
Published as a conference paper at ICLR 2023

7 ETHICS STATEMENTS

In terms of broader societal impact of this work, we do not see any foreseeable strongly negative
impacts. However, this paper could positively impact the carbon footprint and accessibility of learning
algorithms. The computations required for machine learning research have been doubling every few
months, resulting in a large carbon footprint (Schwartz et al., 2020). Moreover, the financial cost of
the computations can make it difficult for academics, students, and researchers to apply these methods.
The decreased computational time shown by TabPFN translates to reductions in CO2 emissions and
cost, making it available to an audience that does not have access to larger scale computing.

As the TabPFN provides a highly portable and convenient way of building new classifiers that work
in real-time, it is likely to increase the pervasiveness of machine learning even further. While this
can have many positive effects on society, such as better personalized healthcare, increased customer
satisfaction, efficiency of processes, etc, it will also be crucial to study and improve the TabPFN
under the lens of the many dimensions of trustworthy AI other than computational sustainability,
such as algorithmic fairness, robustness to adversarial examples, explainability, and auditability. We
hope that its foundation in causal models and simplicity will allow possible avenues for work along
these lines.

8 REPRODUCIBILITY

Code release In an effort to ensure reproducibility, we release code alongside our pre-trained
TabPFN and notebooks to reproduce our experiments at https://github.com/automl/
TabPFN .

Application to public benchmarks In our work, we evaluate TabPFN to publicly available bench-
marks: the OpenML-CC18 Benchmark and the OpenML-AutoML Benchmark. This ensures, that
dataset choices are not cherry-picked to our method. Also, for the OpenML-AutoML Benchmark, we
use official baseline results and evaluate our method using the evaluation scripts published for this
benchmark.6

Availability of datasets All datasets used in our experiments are freely available at OpenML.
org (Vanschoren et al., 2014), with downloading procedures included in the submission. Further
details on the datasets used can be found in Section F.3.

Online resources We created a Colab notebook, that lets you interact with our
scikit-learn interface at https://colab.research.google.com/drive/1J0l1AtMV_
H1KQ7IRbgJje5hMhKHczH7-?usp=sharing.

We created another Colab, where our evaluation and plots on 179 test and validation
datasets can be reproduced easily. https://colab.research.google.com/drive/
1yUGaAf3D7RSyO5Jc4PYXSVbtaUAozh6S

We also created two demos. One to experiment with the TabPFNs predictions (https:
//huggingface.co/spaces/TabPFN/TabPFNPrediction) and one to check cross-
validation ROC AUC scores on new datasets (https://huggingface.co/spaces/TabPFN/
TabPFNEvaluation). Both of them run on a weak CPU, thus it can require a little bit of time.

Details of training procedures for TabPFN and baselines Details shared in the training procedure
of all our Transformer models can be found in Appendix F. An overview of the hyperparameters used
for running the TabPFN and our baselines can be found in Tables 5 and 6, respectively.

ACKNOWLEDGMENTS

Robert Bosch GmbH is acknowledged for financial support. This research was supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number
417962828, the state of Baden-Württemberg through bwHPC and the German Research Foundation
(DFG) through grant no INST 39/963-1 FUGG, and TAILOR, a project funded by EU Horizon 2020
research, and innovation programme under GA No 952215. We acknowledge funding through the

6Available at https://github.com/openml/automlbenchmark

10

Published as a conference paper at ICLR 2023

European Research Council (ERC) Consolidator Grant “Deep Learning 2.0” (grant no. 101045765).
Funded by the European Union. Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the ERC. Neither the European
Union nor the ERC can be held responsible for them.

REFERENCES

S. Arik and T. Pfister. TabNet: Attentive interpretable tabular learning. In Q. Yang, K. Leyton-
Brown, and Mausam, editors, Proceedings of the Thirty-Fifth Conference on Artificial Intelligence

(AAAI’21), pages 6679–6687. AAAI Press, 2021.

I. Beltagy, M. Peters, and A. Cohan. Longformer: The long-document transformer. arXiv:2004.05150

[cs.CL], 2020.

B. Bischl, G. Casalicchio, M. Feurer, P. Gijsbers, F. Hutter, M. Lang, R. Mantovani, J. van Rijn, and
J. Vanschoren. OpenML benchmarking suites. In J. Vanschoren, S. Yeung, and M. Xenochris-
tou, editors, Proceedings of the Neural Information Processing Systems Track on Datasets and

Benchmarks, 2021.

V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci. Deep neural networks
and tabular data: A survey. arXiv:2110.01889 [cs.LG], 2021.

L. Breimann. Random forests. Machine Learning Journal, 45:5–32, 2001.

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In B. Krishnapuram, M. Shah,
A. Smola, C. Aggarwal, D. Shen, and R. Rastogi, editors, Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD’16), pages 785–794.
ACM Press, 2016.

T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models are strong
semi-supervised learners. arXiv:2006.10029v2 [cs.LG], 2020.

M. Chui, J. Manyika, M. Miremadi, N. Henke, R. Chung, P. Nel, and S. Malhotra. Notes from the AI
frontier: insights from hundreds of use cases, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola. Autogluon-tabular:
Robust and accurate automl for structured data. arXiv:2003.06505 [stat.ML], 2020.

M. Feurer and F. Hutter. Hyperparameter Optimization. In F. Hutter, L. Kotthoff, and J. Vanschoren,
editors, Automated Machine Learning: Methods, Systems, Challenges, chapter 1, pages 3–38.
Springer, 2019. Available for free at http://automl.org/book.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust
automated machine learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
editors, Proceedings of the 28th International Conference on Advances in Neural Information

Processing Systems (NeurIPS’15), pages 2962–2970. Curran Associates, 2015.

M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Auto-sklearn 2.0: Hands-free
AutoML via meta-learning. arXiv:2007.04074 [cs.LG], 2021.

J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

Y. Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep
learning on tabular data? arXiv:2207.08815 [cs.LG], 2022.

11

Published as a conference paper at ICLR 2023

D. Janzing. Causal regularization. In H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and H. Lin,
editors, Proceedings of the 33rd International Conference on Advances in Neural Information

Processing Systems (NeurIPS’20). Curran Associates, 2020.

A. Kadra, M. Lindauer, F. Hutter, and J. Grabocka. Well-tuned simple nets excel on tabular datasets.
In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan, and Y. Dauphin, editors,
Proceedings of the 34th International Conference on Advances in Neural Information Processing

Systems (NeurIPS’21), pages 23928–23941. Curran Associates, 2021.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly
efficient gradient boosting decision tree. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Proceedings of the 30th International Confer-

ence on Advances in Neural Information Processing Systems (NeurIPS’17). Curran Associates,
2017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the Interna-

tional Conference on Learning Representations (ICLR’15), 2015. Published online: iclr.cc.

J. Kossen, N. Band, C. Lyle, A. Gomez, T. Rainforth, and Y. Gal. Self-attention between datapoints:
Going beyond individual input-output pairs in deep learning. In M. Ranzato, A. Beygelzimer,
K. Nguyen, P. Liang, J. Vaughan, and Y. Dauphin, editors, Proceedings of the 34th International

Conference on Advances in Neural Information Processing Systems (NeurIPS’21), pages 28742–
28756. Curran Associates, 2021.

T. Kyono, Y. Zhang, and M. van der Schaar. CASTLE: Regularization via auxiliary causal graph
discovery. In H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and H. Lin, editors, Proceedings

of the 33rd International Conference on Advances in Neural Information Processing Systems

(NeurIPS’20), pages 1501–1512. Curran Associates, 2020.

T. Kyono, Y. Zhang, A. Bellot, and M. van der Schaar. Miracle: Causally-aware imputation
via learning missing data mechanisms. In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang,
J. Vaughan, and Y. Dauphin, editors, Advances in Neural Information Processing Systems, pages
23806–23817. Curran Associates, 2021.

L. Lin, M. Sperrin, D. A Jenkins, G. Martin, and N. Peek. A scoping review of causal methods
enabling predictions under hypothetical interventions. Diagnostic and prognostic research, 5(1):
1–16, 2021.

