ n∑
i=1

σiH
(0)
j

∥∥∥
p∗

))

≤Q 1

λ
log

(
2LEσ sup

j∈[n]

exp

(
λω2(‖g(A)‖∞ω + 1)L−1

∥∥∥ n∑
i=1

σiXj

∥∥∥
p∗

))

≤Q 1

λ
log

(
2LEσ exp

(
λω(‖g(A)‖∞ω + 1)L

∥∥∥ n∑
i=1

σixi

∥∥∥
p∗

))
. (24)

Let M = ω(‖g(A)‖∞ω + 1)L and consider a random variable

Z = M ·
∥∥∥ n∑
i=1

σixi

∥∥∥
p∗
.

We then have
1

λ
log
{

2LE expλZ
}

=
L log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ.

According to the inequalities (14) and (15), we know that EZ ≤ MBp∗‖X‖2,p∗ , and Z is sub-
Gaussian with the variance

υ =
1

4

n∑
i=1

(2M‖xi‖p∗)2 = M2
n∑
i=1

‖xi‖2p∗ ,

and satisfies
1

λ
log{E expλ(Z − EZ)} ≤

λM2
∑n
i=1 ‖xi‖2p∗
2

.

Letting λ =

√
2L log(2)

M
√∑n

i=1 ‖xi‖2p∗
, the inequality (24) is bounded by

Q
1

λ
log
{

2LE expλZ
}
≤Q
(
EZ +

√
2 log(2)LM

√√√√ n∑
i=1

‖xi‖2p∗
)

≤Qm,nω(‖g(A)‖∞ω + 1)L(
√

2 log(2)L+ 1)Bp∗‖X‖2,p∗

where Q = 1
m + 1

u , Qm,n =
√

2n
m(n−m) , and Bp∗ =

√
2 log(2d) if p = 1; Bp∗ =

√
2[

Γ( 1+p∗
2 )√
π

]
1
p∗

if p ∈ (1, 2]; Bp∗ = 1 if p ∈ [2,+∞). Thus,

Rm,n(M ◦ F) ≤ Qm,nω(‖g(A)‖∞ω + 1)L(
√

2 log(2)L+ 1)Bp∗‖X‖2,p∗ .
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For the TRC of the worse-case, by ‖W (l)‖2, ‖W (l)‖p ≤ ω for l ∈ [L], we have

Rm,n(Ψ ◦ F) ≤2Kεs(r∗, p, d)ω‖g(A)‖L∞(ω + 1)L ×QEσ
∣∣∣ n∑
i=1

σi

∣∣∣
≤Qm,n2Kεs(r∗, p, d)ω‖g(A)‖L∞(ω + 1)L.

where Qm,n =
√

2n
m(n−m) . Putting the above estimation back into the inequality (22) and combining

Theorem 3.2, this completes the proof.

F PROOF OF PROPOSITION 5.5 [GCNII]

Lemma F.1 (GCNII). Let the robust surrogate loss be defined bŷ̀(f(A,X)i, yi) = `γ(M(f(A,X)i, yi)−Ψ(f(A,X)i)),

where Ψ(f(A, X̃)i) is 2 maxk∈[K] ‖W
(L)
∗k ‖1‖W (0)‖pεs(r∗, p, d)Λ and Λ is defined by

L−1∏
l=1

(1− α)‖Ŵ (l)‖2‖g(A)‖l∞ + α
( L−1∑
l=1

(
(1− α)‖g(A)‖l∞

L−1∏
k=L−1−l

‖Ŵ (l)‖2
)

+ 1
)
,

Ŵ (l) = (1− β)In + βW (l), and s(r∗, p, d) = dmax{0, 1
r∗−

1
p}.

Proof of Lemma F.1. The propagation of the GCNII is f(A,X) = Softmax(H(L−1)W (L)) with
the update rule

H(l) = φ
(
((1− α)g(A)H(l−1) + αH(0))((1− β)In + βW (l))

)
, H(0) = XW (0)

where In is the identity matrix,W (0) ∈ Rd×d′ ,W (L) ∈ Rd′×K ,W (l) ∈ Rd′×d′ for l ∈ [L− 1].