I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In Proceedings

of the International Conference on Learning Representations (ICLR’17), 2017. Published online:
iclr.cc.

S. Müller, N. Hollmann, S. Arango, J. Grabocka, and F. Hutter. Transformers can do bayesian
inference. In Proceedings of the International Conference on Learning Representations (ICLR’22),
2022. URL https://openreview.net/forum?id=KSugKcbNf9. Published online:
iclr.cc.

V. Nair and G. Hinton. Rectified linear units improve restricted Boltzmann machines. In J. Fürnkranz
and T. Joachims, editors, Proceedings of the 27th International Conference on Machine Learning

(ICML’10). Omnipress, 2010.

R. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Computer Science. Springer,
1996.

A. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In R. Greiner, editor,
Proceedings of the 21st International Conference on Machine Learning (ICML’04). Omnipress,
2004.

J. Pearl. Causality. Cambridge University Press, 2 edition, 2009.

J. Pearl. Causal inference. Causality: objectives and assessment, pages 39–58, 2010.

J. Pearl and D. Mackenzie. The Book of Why. Basic Books, 2018.

12

Published as a conference paper at ICLR 2023

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning

algorithms. The MIT Press, 2017.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. Dorogush, and A. Gulin. CatBoost: unbiased boosting
with categorical features. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Proceedings of the 31st International Conference on Advances in Neural

Information Processing Systems (NeurIPS’18). Curran Associates, 2018.

D. Rothenhäusler, N. Meinshausen, P. Bühlmann, and J. Peters. Anchor regression: heterogeneous
data meets causality. arXiv:1801.06229 [stat.ME], 2018.

J. Schmidhuber. The speed prior: A new simplicity measure yielding near-optimal computable
predictions. In J. Kivinen and R. Sloan, editors, Computational Learning Theory, pages 216–228.
Springer, 2002.

R. Schwartz, J. Dodge, N. Smith, and Etzioni. Green AI. Communications of the ACM, 63(12):54–63,
2020.

B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and anticausal
learning. In J. Langford and J. Pineau, editors, Proceedings of the 29th International Conference

on Machine Learning (ICML’12), pages 459–466. Omnipress, 2012.

R. Shwartz-Ziv and A. Armon. Tabular data: Deep learning is not all you need. Information Fusion,
81:84–90, 2022.

G. Somepalli, M. Goldblum, A. Schwarzschild, C. Bruss, and T. Goldstein. SAINT: Improved neural
networks for tabular data via row attention and contrastive pre-training. arXiv:2106.01342 [cs.LG],
2021.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:
1929–1958, 2014.

Bojan Tunguz. Xgboost search space tweet. https://twitter.com/tunguz/status/
1572642449302106112, 2022. Accessed: 2022-09-28.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning.
SIGKDD Explorations, 15(2):49–60, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Proceedings of the 30th International Conference on

Advances in Neural Information Processing Systems (NeurIPS’17). Curran Associates, Inc., 2017.

M. Waldmann and Y. Hagmayer. Causal reasoning. The Oxford handbook of cognitive psychology,
pages 733—-752, 2013.

F. Wenzel, J. Snoek, D., Tran, and R. Jenatton. Hyperparameter ensembles for robustness and
uncertainty quantification. In H. Larochelle, M. Ranzato, R. Hadsell, M.-F. Balcan, and H. Lin,
editors, Proceedings of the 33rd International Conference on Advances in Neural Information

Processing Systems (NeurIPS’20), pages 6514–6527. Curran Associates, 2020.

Z. Wojtowicz and S. DeDeo. From probability to consilience: How explanatory values implement
bayesian reasoning. Trends in Cognitive Sciences, 24(12):981–993, 2020.

Yanzhao Wu, Ling Liu, Zhongwei Xie, Ka-Ho Chow, and Wenqi Wei. Boosting ensemble accuracy
by revisiting ensemble diversity metrics. In 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 16464–16472, 2021. doi: 10.1109/CVPR46437.2021.01620.

13

Published as a conference paper at ICLR 2023

I. Yeo and R. Johnson. A new family of power transformations to improve normality or symmetry.
Biometrika, 87(4):954–959, 2000.

M. Zaheer, G. Guruganesh, K. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula, Q. Wang
Qifan, L. Yang, and A. Amr. Big bird: Transformers for longer sequences. In H. Larochelle,
M. Ranzato, R. Hadsell, M.-F. Balcan, and H. Lin, editors, Proceedings of the 33rd International

Conference on Advances in Neural Information Processing Systems (NeurIPS’20), pages 17283–
17297. Curran Associates, 2020.

S. Zaidi, A. Zela, T. Elsken, C. Holmes, F. Hutter, and Y. Teh. Neural ensemble search for uncertainty
estimation and dataset shift. In M. Ranzato, A. Beygelzimer, K. Nguyen, P. Liang, J. Vaughan,
and Y. Dauphin, editors, Proceedings of the 34th International Conference on Advances in Neural

Information Processing Systems (NeurIPS’21), pages 7898–7911. Curran Associates, 2021.

B. Zoph and Q. V. Le. Neural Architecture Search with reinforcement learning. In Proceedings of

the International Conference on Learning Representations (ICLR’17), 2017. Published online:
iclr.cc.

14

Published as a conference paper at ICLR 2023

A LIMITATIONS

The runtime and memory usage of the Transformer-based PFN architecture used in this work scales
quadratically with the number of inputs, i.e. training samples passed. Thus, inference on larger
sequences (> 100 000) is hard on current consumer GPUs. A growing number of methods seek to
tackle this issue and report similar performances while scaling linearly with the number of inputs
(Zaheer et al., 2020; Beltagy et al., 2020). These methods can be integrated into the PFN architecture
and thus into the TabPFN. Furthermore, in our experiments we limit the number of features to 100
and the number of classes to 10 as described in Section 5. While this choice is flexible, the precise
TabPFN that we fitted cannot work with datasets that go beyond these limits. We also focused the
development of TabPFN to purely numerical datasets without missing values, and while they can be
applied to datasets with categorical features and/or missing values, their performance is generally
worse. We hope to tackle this problem in future versions of TabPFN by a modified architecture and
prior. Finally, we did not consider the existence of many uninformative features in our prior, leading
to performance degradation when such features are added; we hope to address this issue in future
versions of TabPFN. While baseline models (except Gaussian Processes) fit and inference in separate
steps, TabPFN performs both at the same time. Thus when pretrained baseline models are used,
inference is fast (see Table 2).

B ADDITIONAL RESULTS

B.1 DETAILED TABULAR RESULTS

0 0.25 0.5 0.75 1

TabPFN
Autosklearn2

Autogluon
Catboost

XGB
LGBM

Reg. Cocktail

Normalized ROC AUC

Has Categorical Features

False
True

0 0.25 0.5 0.75 1

Normalized ROC AUC

Has Nans in Features

0 0.25 0.5 0.75 1

Normalized ROC AUC

Multiclass

Figure 6: Normalized ROC AUC performance on datasets from the OpenML-CC18 Benchmark,
divided by dataset characteristics. For each plot, we split the datasets into two groups. Left: Orange
bars indicate the performance on datasets that have categorical features. Middle: Orange bars indicate
datasets that contain missing values. Right: Orange bars indicate multiclass datasets, while others are
binary.

In Figure 6, we explore how the kind of dataset evaluated affects the performance of TabPFN,
compared to our baselines. We find that TabPFN performs much better when no categorical features
are present. We also find that TabPFN performs better, when no missing values are present in the
data. This warrants an extension of our prior in future work, to make it more customized towards
categorical and missing data. Our method seems to work comparably well for binary and multi-class
problems.

In addition to the results in the main paper in Section 5.2, we report detailed results on all 30 datasets
in OpenML-CC18, which are small enough, but might include categorical features and missing values.
We show performance over time in Figure 7 and a wide range of performance values and per dataset
results with a 1 hour time limit in Table 2.