Denote Ŵ (l) = (1 − β)In + βW (l). Let H(l) and H̃(l) denote the feature representation of
X and X̃ at l-th layer, respectively. Consider the difference between set of pairwise margin
fuv(A, X̃)i − fuv(A,X)i of node i, where fuv(A,X)i = [f(A,X)i]u − [f(A,X)i]v , having

H̃
(L−1)
i∗ (W

(L)
∗u −W (L)

∗v )−H(L−1)
i∗ (W

(L)
∗u −W (L)

∗v )

≤‖W (L)
∗u −W (L)

∗v ‖1‖H̃(L−1)
i∗ −H(L−1)

i∗ ‖∞

≤‖W (L)
∗u −W (L)

∗v ‖1
∥∥∥((1− α)

∑
j∈[n]

g(A)i,j(H̃
(L−2)
j∗ −H(L−2)

j∗ ) + α(H̃
(0)
i∗ −H

(0)
i∗ )
)
Ŵ (L−1)

∥∥∥
≤‖W (L)

∗u −W (L)
∗v ‖1‖Ŵ (L−1)‖2

(∥∥∥(1− α)
∑
j∈[n]

g(A)i,j(H̃
(L−2)
j∗ −H(L−2)

j∗ )
∥∥∥+

∥∥∥α(H̃
(0)
i∗ −H

(0)
i∗ )
∥∥∥)

≤‖W (L)
∗u −W (L)

∗v ‖1‖Ŵ (L−1)‖2
(

(1− α) max
t∈[n]

∥∥∥(max
i∈[n]

∑
j∈[n]

g(A)i,j

)
(H̃

(L−2)
t∗ −H(L−2)

t∗ )
∥∥∥+

α‖W (0)‖p‖x̃i − xi‖p∗
)

(a)

≤‖W (L)
∗u −W (L)

∗v ‖1‖Ŵ (L−1)‖2
(

(1− α)‖g(A)‖∞max
j∈[n]

∥∥∥H̃(L−2)
j∗ −H(L−2)

j∗

∥∥∥+

α‖W (0)‖ps(r∗, p, d)‖x̃i − xi‖r
)

(b)

≤‖W (L)
∗u −W (L)

∗v ‖1‖Ŵ (L−1)‖2
(

(1− α)‖g(A)‖∞max
j∈[n]

∥∥∥H̃(L−2)
j∗ −H(L−2)

j∗

∥∥∥+

α‖W (0)‖ps(r∗, p, d)ε
)
,
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where s(r∗, p, d) = dmax{0, 1
r∗−

1
p}, the inequality (a) follows from Lemma A.2 and the inequality (b)

is due to ‖x̃− x‖r ≤ ε.
By recursive steps, we further obtain

‖W (L)
∗u −W (L)

∗v ‖1
( L−1∏
l=1

(1− α)l‖Ŵ (l)‖2‖g(A)‖l∞max
j∈[n]

‖H̃(0)
j∗ −H

(0)
j∗ ‖+

α‖W (0)‖ps(r∗, p, d)ε
( L−1∑
l=1

(
(1− α)l‖g(A)‖l∞

L−1∏
k=L−1−l

‖Ŵ (l)‖2
)

+ 1
))

≤‖W (L)
∗u −W (L)

∗v ‖1
( L−1∏
l=1

(1− α)‖Ŵ (l)‖2‖g(A)‖l∞‖W (0)‖p max
j∈[n]

‖x̃j − xj‖p∗+

α‖W (0)‖ps(r∗, p, d)ε
( L−1∑
l=1

(
(1− α)‖g(A)‖l∞

L−1∏
k=L−1−l

‖Ŵ (l)‖2
)

+ 1
))

≤‖W (L)
∗u −W (L)

∗v ‖1
( L−1∏
l=1

(1− α)‖Ŵ (l)‖2‖g(A)‖l∞‖W (0)‖ps(r∗, p, d)ε+

α‖W (0)‖ps(r∗, p, d)ε
( L−1∑
l=1

(
(1− α)‖g(A)‖l∞

L−1∏
k=L−1−l

‖Ŵ (l)‖2
)