15

Published as a conference paper at ICLR 2023

1s 5s 30s 5min 1h
0.84

0.85

0.86

0.87

0.88

0.89

0.9

Given Time Budget

M
ea

n
RO

C
A

U
C

1s 5s 30s 5min 1h
0

5

10

15

20

25

Given Time Budget

RO
C

A
U

C
W

in
s

1s 5s 30s 5min 1h
1
2
3
4
5
6
7
8
9

10

Given Time Budget

M
ea

n
RO

C
A

U
C

R
an

k

TabPFN KNN Reg. Cocktails Log
Catboost SAINT LightGBM XGBoost
Autogluon Auto-sklearn 2.0

Figure 7: ROC AUC performance over time on the 30 small OpenML-CC18 including datasets with
categorical features and missing values. We report the mean, mean wins and rank along with the
95% confidence interval across 5 splits for increasing training and tuning time budgets (Unlabelled
ticks: 1min, 15min). The red star indicates performance of TabPFN with 32 data permutations (which
requires 0.42s on GPU). We report detailed results with a 60 min budget in Table 1

B.2 RESULTS ON THE OPENML-AUTOML BENCHMARK

We evaluate TabPFN using the official benchmarking scripts,7 datasets, splits and baselines results
of the OpenML-AutoML Benchmark. The full list of datasets can be found in Table 10. We note
that these datasets are not disjoint from our evaluation datasets, in fact 4 evaluated datasets from the
OpenML-AutoML Benchmark were included in our evaluation datasets from the OpenML-CC18
Benchmark as well, while one dataset (“Australian”) was included in our list of 150 meta-validation
datasets. The evaluation on another set of benchmarking scripts with previously published train-test
splits and baseline results, however, help to confirm that: (1) Our baselines are well tuned and not
outperformed by another method in the extensive OpenML-AutoML Benchmark; (2) the runtimes of
TabPFN are reproducible in controlled environment provided by the OpenML-AutoML Benchmark;
and (3) TabPFN is not overfit to datasplits or our evaluation metric. While we used a 50-50 train-test
split with 5 iterations for our experiments in Table 3, the OpenML-AutoML Benchmark uses a 10-fold
cross-validation, which results in a 90-10 splits with 10 iterations. Thus in the OpenML-AutoML
Benchmark, all methods use more training samples as in our experiments on the OpenML-CC18
Benchmark, which leads to slightly stronger results.

B.3 IN-DEPTH ANALYSIS OF MODEL BIASES

Previous work by Grinsztajn et al. (2022) empirically investigates the inductive biases of tree-based
and deep-learning models. They identify three challenges in developing tabular-specific models.
Models must be (1) able to fit irregular functions; (2) robust to uninformative features; and (3) preserve
the orientation of the data. We perform and extend this analysis in the following section. We consider
three model types in our analyses: TabPFN, GBDTs (LightGBM) and NNs (Standard Sklearn
Multi Layer Perceptron with a hidden deimensionality of 100). We do not seek to make absolute
comparisons between these model types, which would warrant tuning of our baselines, but only seek
to investigate their qualitative behavior in the following experiments.

B.3.1 FITTING IRREGULAR PATTERNS

While GBDT methods learn non-smooth and irregular patterns in the targets, MLPs learn smooth,
low-frequency functions, as can be seen in Figure 4. The work by (Grinsztajn et al., 2022) suggests
that GBDT methods perform well since they are able to learn non-smooth patterns. Prior works

7Available at https://github.com/openml/automlbenchmark

16

Published as a conference paper at ICLR 2023

Table 2: ROC AUC OVO results on the 30 small OpenML-CC18 (including datasets with categorical
features and missing values) for 60 minutes requested time per dataset and per split. If available, all
baselines are given ROC AUC optimization as an objective, others optimize CE. Overall each method
got a time budget of 150 hours, but not all methods used the full budget. Times for TabPFN refer to
times on GPU. TabPFN runs training, tuning and prediction in a joint step, so only the aggregate time
is shown.

LightGBM CatBoost XGBoost ASKL2.0 AutoGluon TabPFNn.e. TabPFN TabPFN + AutoGluon

balance-scale 0.9938 0.9245 0.9939 0.997 0.9919 0.9965 0.9973 0.9958
mfeat-fourier 0.9786 0.9816 0.9803 0.9826 0.9843 0.9767 0.9811 0.9838
breast-w 0.991 0.9931 0.9896 0.9939 0.9933 0.9931 0.9934 0.994
mfeat-karhunen 0.9979 0.9986 0.9983 0.9975 0.9987 0.9939 0.9978 0.9985
mfeat-morphologica.. 0.9601 0.9629 0.9612 0.9671 0.9698 0.9657 0.9669 0.9722
mfeat-zernike 0.9716 0.9759 0.9735 0.9812 0.9908 0.9812 0.9823 0.9901
cmc 0.7288 0.7256 0.7299 0.7378 0.7331 0.7233 0.7276 0.7336
credit-approval 0.9415 0.9389 0.9422 0.9406 0.9415 0.9253 0.9322 0.9394
credit-g 0.7684 0.7852 0.7853 0.793 0.7941 0.7894 0.7894 0.7948
diabetes 0.8247 0.8383 0.8378 0.8343 0.8391 0.8412 0.841 0.8427
tic-tac-toe 0.9988 0.9992 1 0.9943 1 0.9547 0.9759 0.9992
vehicle 0.9232 0.9302 0.9282 0.9504 0.9416 0.9568 0.9589 0.9538
eucalyptus 0.8931 0.8979 0.9004 0.9132 0.9204 0.9218 0.9245 0.9278
analcatdata_author.. 0.9999 0.9999 0.9997 1 0.9993 1 1 1
analcatdata_dmft 0.5461 0.5589 0.5743 0.5752 0.5657 0.5643 0.579 0.5756
pc4 0.9301 0.9413 0.9291 0.9331 0.9428 0.9298 0.9383 0.944
pc3 0.8178 0.8247 0.8288 0.8265 0.8282 0.8308 0.8373 0.836
kc2 0.8141 0.8323 0.8227 0.8311 0.8242 0.8322 0.8346 0.8321
pc1 0.8321 0.86 0.8489 0.8527 0.8578 0.877 0.8761 0.8739
banknote-authentic.. 1 1 1 1 1 1 1 1
blood-transfusion-.. 0.7144 0.7403 0.7312 0.7504 0.7364 0.753 0.7549 0.7469
ilpd 0.6917 0.7279 0.7171 0.7212 0.723 0.7412 0.7379 0.7326
qsar-biodeg 0.9126 0.9217 0.9191 0.9247 0.9276 0.9345 0.9336 0.9336
wdbc 0.9904 0.9931 0.9904 0.9947 0.9956 0.996 0.9964 0.996
cylinder-bands 0.8556 0.8757 0.8782 0.8718 0.8878 0.8314 0.8336 0.8751
dresses-sales 0.5593 0.5696 0.5823 0.5705 0.5507 0.5333 0.5376 0.5509
MiceProtein 0.9997 0.9999 0.9998 0.9999 1 0.9997 0.9999 1
car 0.9925 0.9955 0.9948 0.998 0.997 0.9926 0.995 0.9972
steel-plates-fault.. 0.9626 0.9655 0.9656 0.9694 0.9666 0.9619 0.9655 0.9687
climate-model-simu.. 0.9286 0.9344 0.9255 0.9291 0.9391 0.9426 0.9415 0.9421

Wins AUC OVO 0 0 2 2 2 4 5 5
Wins Acc. 0 2 2 3 3 0 6 8
Wins CE 0 1 3 1 7 1 6 9

M. rank AUC OVO 6.6167 4.9667 5.4167 4.05 3.7833 4.65 3.7 2.8167
Mean rank Acc. 6.5333 4.9833 5.1833 4.8667 3.8167 4.5333 3.6167 2.4667
Mean rank CE 5.7333 5.6 5.4667 5.8 2.8667 4.6167 3.5333 2.3833

Win/T/L AUC vs Tab.. 5/4/21 9/4/17 6/5/19 10/6/14 13/4/13 4/8/18 –/–/– 15/7/8
Win/T/L Acc vs Tab.. 6/0/24 9/1/20 11/0/19 11/2/17 12/0/18 6/3/21 –/–/– 19/3/8
Win/T/L CE vs TabP.. 6/0/24 8/0/22 8/0/22 8/0/22 20/0/10 1/4/25 –/–/– 23/0/7

Mean AUC OVO 0.884±.012 0.89±.011 0.891±.011 0.894±.01 0.895±.01 0.891±.01 0.894±.01 0.898±.0097
Mean Acc. 0.815±.014 0.818±.011 0.821±.013 0.821±.016 0.83±.012 0.82±.013 0.825±.012 0.834±.011
Mean CE 0.782±.074 0.767±.061 0.758±.047 0.815±.06 0.72±.015 0.742±.021 0.732±.018 0.721±.015

Time Tune + Train (s) 3241 3718 3304 3601 3127 0.0187 0.4197 3127Predict (s) 0.0815 0.0168 0.0685 1.224 21.18

on regularization and an intuitive exploration of the target decision boundary of GBDT methods
in Figure 4, suggests , however, that smooth target functions are desirable. TabPFN learns target
functions that are rather smooth, as suggested in Figure 4. This is due to our modelś prior, which
prefers simple SCMs as explanations and thus less irregular decision planes. We note, however, that
when many training samples are provided, TabPFN fits more complex functions.

The tradeoff between complexity and number of training samples is explored in Figure 8. Here, we
evaluate the training set uncertainty (cross-entropy loss) on synthetic data generated from random
SCMs. The number of training samples and the complexity of the generated data (number of hidden
units in the data generating graph) is varied.

B.3.2 ROBUSTNESS TO UNINFORMATIVE FEATURES

Tabular datasets contain a large fraction of uninformative features (Grinsztajn et al., 2022). To evaluate
robustness to uninformative features, we add an increasingly large fraction of uninformative features
to our data and show results in Figure 9. Uninformative features are generated by copying existing
features and shuffling their values randomly between samples. We find that TabPFN and MLPs
are less robust to uninformative features than LightGBM. TabPFN could be adapted by including
more uninformative features in the used prior. In a second experiment we drop an increasingly large

17

Published as a conference paper at ICLR 2023

Table 3: ROC AUC OVO results on the 5 small datasets ( 1 111 examples, 100 features and 10
classes) for 60 minutes requested time per dataset and per split. If available, all baselines are given
ROC AUC optimization as an objective, others optimize CE. Evaluation on this benchmark was
performed with our previously released TabPFN in order to mitigate test-set overfitting. Mean
OpenML-Metric is not shown in the table as averaging over a mixture of Cross Entropy and ROC
AUC is problematic (however, TabPFN had the strongest average as well).

AutoGluon ASKL ASKL2.0 TunedRandomForest FLAML TPOT TabPFN

vehicle -0.3084 -0.3816 -0.3412 -0.4849 -0.4286 -0.3433 -0.2955
eucalyptus -0.6905 -0.7255 -0.6967 -0.7209 -0.7433 -0.7123 -0.665
blood-transfusion-service-center 0.7532 0.749 0.7557 0.6879 0.7332 0.7359 0.7593
Australian 0.941 0.9315 0.9411 0.9394 0.9356 0.9382 0.9395
credit-g 0.7977 0.7891 0.7984 0.8017 0.7838 0.7821 0.7989

Wins OpenML Metric 0 0 0 1 0 0 3
Wins Acc. 1 0 0 1 0 1 2
Wins CE 3 0 0 0 0 0 2

M. rank OpenML Metric 2.4 5.4 2.6 4.8 6.2 5 1.6
Mean rank Acc. 2.4 5.7 4.7 4.4 5.7 3 2.1
Mean rank CE 1.4 5.8 4.4 5.4 4.4 4.7 1.9

Mean Acc. 0.793±.031 0.763±.052 0.775±.052 0.763±.039 0.761±.035 0.784±.031 0.794±.033
Mean CE 0.454±.039 0.537±.061 0.502±.056 0.545±.079 0.499±.048 0.73±.7 0.449±.05

Mean time (s) 3182 3611 3609 2877 3600 3400 4.374 (CPU)

Figure 8: Mean training set uncertainty (cross-entropy loss) on synthetic data generated from random
SCMs. The number of training samples is varied on the y-axis and the complexity of the generated
data (number of hidden units in the data generating graph) on the x-axis. The cross-entropy mean is
averaged across the 100 samples and 1 000 SCMs for each point.

fraction of features. We drop these features according to feature importance (ranked by a Random
Forest), first removing least informative features. We show results in Figure 9 and observe that the
classification accuracy of a TabPFN and GBDT is not much affected by removing up to 30% of the
features, but constantly diminishes. The MLP, which is less not robust to uninformative features,
initially performs even better when features are removed.

We use our testing tasks from the OpenML CC-18 Benchmark for all evaluations. To simplify
analyses, we drop multiclass datasets and datasets that contain more than 50 features (As adding
100% more features to a dataset with more than 50 features yields more than 100 features, which
TabPFN cannot handle).

B.3.3 INVARIANCE TO FEATURE ROTATION

Each feature of a tabular dataset typically carries meaning individually, as expressed by column
names, such as age or sex. A learning algorithm is rotationally invariant in the sense of Ng (2004), if
it is left unchanged when a rotation (unitary) matrix is applied to the features of both the training
and testing set, i.e. when features are mixed. To remove uninformative features under a feature
rotation, an algorithm first has to restore the original orientation of the features, and then select

18

Published as a conference paper at ICLR 2023

L-GBM MLP TabPFN

0.83

0.84

0.85

0.86

0.87

0.88

Method

RO
C

A
U

C
False
True

0 20 40 60 80 100

0.7
0.725
0.75

0.775
0.8

0.825
0.85

0.875

lgb
mlp
tabpfn

Percentage of features dropped
0 20 40 60 80

0.82
0.83
0.84
0.85
0.86
0.87
0.88

lgb

mlp

tabpfn

Percentage of features added

Figure 9: Left: Performance of LightGBM, MLP and TabPFN when random rotations are applied
to the feature space. LightGBM loses most predictive accuracy when rotations are applied, MLP
is unaffected and TabPFN performs only slightly worse. Center: Removing uninformative features
leads to MLPs initially performing better and overtaking LightGBM performance. TabPFN looses
predictive accuracy and performs similar to baselines, when most features are removed. Right: Adding
uninformative features leads to performance degradation of MLPs and TabPFN, while LightGBM
remains relatively constant.

informative ones. A rotationally invariant algorithm discards the data orientation and thus has to
restore the original orientation internally. Thus, Ng (2004) shows that any rotationally invariant
learning algorithm has a worst-case sample complexity that grows at least linearly in the number of
irrelevant features.

Figure 9 shows the change in test ROC AUC when randomly rotating our datasets, and confirms that
only MLPs are rotationally invariant. GBDT methods are highly sensitive to rotations, while TabPFN
is less sensitive, but still performs better when no rotations are applied.

The theoretical results by Ng (2004) and empirical results by Grinsztajn et al. (2022) imply, that
TabPFN's diminishing performance when uninformative features are added is linked to it's relative
rotation invariance. Adjusting the prior to include more uninformative features could address these
results.

We use our testing tasks from the OpenML CC-18 Benchmark for all evaluations. To simplify
analyses, we drop multiclass datasets and datasets that contain categorical data. Rotating categorical
datasets is problematic, as some GBDT classifiers treat categorical variables distinctly (e.g. generating
embeddings per category).

B.4 ABLATION ON THE SELECTION OF PRIOR MODELS

We perform ablation experiments for a prior based solely on BNNs, SCMs and a mix of both using a
hyperparameter to control the sampling likelihood for either. The PFNs for each prior are fitted using
less compute than in our final experiments, thus their scores generally are slightly worse. The BNN
prior, similar to the one used in Müller et al. (2022), provides diminished performance compared to
the priors based on causal models. Additionally, we can see that mixing BNN and SCM prior does
not seem to make a big difference on our test set compared to a pure SCM prior.

BNN SCM SCM + BNN

Mean CE 0.811±0.009 0.771±0.006 0.776±0.009
Mean ROC AUC 0.865±0.007 0.881±0.002 0.883±0.003

Table 4: An evaluation of the impact of the prior mixing on the final performance. Our final model
was trained in the SCM + BNN setting (see Section 4 for details on the priors).