+ 1
))

:=‖W (L)
∗u −W (L)

∗v ‖1‖W (0)‖pεs(r∗, p, d)Λ,

where Λ is defined by
L−1∏
l=1

(1− α)‖Ŵ (l)‖2‖g(A)‖l∞ + α
( L−1∑
l=1

(
(1− α)‖g(A)‖l∞

L−1∏
k=L−1−l

‖Ŵ (l)‖2
)

+ 1
)
.

According to the property of ramp loss, we have

`γ( min
X̃∈Bε

r(X)
M(f(A, X̃)i, yi))

≤`γ( min
y′i 6=yi

min
X̃∈Bε

r(X)
[f(A, X̃)i]yi − [f(A, X̃)i]y′i)

≤`γ
(

min
y′i 6=yi

[f(A,X)i]yi − [f(A,X)i]y′i − max
y′i 6=yi

‖W (L)
∗u −W (L)

∗v ‖1‖W (0)‖pεs(r∗, p, d)Λ
)

≤`γ
(
M(f(A,X)i, yi)− 2 max

k∈[K]
‖W (L)
∗k ‖1‖W

(0)‖pεs(r∗, p, d)Λ
)

≤1(M(f(A,X)i, yi)− 2 max
k∈[K]

‖W (L)
∗k ‖1‖W

(0)‖pεs(r∗, p, d)Λ ≤ γ).

Theorem F.2 (restate Proposition 5.5). for any γ > 0, with probability at least 1− δ, we have for all
f ∈ F ,

1

n−m

n∑
i=m+1

1{∃X̃ ∈ Bεr(X) s.t. yi 6= arg max
y′∈[K]

[f(A, X̃)i]y′}

≤ 1

m

m∑
i=1

1{[f(A,X)i]y′i ≤ γ + max
y′i 6=y′

[f(A,X)i]y′ + Ψ(f(A, X̃)i)}

+O(max{ 1√
m
,

1√
n−m

}) +
4KQm,n

γ
(
√

log(2)L+ 1)(Bp∗‖X‖2,p∗ + 2Kεs(r∗, p, d))

× ω2
(

(1− α)‖g(A)‖L∞(1− β + βω)L + α(1− α)

L∑
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‖g(A)‖l∞(1− β + βω)l
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.
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where s(r∗, p, d) = dmax{0, 1
r∗−

1
p},Bp∗ =

√
2 log(2d) if p = 1,Bp∗ =

√
2[

Γ( 1+p∗
2 )√
π

]
1
p∗ if p ∈ (1, 2],

Bp∗ = 1 if p ∈ [2,+∞), Qm,n =
√

2n
m(n−m) .

Proof of Theorem F.2. With Lemma F.1 and the Ledoux-Talagrand contraction inequality, we have

Rm,n(̂̀◦ F) ≤ 1

γ

(
Rm,n(M ◦ F) + Rm,n(Ψ ◦ F)

)
. (25)

Let the hypothesis class of GCNII be defined by

F =
{
f(A,X) = Softmax(H(L−1)W (L)) : ‖W (l)‖2, ‖W (l)‖p ≤ ω, l ∈ [L]

}
(26)

with layer-wise update rule:

H(l) = φ
(
((1− α)g(A)H(l−1) + αH(0))((1− β)In + βW (l))

)
, H(0) = XW (0)

where In is the identity matrix,W (0) ∈ Rd×d′ ,W (L) ∈ Rd′×K andW (l) ∈ Rd′×d′ for l ∈ [L− 1].
Denote Ŵ (l) = (1− β)In + βW (l) for l ∈ [L− 1]. We then have ‖Ŵ (l)‖2 ≤ (1− β) + βω.

For the right-hand side of inequality (25), Rm,n(M ◦ F) is bounded by

QEσ sup
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(
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σiH
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j∗

∥∥∥+ α
∥∥ n∑
i=1

σixiW
(0)
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(b)

≤Q 1
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log 2Eσ sup

j∈[n]

exp
(
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(
(1− α)‖g(A)‖∞
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σiH
(L−2)
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∥∥∥+ αωBp∗‖X‖2,p∗
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where ω̂ = (1 − β) + βω, Bp∗ =
√

2 log(2d) if p = 1; Bp∗ =
√

2[
Γ( 1+p∗

2 )√
π

]
1
p∗ if p ∈ (1, 2];

Bp∗ = 1 if p ∈ [2,+∞), the inequality (a) follows from Lemma 1 of (Golowich et al., 2018), and the
inequality (b) follows from the bounds on the Rademacher complexity given by Awasthi et al. (2020).

Applying recursive steps, Rm,n(M ◦ F) can be further bounded by

Q
1

λ
log 2LEσ sup

‖W (0)‖p≤ω,j∈[n]

exp
(
λ
(
ωω̂L−1(1− α)‖g(A)‖L−1

∞

∥∥∥ n∑
i=1

σiXj∗W
(0)
∥∥∥+

α(1− α)ω2Bp∗‖X‖2,p∗
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l=0

‖g(A)‖l∞ω̂l
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≤Q 1

λ
log 2LEσ exp

(
λ
(
ωω̂L(1− α)‖g(A)‖L∞

∥∥∥ n∑
i=1

σixi

∥∥∥
p∗

+

α(1− α)ωBp∗‖X‖2,p∗
L∑
l=0

‖g(A)‖l∞ω̂l
))
,
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where ω̂ = (1 − β) + βω. Denote U = α(1 − α)ωBp∗‖X‖2,p∗
∑L
l=0 ‖g(A)‖l∞ω̂l and M =

ω2ω̂L−1(1− α)‖g(A)‖L∞. We define the following random variable

Z = M ·
∥∥∥ n∑
i=1

σixi

∥∥∥
p∗

+ U.

Then we have

1

λ
log
{

2LE expλZ
}

=
L log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ.

With the inequality (14), it is clear that

EZ = M · Eσ
∥∥∥ n∑
i=1

σixi

∥∥∥
p∗

+ U ≤MBp∗‖X‖2,p∗ + U

Note that Z is a deterministic function of σ1, . . . , σn, and satisfies

Z(σ1, . . . , σi, . . . , σn)− Z(σ1, . . . ,−σi, . . . , σn) ≤2M‖xi‖p∗ , (27)

which implies Z satisfies a bounded-difference property and is sub-Gaussian with the variance factor

υ =
1

4

n∑
i=1

(2M‖xi‖p∗)2 = M2
n∑
i=1

‖xi‖2p∗ .

Therefore, the following inequality holds

1

λ
log{E expλ(Z − EZ)} ≤

λM2
∑n
i=1 ‖xi‖2p∗
2

.

Letting λ =

√
2L log(2)

M
√∑n

i=1 ‖xi‖2p∗
, the following inequality holds

Q
1

λ
log
{

2LE expλZ
}
≤Q
(
EZ +

√
2 log(2)LM

√√√√ n∑
i=1

‖xi‖2p∗
)

≤Qm,n(
√

2 log(2)L+ 1)(MBp∗‖X‖2,p∗ + U)

where Qm,n =
√

2n
m(n−m) , and Bp∗ =

√
2 log(2d) if p = 1; Bp∗ =

√
2[

Γ( 1+p∗
2 )√
π

]
1
p∗ if p ∈ (1, 2];

Bp∗ = 1 if p ∈ [2,+∞). Thus, we have the following upper bound on Rm,n(M ◦ F),

Qm,n(
√

2 log(2)L+ 1)Bp∗‖X‖2,p∗ω2
(

(1− α)‖g(A)‖L∞ω̂L + α(1− α)

L∑
l=0

‖g(A)‖l∞ω̂l
)
,

where ω̂ = (1− β) + βω. We proceed to derive an upper bound on Rm,n(Ψ ◦ F), that is