19

Published as a conference paper at ICLR 2023

Figure 10: Extrapolation performance of our TabPFN to dataset sizes never seen during training.
Maximum number of samples during training was 1024 (dashed red line). The shading indicates
the 95% confidence interval over random data splits. A method that does not generalize, would be
expected to flatten at 1024.

Figure 11: Spearman correlation of per-dataset normalized ROC AUC performance (i.e. the ranking
correlation of per-dataset normalized ROC AUC scores) between the considered methods. Ordering
on the x-axis is the same as on the y-axis. The TabPFN performs well on a different set of datasets
than the baselines, i.e. the Spearman correlation with the GBDT methods is low, while GBDT
and AutoML methods are highly correlated, and thus perform well on the same datasets. TabPFN
correlates stronger with DL based methods (SAINT and Reg. Cocktail), which, however, do not
perform as well as GBDT methods in terms of absolute ROC AUC performance (see 1)

B.5 EXTENDED ANALYSIS ON A LARGER BENCHMARK OF DATASETS

We provide an extended benchmark where we:

i) Include an analysis on the additional 149 validation datasets 8 (see 8).
ii) Include default configurations of our baselines.

iii) Run one step of the default configuration of our baselines initially and then tuning them.
iv) Added SVM, Gradient Boosting and Random Forests as a Baseline. and report results in

Figure 14 and Figure 15. The benchmark was done across 5 splits and followed the same
experimental setup described in F.

8The dataset flags was removed as not enough splits could be generated by our code.

20

Published as a conference paper at ICLR 2023

C DETAILS OF THE TABPFN PRIOR

C.1 SCM PRIOR

The Sampling Algorithm We instantiate a subfamily of DAGs that can be efficiently sampled from
by starting with a MLP architecture and dropping weights from it. That is, to sample a dataset with k
features and n samples from our prior we perform the following steps for each dataset:

(1) We sample the number of MLP layers l ⇠ p(l) and nodes h ⇠ p(h) and sample a graph G(Z,
E) structured like an l-layered MLP with hidden size h.

(2) We sample weights for each Edge Eij as Wi,j ⇠ pw(·).
(3) We drop a random set of edges e 2 E to yield a random DAG.
(4) We sample a set of k feature nodes Nx and a label node Ny from the nodes Z.
(5) We sample the noise distributions p(✏) ⇠ p(p(✏)) from a meta-distribution. This yields an SCM,

with all fi’s instantiated as random affine mappings followed by an activation. Each zi corresponds
to a sparsely connected neuron in the MLP.

With the above parameters fixed, we perform the following steps for each member of the dataset:
(1) We sample noise variables ✏i from their specific distributions.
(2) We compute the value of all z 2 Z with zi = a((

P
j2PAG(i)

Eijzj) + ✏i).
(3) We retrieve the values at the feature nodes Nx and the output node Ny and return them.

We sample one activation function a per dataset from {Tanh, LeakyReLU,ELU, Identity} (Nair
and Hinton, 2010). The sampling scheme for the number of layers p(l) and nodes p(h) is designed to
follow a discretized noisy log-normal distribution, p(✏) is a noisy log-normal distribution and the
dropout rate follows a beta distribution. The full information can be found in Table 5.

C.2 TABULAR DATA REFINEMENTS

Tabular datasets comprise a range of peculiarities, e.g. feature types can be numerical, ordinal, or
categorical and feature values can be missing, leading to sparse features. We seek to reflect these
peculiarities in the design of our prior as described in the following sections.

C.2.1 PREPROCESSING

During meta-training, input data is normalized to zero mean and unit variance, and we apply the
same step when evaluating on real data. Since tabular data frequently contains exponentially scaled
data, which might not be present during meta-training, we apply power scaling during inference (Yeo
and Johnson, 2000). Thus, during inference on real tabular datasets the features more closely match
those seen during meta-training. We use only training samples for calculating z-statistics, power
transforms and all other preprocessing. We take this preprocessing time into account when reporting
the inference time of our method.

C.2.2 CORRELATED FEATURES

Feature correlation in tabular data varies between datasets and ranges from independent to highly
correlated. This poses problems to classical deep learning methods (Borisov et al., 2021). When
considering a large space of SCMs, correlated features of varying degrees naturally arise in our
priors. Furthermore, in real-world tabular data, the ordering of features is often unstructured, however
adjacent features are often more highly correlated than others. We use “Blockwise feature sampling”
to reflect the correlation structure between ordered features. Our generation method of SCMs naturally
provides a way to do this. The first step in generating our SCMs is generating a unidirectional layered
network structure in which nodes in one layer can only receive inputs from the preceding layer. Thus,
features in the same layer tend to be more highly correlated. We use this by sampling adjacent nodes
in the layered network structure in blocks and using these ordered blocks in our set of features. In
Figure 12, we visualize the correlations of such a generated dataset (right) and compare them to a
real-world dataset (left), demonstrating that our prior yields correlation structures similar to those of
real datasets.

21

Published as a conference paper at ICLR 2023

Figure 12: Feature correlation matrices for a real-world (“PC4 Software defect prediction”, left) and
a synthetic (right) dataset, where brighter colors indicate higher correlation.

C.2.3 GENERATING IRREGULAR FUNCTIONS

In real-world data, some features are consistently more important than others. While a random
network weight initialization leads to slightly different feature importances, the average effect of
input features regresses to the mean when the hidden dimensionality increases. We amplify differences
by sampling a weight parameter for each input feature and multiplying all outgoing weights by this
factor. In the prior, we randomly sparsify connections of the graph. Thus hidden variables and
the output node are influenced by fewer parameters, yielding more irregular patterns, as a larger
number of parameters once again regresses to the mean. We also extend sparsification to blocks of
variables, leading to some groups of variables interacting more strongly. We also extend the way noise
variables are sampled. Instead of sampling Gaussian noise at each node from the same distribution,
we first sample separate noise means and standard deviations for each node and then sample from
this distribution. Also, we generate non-uniformly distributed input data x, as observed in real-world
data: We sample the input variables x (which are propagated through our network), from a mix of
distributions, namely the Gaussian, Zipfian and Multivariate Distribution.

C.2.4 NAN HANDLING

We do not have special nan handling built into our model. We replace nan values with zero at test
time.

C.2.5 CATEGORICAL FEATURES

Tabular data often includes not only numeric features but also discrete categorical ones. While
categorical features should technically not be ordered, in practice, they sometimes are, i.e., the
categories represent binned degrees of some underlying variable. We introduce categorical features by
picking a random fraction pcat (a hyperparameter) of categorical features per dataset. Analogous to
transforming numeric class labels to discrete multiclass labels, we convert dense features to discrete
ones. Also analogous to multiclass labels, we pick a shuffling fraction of categorical features pscat
where we reshuffle categories. For details, see Section 4.5. During prior-fitting, we use a probability
for categorical features of 20%.

C.2.6 PRIOR WORK ON PFNS FOR TABULAR DATA

Prior work by Müller et al. (2022) has demonstrated tabular data classification using PFNs, but was
limited to 30 training samples, balanced binary-classification and 60 features. Here we summarize
the most important changes, to this prior work:

i) The PFNs for tabular data described in Müller et al. (2022) can only handle balanced binary
datasets, in Section 3.5 we show how to extend the prior s.t. we can handle unbalanced data.

22

Published as a conference paper at ICLR 2023

ii) We looked into pre-processing techniques for the TabPFN, which was not done at all
before. Finally, we ensemble over different pre-processing pipelines, which include (power
transforms and outlier removal) and feature/class rotations.

iii) We changed the transformer architecture s.t. it is faster. We shrank attention matrix sizes
from (n+m)2 to n2 + n ⇤m, for n training points and m inference points.

iv) We introduce a novel SCM prior. We compare the SCM, the improved BNN prior (whcih
is more heavily based on the BNN setup of C.2.6) and SCM + BNN in Table 4. It pushes
performance by 2% in this smaller scale setup, which is a bigger difference than between
the final TabPFN and all baselines besides KNN and SAINT.

D DETAILS OF THE PRIOR-DATA FITTED NETWORK ALGORITHM

Algorithm 1 describes the training method proposed by Müller et al. (2022) for PFNs.