QEσ sup
‖W (l)‖p,‖W (l)‖2≤ω,l∈[L]

n∑
i=1

σiΨ(f(A, X̃)i)

≤2Kεs(r∗, p, d)ω2
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∣∣∣ n∑
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σi

∣∣∣
≤2Qm,nKεs(r

∗, p, d)ω2
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)

where Qm,n =
√

2n
m(n−m) , ω̂ = (1− β) + βω, and s(r∗, p, d) = dmax{0, 1

r∗−
1
p}.
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G LIMITATIONS

We outline a few limitations of the current adversarial generalization analysis for GCNs. Since
Rademacher complexity-based analysis methods are used in this paper, our bounds suffer from the
exponential depth dependence similar to (Bartlett et al., 2017; Golowich et al., 2018). Nonetheless,
the derived high-probability generalization bounds for GCNs in adversarial settings are highly non-
trivial, which provides theoretical guidance for improving the adversarial robustness. Moreover, this
paper does not involve topology attacks, which leads to the limitation of theoretical results. However,
our analysis can provide valuable theoretical insights into the generalization of topology attacks.
Given the similar settings of topology attacks and node attacks, where adversarial perturbations are
measured within the norm space, the methodology (e.g., Lemma B.2) developed in this paper could
be expanded upon the topology attack to address the outer maximization of the adversarial loss and
tighten the generalization bounds. It is worth noting that unlike node attacks, one can perturb the
graph topology at the first layer, the last layer, the arbitrary intermediate layer, and all the layers of
GCNs, thus posing additional analysis challenges. We will leave this interesting study as future work.

H ADDITIONAL RELATED WORK

Adversarial Generalization Theory. Adversarial robust generalization in Euclidean space has
been studied extensively in recent years. Yin et al. (2019) investigate the adversarial generaliza-
tion problem under `∞-norm attacks via the lens of Rademacher complexity. They derive the
high-probability generalization bounds for linear classifiers and one-hidden-layer neural networks, in-
dicating the additional perturbation term that should be suppressed seriously affect the generalization
performance. Awasthi et al. (2020) establish the generalization bounds for one-hidden-layer additive
neural networks under general perturbation attacks by extending the work of (Yin et al., 2019) to
the `r-norm attacks for arbitrary r ≥ 1. Several recent work (Khim & Loh, 2018; Tu et al., 2019;
Mustafa et al., 2022) has aimed to analyze the generalization properties of deep neural networks
in adversarial settings. Khim & Loh (2018) provide the upper bounds of the adversarial risk by
leveraging a tree based decomposition. Their results depend on the assumption that each propagation
path in the network can be optimized independently w.r.t. the perturbation, leading to vacuous bounds
in (Khim & Loh, 2018). Tu et al. (2019) introduce a transport map between distributions and develop
a new risk bound for multi-layer neural networks by means of covering numbers under the Lipschitz
condition. Mustafa et al. (2022) establish the adversarial risk bounds for deep neural networks under
both additive-perturbation attacks and transform attacks via a novel usage of covering numbers. Xing
et al. (2021) and Xiao et al. (2022) investigate the adversarially robust generalization of learning
algorithms from the perspective of algorithmic stability, showing that the maximization process w.r.t.
adversarial perturbations causes the worse algorithmic stability than natural training. Although all
the aforementioned work provides valuable insights into the adversarial generalization problem, it is
difficult to apply them to adversarial graph learning due to discrepancies in learning paradigms and
data characteristics. This work makes towards this by providing generalization guarantees of GCNs
under node perturbation attacks, which is the first touch for adversarial graph learning to the best of
our knowledge. Related work is summarized in Table 3.

Table 3: Summary of generalization analysis for adversarial learning (NNs-Neural Networks; k-the
number of classes; m-the number of unlabeled samples; n-the number of samples).

Reference Model Structure Attack Type Analysis Tool Convergence Rate Learning Setting
Yin et al. (2019)

One-layer NNs
`∞ norm

Rademacher complexity O(k/
√
n)

Inductive
Awasthi et al. (2020) `r norm Inductive
Khim and Loh (2018)

Deep NNs

`∞ norm Rademacher complexity O(1/
√
n) Inductive

Tu et al. (2019) `r norm Covering number O(1/
√
n) Inductive

Mustafa et al. (2022)
`r norm Covering number O(log(k)/

√
n) Inductive

Transformation Local Rademacher complexity O(1/n) Inductive
Xing et al. (2021)

`r norm Algorithmic stability O(1/n)
Inductive

Xiao et al. (2022) Inductive
Ours Deep GCNs `r norm Transductive Rademacher Complexity O(kmax{ 1

m ,
1

n−m}) Transductive
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I ADDITIONAL EXPERIMENTS FOR NUMERICAL DISCUSSION

Experiment details. Unless otherwise specified, we apply a two-layer network architecture for
GCN, SGC, GCNII, and Residual GCN (Kipf & Welling, 2017; Wu et al., 2019; Chen et al., 2020b),
where the number of hidden units for each layer is fixed to 16 or 64. For GCNII, the parameter α
is set by default to 0.5, β is set to log( θl + 1), where θ = 0.1 and l is the number of layers. We use
ReLU function as activation function. The Adam optimizer (Kingma & Ba, 2015) with the learning
rate 0.01 is used in the training process. The implement is GeForce RTX 3080 GPU. The runtime of
each experiment is about 200s∼2h.

Attack methods. We evaluate the generalization performance under different attacks including
FGSM, BIM, and PGD. Figures 8-13 present the empirical generalization errors with dimensions of
adopted datasets under attacks. As we can see, the experimental results for different attacks have the
same overall trend (i.e., the smaller the dimension, the smaller the generalization error), which can
not be affected by the choice of attack methods.

Feature dimension. We study the effect of feature dimension on the generalization performance of
SGC, GCNII, and Residual GCN in adversarial settings. We compare the empirical generalization
error with different dimensions, including the original dimension d, dd/2e, and dd/4e. For conve-
nience, a single-layer neural network with ReLU activation is used to learn a low-dimensional feature
representation. As shown in Figures 14-16, the empirical generalization error decreases with node
features, which suggests that low-dimensional features help improve the adversarial generalization.

Regularization. We also evaluate the effect of regularization on the generalization ability for SGC,
GCNII, and Residual GCN under adversarial attacks. Similarly, we consider `1-norm regularized
model and observe the empirical generalization error with different regularization coefficients λ,
where λ is set as 0, 0.05, 0.10, and 0.15. Figure 17-19 show that the empirical generalization error of
the regularized model is smaller than that without. Hence, the regularization is beneficial to improve
the generalization performance.

Model depth. We study the effect of the number of layers on the adversarial generalization for SGC,
GCNII, and Residual GCN. Figures 20-22 present the empirical generalization errors with different
depths. As we can see, the generalization performance of SGC deteriorates as depth increases, which
is limited by its representation power. The generalization ability of GCNII and Residual GCN almost
can not be affected by the number of layers. Hence, we suggest that the choice of model architecture
is important for achieving the adversarial generalization.

Tightness. To evaluate the tightness between theory and experimental observations, we compare
the generalization bounds in theory and empirical generalization errors w.r.t. feature dimensions in
Figure 23, where the bounds are quantitatively computed based on the adopted dataset and the model
parameters. The experimental results show that both theoretical and empirical generalization errors
decrease as the feature dimension decreases, which is consistent with our theoretical findings. Hence,
our results provide meaningful practical guidance for improving the adversarial generalization of the
learning models in a certain sense.