Algorithm 1: Meta-Training of a PFN (Müller et al., 2022)
Input :A prior distribution over datasets p(D), from which samples can be drawn and the

number of samples K to draw
Output :A model q✓ that will approximate the PPD
Initialize the neural network q✓;
for j 1 to K do

Sample D [{(xi, yi)}mi=1 ⇠ p(D);
Compute stochastic loss approximation ¯̀

✓ =
Pm

i=1(� log q✓(yi|xi, D));
Update parameters ✓ with stochastic gradient descent onr✓

¯̀
✓;

end

E SETUP OF OUR METHOD

E.1 TRANSFORMER HYPERPARAMETERS

We considered only PFN Transformers with 12 layers, embeddings size 512, hidden size 1024 in
feed-forward layers, and 4-head attention. We used the Adam optimizer (Kingma and Ba, 2015) with
linear-warmup and cosine annealing (Loshchilov and Hutter, 2017). For each training we tested a set
of 3 learning rates, {.001, .0003, .0001}, and used the one with the lowest final training loss. The
resulting model contains 25.82 M parameters.

E.2 PFN ARCHITECTURE ADAPTATIONS

Attention Adaption The original PFN architecture (Müller et al., 2022) uses a single multi-head self-
attention module (Vaswani et al., 2017) to compute the attention between all the training examples,
as well as, the attention from validation examples to training examples. We replaced this, with two
modules that share weights, one which computes self-attention among the training examples and the
other that only compute cross-attention from validation examples to training examples. Conceptually,
this is equivalent to the original architeture, except that we’re using a slightly different self-attention
mask than the original architecture, which allowed all examples to attend to itself (the diagonal is 1),
as in this example: 2

6664

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 0 1

3

7775
. (3)

For validation examples, we remove the attention to themselves. In terms of the example above:2

6664

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

3

7775
. (4)

23

Published as a conference paper at ICLR 2023

Information about the state of the current position does still flow through the residual branch, though.

Flexible Encoder Datasets have unequal numbers of input dimensions (features), while PFNs use
an encoder layer that accepts fixed dimensional inputs. Here we explain how datasets with different
numbers of dimensions can be modelled with a single PFN: We draw the number of dimensions of
a dataset during training uniformly at random up to 100. Our encoder changes to accomodate this
training and inference with different numbers of features by zero-padding datasets where the number
of features k is smaller than the maximum number of features K and scaling these features by K

k , s.t.
the magnitude stays the same.

E.3 TABPFN TRAINING

We trained our final model for 18 000 steps with a batch size of 512 datasets. That is our TabPFN is
trained on 9 216 000 synthetically generated datasets. This training takes 20 hours on 8 GPUs (Nvidia
RTX 2080 Ti). Each dataset had a fixed size of 1024 and we split it into training and validation
uniformly at random. We generally saw that learning curves tended to flatten after around 10 million
datasets and were generally very noisy. Likely, this is because our prior generates a wide variety of
different datasets.

E.4 PRIOR HYPERPARAMETERS

The hyperparameters of our prior were chosen based on simplicity and our observations on the
validation datasets (such as their class distributions or feature correlation strengths). Also, during
algorithm development, we evaluated our models on this set of datasets to decide if our developed
methods were correct and working. Since our prior hyperparameters specify distributions and not
definite values, they can be chosen over a wide range and resemble the intervals chosen for a random
hyperparameter search. The prior distributions we used are given in Table 5.

Table 5: Overview of our prior hyperparameter distribution. For many features we use a Log Uniform
distribution with truncated normal noise, which we refer to as TNLU(h|µ̌, µ̂,min, round). We
sample from it by first sampling mean µ and standard deviation � from µ,� ⇠ LogUniform(µ̌, µ̂)
and then sampling from the resulting truncated normal distribution v ⇠ TruncNormal(µ,�2). v is
rounded to the closest integer, if round is set. The final sampled value then is h = v +min.

Sampling
distribution p()

MLP weight dropout 0.9 · Beta(a, b), where a, b ⇠ Uniform(0.1, 5.0)

Choices

Sample SCM vs BNN Uniform Choice {True, False}
Share Noise mean for nodes Uniform Choice {True, False}
Input feature scaling enabled Uniform Choice {True, False}
Sample y from last MLP layer Uniform Choice {True, False}
MLP Activation Functions Uniform Choice {Tanh, Leaky ReLU, ELU, Identity}
Blockwise Dropout Uniform Choice {True, False}
Keep SCM feature order Uniform Choice {True, False}
Sample feature nodes blockwise Uniform Choice {True, False}

Max Mean µ̂ Min Mean µ̌ round min

MLP #layers TNLU 6 1 True 2
MLP #hidden nodes per layer TNLU 130 5 True 4
Gaussian Noise Std. TNLU 0.3 0.0001 False 0.0
MLP Weights Std. TNLU 10.0 0.01 False 0.0
SCM #nodes at layer 1 TNLU 12 1 True 1

F DETAILS FOR TABULAR EXPERIMENTS

Here we provide additional details for the experiments conducted in Section 5 in the main paper.

24

Published as a conference paper at ICLR 2023

F.1 HARDWARE SETUP

All evaluations, including the baselines, ran on a compute cluster equipped with Intel(R) Xeon(R)
Gold 6242 CPU @ 2.80GHz using 1 CPU with up to 6GB RAM. For evaluation using our TabPFN,
we additionally use an RTX 2080 Ti.

F.2 BASELINES

We provide the search space used to tune our baselines in Table 6. For CatBoost and XGBoost, we
used the same ranges as Shwartz-Ziv and Armon (2022) with the following exception: For CatBoost

we removed the hyperparameter max_size since we could not find it in the official documentation.
To be maximally fair to XGBoost, we also tried the search space of quadruple Kaggle grandmaster
Bojan Tunguz (Tunguz, 2022), which we adapted slightly by using softmax instead of logistic, as we
are in the multi-class setting. XGBoost with this search space performed worse for all considered
time budgets than the search space by Shwartz-Ziv and Armon (2022). The search spaces for the
KNN, GP and Logistic Regression baselines were designed from scratch and we used the respective
implementation from scikit-learn (Pedregosa et al., 2011). For CatBoost and AutoSklearn, we pass
the position of categorical features to the classifier (AutoGluon automatically detects categorical
feature columns). We normalize inputs for Logistic Regression, GP and KNN to the range [0, 1]
using MinMax Scaling.

Figure 13: Ensemble weights of classifiers used in AutoSklearn baseline for each dataset. Ensemble
weights are averaged across 5 splits for each dataset in the OpenML-CC18 Benchmark after one hour
of training.

F.3 USED DATASETS

To construct and evaluate our method, we used the following four sets of datasets.

First, our meta-test set (see Table 7) comprises all datasets in the OpenML-CC18 benchmark suite (Bis-
chl et al., 2021)(available at OpenML.org) with at most 2 000 samples, 100 features and 10 classes,
which leaves us with 30 datasets that represent small, tabular datasets.

Second, our meta-validation set (see Tables 8 and 9) comprises 150 datasets from OpenML.org (Van-
schoren et al., 2014). For this, we considered all datasets on OpenML.org and applied the following
filtering procedure: We dropped all datasets that are in the meta-test set and all datasets with more
than 2 000 samples, 100 features or 10 classes. We also manually checked for overlaps and removed
datasets where the number of features, classes and samples was identical to a dataset in the meta-test

25

Published as a conference paper at ICLR 2023

Table 6: Hyperparameter spaces for baselines. All, except LightGBM, adapted from Shwartz-Ziv and
Armon (2022).

baseline name type log range

LogReg
penalty cat (l1, l2, none) -
max_iter int [50, 500] -
fit_intercept cat (True, False) -
C float [e�5, 5] -

KNN n_neighbors int [1, 16] -

GP params_y_scale float [0.05, 5.0] yes
params_length_scale float [0.1, 1.0] yes

CatBoost

learning_rate float [e�5, 1] yes
random_strength int [1, 20] -
l2_leaf_reg float [1, 10] yes
bagging_temperature float [0, 1.0] yes
leaf_estimation_iterations int [1, 20] -
iterations int [100, 4000] -

XGBoost

learning_rate float [e�7, 1] yes
max_depth int [1, 10] -
subsample float [0.2, 1] -
colsample_bytree float [0.2, 1] -
colsample_bylevel float [0.2, 1] -
min_child_weight float [e�16, e5] yes
alpha float [e�16, e2] yes
lambda float [e�16, e2] yes
gamma float [e�16, e2] yes
n_estimators int [100, 4000] -

LightGBM

num_leaves int [5, 50] yes
max_depth int [3, 20] yes
learning_rate float [e�3, 1] -
n_estimators int 50, 2000 -
min_child_weight float [e�5, e4] yes
reg_alpha float [0, 1e-1, 1, 2, 5, 7, 10, 50, 100] yes
reg_lambda float [0, 1e-1, 1, 5, 10, 20, 50, 100] yes
subsample float [0.2, 0.8] -

26

Published as a conference paper at ICLR 2023

Table 7: Datasets used for the evaluation. These include all 30 datasets in the OpenML-CC18
benchmark suite with at most 2 000 samples, 100 features and 10 classes.

Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

balance-scale 5 1 625 3 0 49 11
mfeat-fourier 77 1 2000 10 0 200 14
breast-w 10 1 699 2 16 241 15
mfeat-karhunen 65 1 2000 10 0 200 16
mfeat-morphological 7 1 2000 10 0 200 18
mfeat-zernike 48 1 2000 10 0 200 22
cmc 10 8 1473 3 0 333 23
credit-approval 16 10 690 2 67 307 29
credit-g 21 14 1000 2 0 300 31
diabetes 9 1 768 2 0 268 37
tic-tac-toe 10 10 958 2 0 332 50
vehicle 19 1 846 4 0 199 54
eucalyptus 20 6 736 5 448 105 188
analcatdata_auth... 71 1 841 4 0 55 458
analcatdata_dmft 5 5 797 6 0 123 469
pc4 38 1 1458 2 0 178 1049
pc3 38 1 1563 2 0 160 1050
kc2 22 1 522 2 0 107 1063
pc1 22 1 1109 2 0 77 1068
banknote-authenti... 5 1 1372 2 0 610 1462
blood-transfusion-... 5 1 748 2 0 178 1464
ilpd 11 2 583 2 0 167 1480
qsar-biodeg 42 1 1055 2 0 356 1494
wdbc 31 1 569 2 0 212 1510
cylinder-bands 40 22 540 2 999 228 6332
dresses-sales 13 12 500 2 835 210 23381
MiceProtein 82 5 1080 8 1396 105 40966
car 7 7 1728 4 0 65 40975
steel-plates-fault 28 1 1941 7 0 55 40982
climate-model-simu... 21 1 540 2 0 46 40994

set. Furthermore, we manually dropped FOREX (since it is a time series dataset) and artificially-
created datasets, such as the Univ and Friedman datasets. The remaining meta-validation set then
contains 150 datasets. This meta-validation set was used to guide the development of our prior
hyperparameters as described in Appendix E.4.

Third, a subset of 5 datasets from the OpenML-AutoML Benchmark, comprises all datasets from the
OpenML-AutoML Benchmark with at most 1 111 samples, 100 features and 10 classes. This is given
in Table 10. Due to the 10-fold cross-validation in the OpenML-AutoML Benchmark this is identical
to the setup for our meta-test and meta-validation datasets above, where we used up to 2 000 samples
split 50-50 into training and test.

Fourth, our meta-generalization set, described in Appendix F.4, comprises 18 larger datasets from the
OpenML AutoML Benchmark.

F.4 MODEL GENERALIZATION

For testing the TabPFN performance on longer sequences, as described in Section 10, we used a set
of 18 datasets from the OpenML AutoML Benchmark that contain at least 10 000 samples. The list
of datasets used can be found in Table 11. For this evaluation, datasets with more than 100 features
are limited to the first 100 features. When more than 10 classes are contained in the datasets, samples
with any but the first 10 classes are discarded.

F.5 DETAILS ON TIME COMPARISONS

Time comparisons refer to combined fitting, tuning and prediction; see Table 2 for the times split
into tuning/fitting and prediction. The time taken for each baseline and TabPFN does not include the
one-time cost of development of each method. Thus, for AutoML baselines meta-learning cost was
not included (e.g. Auto-Sklearn pipelines meta-learning, which involved running hyper-parameter
search for 24 hours on 140 datasets (= 3360 CPU hours) (Feurer et al., 2021)). For GBDT methods
the manual time that went into defining suitable hyperparameter spaces and the manual crafting of
algorithms that perform well on tabular datasets is hard to measure and was not included. For TabPFN
the prior-fitting phase (which is part of our algorithm development: i.e. developing ideas, writing
code, trying ideas) is not included. This is fair to all methods, as these costs are not on the user side
and are amortized over time.

27

Published as a conference paper at ICLR 2023

Figure 14: ROC AUC comparison on the OpenML-CC18 Benchmark. Baselines were tuned for one
hour or until 10000 configurations were exhausted (Log. Reg and KNN).

28

Published as a conference paper at ICLR 2023

Figure 15: ROC AUC comparison on 149 validation datasets (see Table 8). Baselines were tuned for
one hour or until 10 000 configurations were exhausted (Log. Reg and KNN).

29

Published as a conference paper at ICLR 2023

Figure 16: Critical difference plots on average ranks with a Wilcoxon significance analysis. We show
plots for both our test set (OpenML-CC18) and our validation set. We split each into a subset of
purely numerical datasets without missing values and the rest. We compare to two sets of baselines. i)
Fast Baselines Baselines that finish tuning, training and prediction in less than 30 seconds on average
(the TabPFN on CPU is within this bound). ii) Tuned (1h) Baselines Stronger baselines with one hour
of budget for tuning, training and prediction (TabPFN still requires less than 30 seconds on average
with the same hardware). We can see that TabPFN performs similar on the large validation and the
test set. Additionally, we see that TabPFN is much stronger on purely numerical datasets.
A critical difference analysis comparing tuned XGB and TabPFN (ensemble of 32) on numerical
datasets without missing values shows a statistically significant improvement of TabPFN on test
(p = 1.6%) and validation datasets (p = 2.2%). We observe statistical significance only when
comparing tuned XGB to TabPFN without any other methods, but not when comparing multiple
methods at once. This is, because in the above plots statistical corrections are made to avoid multiple
testing.

30

Published as a conference paper at ICLR 2023

Table 8: Meta-Datasets used for developing the prior.

Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

breast-cancer 10 10 286 2 9 85 13
colic 27 20 368 2 1927 136 25
dermatology 35 34 366 6 8 20 35
sonar 61 1 208 2 0 97 40
glass 10 1 214 6 0 9 41
haberman 4 2 306 2 0 81 43
tae 6 3 151 3 0 49 48
heart-c 14 8 303 2 7 138 49
heart-h 14 8 294 2 782 106 51
heart-statlog 14 1 270 2 0 120 53
hepatitis 20 14 155 2 167 32 55
vote 17 17 435 2 392 168 56
ionosphere 35 1 351 2 0 126 59
iris 5 1 150 3 0 50 61
wine 14 1 178 3 0 48 187
flags 29 27 194 8 0 4 285
hayes-roth 5 1 160 3 0 31 329
monks-problems-1 7 7 556 2 0 278 333
monks-problems-2 7 7 601 2 0 206 334
monks-problems-3 7 7 554 2 0 266 335
SPECT 23 23 267 2 0 55 336
SPECTF 45 1 349 2 0 95 337
grub-damage 9 7 155 4 0 19 338
synthetic_control 61 1 600 6 0 100 377
prnn_crabs 8 2 200 2 0 100 446
analcatdata_lawsuit 5 2 264 2 0 19 450
irish 6 4 500 2 32 222 451
analcatdata_broadwaymult 8 5 285 7 27 21 452
analcatdata_reviewer 8 8 379 4 1418 54 460
backache 32 27 180 2 0 25 463
prnn_synth 3 1 250 2 0 125 464
schizo 15 3 340 2 834 163 466
profb 10 5 672 2 1200 224 470
analcatdata_germangss 6 5 400 4 0 100 475
biomed 9 2 209 2 15 75 481
rmftsa_sleepdata 3 1 1024 4 0 94 679
diggle_table_a2 9 1 310 9 0 18 694
rmftsa_ladata 11 1 508 2 0 222 717
pwLinear 11 1 200 2 0 97 721
analcatdata_vineyard 4 2 468 2 0 208 724
machine_cpu 7 1 209 2 0 56 733
pharynx 11 10 195 2 2 74 738
auto_price 16 2 159 2 0 54 745
servo 5 5 167 2 0 38 747
analcatdata_wildcat 6 3 163 2 0 47 748
pm10 8 1 500 2 0 246 750
wisconsin 33 1 194 2 0 90 753
autoPrice 16 1 159 2 0 54 756
meta 22 3 528 2 504 54 757
analcatdata_apnea3 4 3 450 2 0 55 764
analcatdata_apnea2 4 3 475 2 0 64 765
analcatdata_apnea1 4 3 475 2 0 61 767
disclosure_x_bias 4 1 662 2 0 317 774
bodyfat 15 1 252 2 0 124 778
cleveland 14 8 303 2 6 139 786
triazines 61 1 186 2 0 77 788
disclosure_x_tampered 4 1 662 2 0 327 795
cpu 8 2 209 2 0 53 796
cholesterol 14 8 303 2 6 137 798
chscase_funds 3 1 185 2 0 87 801
pbcseq 19 7 1945 2 1133 972 802
pbc 19 9 418 2 1239 188 810
rmftsa_ctoarrivals 3 2 264 2 0 101 811
chscase_vine2 3 1 468 2 0 212 814
chatfield_4 13 1 235 2 0 93 820
boston_corrected 21 4 506 2 0 223 825
sensory 12 12 576 2 0 239 826
disclosure_x_noise 4 1 662 2 0 329 827
autoMpg 8 4 398 2 6 189 831
kdd_el_nino-small 9 3 782 2 466 274 839
autoHorse 26 9 205 2 57 83 840
stock 10 1 950 2 0 462 841
breastTumor 10 9 286 2 9 120 844
analcatdata_gsssexsurvey 10 6 159 2 6 35 852
boston 14 2 506 2 0 209 853
fishcatch 8 3 158 2 87 63 854
vinnie 3 1 380 2 0 185 860
mu284 11 1 284 2 0 142 880
no2 8 1 500 2 0 249 886
chscase_geyser1 3 1 222 2 0 88 895
chscase_census6 7 1 400 2 0 165 900
chscase_census5 8 1 400 2 0 193 906
chscase_census4 8 1 400 2 0 194 907
chscase_census3 8 1 400 2 0 192 908
chscase_census2 8 1 400 2 0 197 909
plasma_retinol 14 4 315 2 0 133 915
visualizing_galaxy 5 1 323 2 0 148 925
colleges_usnews 34 2 1302 2 7830 614 930

31

Published as a conference paper at ICLR 2023

Table 9: Meta-Datasets used for developing the prior (continued).

Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

disclosure_z 4 1 662 2 0 314 931
socmob 6 5 1156 2 0 256 934
chscase_whale 9 1 228 2 20 111 939
water-treatment 37 16 527 2 542 80 940
lowbwt 10 8 189 2 0 90 941
arsenic-female-bladder 5 2 559 2 0 80 949
analcatdata_halloffame 17 2 1340 2 20 125 966
analcatdata_birthday 4 3 365 2 30 53 968
analcatdata_draft 5 3 366 2 1 32 984
collins 23 3 500 2 0 80 987
prnn_fglass 10 1 214 2 0 76 996
jEdit_4.2_4.3 9 1 369 2 0 165 1048
mc2 40 1 161 2 0 52 1054
mw1 38 1 403 2 0 31 1071
jEdit_4.0_4.2 9 1 274 2 0 134 1073
PopularKids 11 5 478 3 0 90 1100
teachingAssistant 7 5 151 3 0 49 1115
lungcancer_GSE31210 24 3 226 2 0 35 1412
MegaWatt1 38 1 253 2 0 27 1442
PizzaCutter1 38 1 661 2 0 52 1443
PizzaCutter3 38 1 1043 2 0 127 1444
CostaMadre1 38 1 296 2 0 38 1446
CastMetal1 38 1 327 2 0 42 1447
KnuggetChase3 40 1 194 2 0 36 1448
PieChart1 38 1 705 2 0 61 1451
PieChart3 38 1 1077 2 0 134 1453
parkinsons 23 1 195 2 0 48 1488
planning-relax 13 1 182 2 0 52 1490
qualitative-bankruptcy 7 7 250 2 0 107 1495
sa-heart 10 2 462 2 0 160 1498
seeds 8 1 210 3 0 70 1499
thoracic-surgery 17 14 470 2 0 70 1506
user-knowledge 6 1 403 5 0 24 1508
wholesale-customers 9 2 440 2 0 142 1511
heart-long-beach 14 1 200 5 0 10 1512
robot-failures-lp5 91 1 164 5 0 21 1520
vertebra-column 7 1 310 3 0 60 1523
Smartphone-Based... 68 2 180 6 0 30 4153
breast-cancer-... 10 10 277 2 0 81 23499
LED-display-... 8 1 500 10 0 37 40496
GAMETES_Epistasis... 21 21 1600 2 0 800 40646
calendarDOW 33 21 399 5 0 44 40663
corral 7 7 160 2 0 70 40669
mofn-3-7-10 11 11 1324 2 0 292 40680
thyroid-new 6 1 215 3 0 30 40682
solar-flare 13 13 315 5 0 21 40686
threeOf9 10 10 512 2 0 238 40690
xd6 10 10 973 2 0 322 40693
tokyo1 45 3 959 2 0 346 40705
parity5_plus_5 11 11 1124 2 0 557 40706
cleve 14 9 303 2 0 138 40710
cleveland-nominal 8 8 303 5 0 13 40711
Australian 15 9 690 2 0 307 40981
DiabeticMellitus 98 1 281 2 2 99 41430
conference_attendance 7 7 246 2 0 31 41538
CPMP-2015-... 23 1 527 4 0 78 41919
TuningSVMs 81 1 156 2 0 54 41976
regime_alimentaire 20 17 202 2 17 41 42172
iris-example 5 1 150 3 0 50 42261
Touch2 11 1 265 8 0 27 42544
penguins 7 3 344 3 18 68 42585
titanic 8 5 891 2 689 342 42638

Table 10: Datasets used for the evaluation in the OpenML-AutoML Benchmark. These include all
datasets with at most 1 111 samples, 100 features and 10 classes.

Name #Feat. #Cat. #Inst. Class Size #NaNs Minor. Class Size OpenML ID

credit-g 21 14 1000 2 0 300 31
vehicle 19 1 846 4 0 199 54
wine 14 1 178 2 0 71 973
blood-transfusion-service-center 5 1 748 2 0 178 1464
Australian 15 9 690 2 0 307 40981

32

Published as a conference paper at ICLR 2023

Table 11: Evaluation datasets for model generalization experiments.

Name #Feat. #Cat. #Inst. #Class. #NaNs Minor. Class Size OpenML ID

KDDCup09_appetency 231 39 50000 2 8024152 890 1111
airlines 8 5 539383 2 0 240264 1169
bank-marketing 17 10 45211 2 0 5289 1461
nomao 119 30 34465 2 0 9844 1486
adult 15 9 48842 2 6465 11687 1590
covertype 55 45 581012 7 0 2747 1596
numerai28.6 22 1 96320 2 0 47662 23517
connect-4 43 43 67557 3 0 6449 40668
jungle_chess_2pcs.̇. 7 1 44819 3 0 4335 41027
APSFailure 171 1 76000 2 1078695 1375 41138
albert 79 53 425240 2 2734000 212620 41147
MiniBooNE 51 1 130064 2 0 36499 41150
guillermo 4297 1 20000 2 0 8003 41159
riccardo 4297 1 20000 2 0 5000 41161
volkert 181 1 58310 10 0 1361 41166
dionis 61 1 416188 355 0 878 41167
jannis 55 1 83733 4 0 1687 41168
helena 28 1 65196 100 0 111 41169

33