Generalize to other models. To evaluate the scalability of the theoretical findings, we further
investigate the impact of the feature dimension on the generalization performance of S2GC (Zhu &
Koniusz, 2021) and GIN (Xu et al., 2018) under PGD attacks. The empirical errors with different
dimensions for the adopted datasets are plotted in Figure 24, demonstrating the low-dimensional
feature mapping can enhace the adversarial robustness of the learning models. This observation
aligns with our theoretical findings.
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Figure 3: The empirical generalization error (mean value and standard deviation) with graph filters,
where depth is set to 6. ε denotes the maximum allowable perturbation.
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Figure 4: The empirical generalization error (mean value and standard deviation) with different
depths. ε denotes the maximum allowable perturbation.
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Figure 5: The empirical generalization error (mean value and standard deviation) for different model
architectures, where depth is set to 6. ε denotes the maximum allowable perturbation.
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Figure 6: The empirical generalization error (mean value and standard deviation) of GCNII with the
parameter α, where depth is set to 6. ε denotes the maximum allowable perturbation.
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Figure 7: The empirical generalization error (mean value and standard deviation) with the label rate
m/n. ε denotes the maximum allowable perturbation.
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Figure 8: The empirical generalization error (mean value and standard deviation) for the Citeseer
dataset under different attacks. ε denotes the maximum allowable perturbation.
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Figure 9: The empirical generalization error (mean value and standard deviation) for the Cora dataset
under different attacks. ε denotes the maximum allowable perturbation.
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Figure 10: The empirical generalization error (mean value and standard deviation) for the Pubmed
dataset under different attacks. ε denotes the maximum allowable perturbation.
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Figure 11: The empirical generalization error (mean value and standard deviation) for the CS dataset
under different attacks. ε denotes the maximum allowable perturbation.
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Figure 12: The empirical generalization error (mean value and standard deviation) for the Physics
dataset under different attacks. ε denotes the maximum allowable perturbation.

36



Published as a conference paper at ICLR 2025

(a) FGSM (b) BIM (c) PGD

0.10
0.15
0.20
0.25
0.30 ogbn-arxiv

G
en

er
al

iz
at

io
n 

Er
ro

r

 d
 d/2

0.05
d/40.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8 ogbn-arxiv

G
en

er
al

iz
at

io
n 

Er
ro

r

ε

 d
 d/2
 d/4

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8 ogbn-arxiv

G
en

er
al

iz
at

io
n 

Er
ro

r
ε

 d
 d/2
 d/4

0.00 0.004 0.008 0.012 0.016 0.00 0.004 0.008 0.012 0.0160.00 0.004 0.008 0.012 0.016
ε

Figure 13: The empirical generalization error (mean value and standard deviation) for the ogbn-arxiv
dataset under different attacks. ε denotes the maximum allowable perturbation.
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Figure 14: The empirical generalization error (mean value and standard deviation) with different
feature dimensions for SGC. ε denotes the maximum allowable perturbation.
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Figure 15: The empirical generalization error (mean value and standard deviation) with different
feature dimensions for GCNII. ε denotes the maximum allowable perturbation.
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Figure 16: The empirical generalization error (mean value and standard deviation) with different
feature dimensions for Residual GCN. ε denotes the maximum allowable perturbation.
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Figure 17: The empirical generalization error (mean value and standard deviation) of SGC trained
with `1 regularization for different regularization parameters (i.e., λ). ε denotes the maximum
allowable perturbation.
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Figure 18: The empirical generalization error (mean value and standard deviation) of GCNII trained
with `1 regularization for different regularization parameters (i.e., λ). ε denotes the maximum
allowable perturbation.
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Figure 19: The empirical generalization error (mean value and standard deviation) of Residual GCN
trained with `1 regularization for different regularization parameters (i.e., λ). ε denotes the maximum
allowable perturbation.
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Figure 20: The empirical generalization error (mean value and standard deviation) with different
depths for SGC. ε denotes the maximum allowable perturbation.
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Figure 21: The empirical generalization error (mean value and standard deviation) with different
depths for GCNII. ε denotes the maximum allowable perturbation.
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Figure 22: The empirical generalization error (mean value and standard deviation) with different
depths for Residual GCN. ε denotes the maximum allowable perturbation.
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Figure 23: Theoretical generalization bounds and empirical generalization errors of the adopted
datasets w.r.t. feature dimensions. ε denotes the maximum allowable perturbation.
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Figure 24: The empirical generalization error (mean value and standard deviation) with different
dimensions for S2GC and GIN. ε denotes the maximum allowable perturbation.
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